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Abstract

The field of neuroimaging has recently witnessed a strong shift towards data sharing; however, current collaborative research
projects may be unable to leverage institutional architectures that collect and store data in local, centralized data centers. Addition-
ally, though research groups are willing to grant access for collaborations, they often wish to maintain control of their data locally.
These concerns may stem from research culture as well as privacy and accountability concerns. In order to leverage the potential
of these aggregated larger data sets, we require tools that perform joint analyses without transmitting the data. Ideally, these tools
would have similar performance and ease of use as their current centralized counterparts. In this paper, we propose and evaluate
a new algorithm, decentralized joint independent component analysis (djICA), which meets these technical requirements. djICA
shares only intermediate statistics about the data, plausibly retaining privacy of the raw information to local sites, thus making it
amenable to further privacy protections, for example via differential privacy. We validate our method on real functional magnetic
resonance imaging (fMRI) data and show that it enables collaborative large-scale temporal ICA of fMRI, a rich vein of analysis
as of yet largely unexplored, and which can benefit from the larger-N studies enabled by a decentralized approach. We show that
djICA is robust to different distributions of data over sites, and that the temporal components estimated with djICA show activations
similar to the temporal functional modes analyzed in previous work, thus solidifying djICA as a new, decentralized method oriented
toward the frontiers of temporal independent component analysis.

Keywords: Independent Component Analysis, temporal Independent Component Analysis, Decentralization, Collaborative
Analysis, fMRI

1. Introduction

The benefits of collaborative analysis on fMRI data are deep
and far-reaching. Research groups studying complex phenom-
ena (such as mental disorders) often gather data with the in-
tent of performing specific kinds of analyses. However, re-
searchers can often leverage the data gathered to investigate
questions beyond the scope of the original study. For exam-
ple, a study focusing on the role of functional connectivity in
mental health patients may collect a brain scan using magnetic
resonance imaging (MRI) from all enrolled subjects, but may
only examine one particular aspect of the data. The scans gath-
ered for the study, however, are often saved to form a data set
associated with that study—they therefore remain available for
use in future research. This phenomenon often results in the
accumulation of vast amounts of data, distributed in a decen-
tralized fashion across many research sites. In addition, since
technological advances have dramatically increased the com-
plexity of data per measurement while lowering their cost, re-
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searchers hope to leverage data across multiple research groups
to achieve sufficiently large sample sizes that may uncover im-
portant, relevant, and interpretable features that characterize the
underlying complex phenomenon.

The standard industry solution to data sharing involves each
group uploading data to a shared-use data center, such as a
cloud-based service like the OpenfMRI data repository [1] or
the more-recently proposed OpenNeuro service [2]. Despite the
prevalence of such frameworks, centralized solutions may not
be feasible for many research applications. For example, since
neuroimaging uses data taken from human subjects, data shar-
ing may be limited or prohibited due to issues such as (i) local
administrative rules, (ii) local desire to retain control over the
data until a specific project has reached completion, (iii) a de-
sire to pool together a large external dataset with a local dataset
without the computational and storage cost of downloading all
the data, or (iv) ethical concerns of data re-identification. The
last point is particularly acute in scenarios involving genetic in-
formation, patient groups with rare diseases, and other identity-
sensitive applications. Even if steps are taken to assure patient
privacy in centralized repositories, the repository maintainers
are often forced to deal with monumental tasks of centralized
management and standardization. This can require many hours
of additional processing, occasionally reducing the richness of
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some of the contributed data [3].
In lieu of centralized sharing techniques, a number of practi-

cal decentralization approaches have recently been proposed by
researchers looking to perform privatized analyses. For exam-
ple, the “enhancing neuroimaging genetics through meta anal-
ysis” (ENIGMA) consortium [4] allows groups to share local
summary statistics rather than gathering all the original imag-
ing data at a single site for a centralized analysis. This method
has proven very successful when using both mega- and meta-
analysis approaches [4, 5, 6, 7]. Particularly, the meta-analysis
at work in ENIGMA has been used for large-scale genetic as-
sociation studies, with each site performing the same analysis,
the same brain measure extraction, or the same regressions, and
then aggregating local results globally. Meta-analyses can sum-
marize findings from tens of thousands of individuals, so the
summaries of aggregated local data need not be subject to insti-
tutional firewalls or even require additional consent from sub-
jects [7, 8]. This approach represents one proven, widely used
method for enabling analyses on otherwise inaccessible data.

Although ENIGMA has spurred innovation through massive
international collaborations, there are some challenges which
complicate the approach. Firstly, the meta-analyses at work
in ENIGMA are effectively executed manually: a very time-
consuming process. For each experiment, researchers have to
write analysis scripts, coordinate with personnel at all partici-
pating sites to make sure these scripts are implemented there,
adapt and debug scripts at each site, and then gather the re-
sults through the use of proprietary software. In addition, an
analysis using the ENIGMA approach described above is typi-
cally “single-shot,” i.e., it does not iterate among sites to com-
pute results holistically, as informed by the global data. From a
statistical and machine learning perspective, single-shot model
averaging has asymptotic performance with respect to the num-
ber of subjects for some types of analysis [9, 10]. However,
simple model averaging does not account for variability be-
tween sites driven by small sample sizes and cannot leverage
multivariate dependence structures that might exist across sites.
Furthermore, the ability to iterate over local site computations
allows not only continuous refinement of the solution at the
global level but also greater algorithmic complexity, enabling
multivariate approaches like group ICA [11] and support vec-
tor machines [12], and increased efficiency due to parallelism,
facilitating the processing of images containing thousands of
voxels.

These, together with the significant amount of manual labor
required for single-shot approaches to decentralization, moti-
vates decentralized analyses which favor more frequent com-
munication. For example, sites running a global optimization
algorithm can communicate following each iteration or after a
number of iterations. In this paper, we further previous work
in this direction [13] to develop iterative algorithms for col-
laborative, decentralized feature learning. Namely, we imple-
ment a real-data application of a successful algorithm for de-
centralized independent component analysis (ICA), a widely-
used method in neuroimaging applications. Specifically, we
show that our decentralized implementation can help further ad-
vance the as-of-yet mostly unexplored domain of temporal ICA

of functional magnetic resonance imaging (fMRI) data. The
resulting method is a ready fit for decentralized collaboration
frameworks, such as the COINSTAC neuro-imaging analysis
platform [12], which promises innovation in privacy-sensitive
decentralized analysis.

Decentralized approaches such as ENIGMA allow research
sites to maintain control over data access, thus providing plau-
sible privacy protection at the cost of additional labor in imple-
menting and updating a distributed architecture. For many ap-
plications, keeping data stored on sites without transfer of entire
data samples may provide substantial privacy. These decentral-
ized methods, however, are amenable to quantifiable measures
of privacy, such as differential privacy [14]. In this work, we
leave the addition of differential privacy aside, and focus on the
presentation of djICA as a separate algorithm first, with plausi-
ble privacy; however, we have pursued the addition of differen-
tial privacy to djICA elsewhere [15].

One widespread analysis which stands to benefit from decen-
tralization is temporal independent component analysis (tICA).
In resting-state fMRI studies, we can assume that the overall
spatial networks remain stable across subjects and experiment
duration, while the activation of certain neurological regions
varies over time and across subjects. Temporal ICA, first uti-
lized for fMRI by Biswal et al. [16], locates temporally inde-
pendent components corresponding to independent activations
of a subjects’ intrinsic common spatial networks [17]. Both
spatial and temporal ICA evidently provide reliable estimates
of these intrinsic networks from fMRI data [18, 19, 20, 21], but,
unlike its spatial counterpart, temporal ICA allows spatial cor-
relation between them (i.e. overlaps in the spatial maps) [22].
Spatial and temporal ICA can result in similar estimated net-
works [23, 18, 24, 19], while temporal ICA provides estimates
not otherwise available to spatial ICA [21, 25], specifically for
task-related data. Temporal ICA has also proven particularly
useful for extracting information from high-resolution fMRI
scans with overlapping spatial activations, a feature not avail-
able to spatial ICA [26]. Beyond estimation of novel temporal
components, temporal ICA can also aid in isolating and remov-
ing noise from fMRI signals [27, 28].

While useful, the existing literature for temporal ICA is lim-
ited. This can be partially attributed to computational complex-
ity and dependence on statistical sample size, since temporal
ICA requires more data points in the time dimension than the
typical fMRI time series can offer [18, 19]. Specifically, the ra-
tio of the spatial to the temporal dimension often requires the
temporal dimension to be at least similar to the voxel dimen-
sion. This often motivates the temporal aggregation of datasets
composed of many temporally concatenated subjects. This tem-
poral aggregation is also a key feature of the well-established
group spatial ICA in the fMRI literature [29, 30, 31]. Beyond
accumulation of subjects, other studies implementing temporal
ICA for fMRI utilize higher-resolution scans to perform tempo-
ral ICA with fewer subjects [26]. Further methods reduce the
spatial dimension to make a temporal ICA tractable: Seifritz et
al. [32] use an initial spatial ICA to reduce spatial dimensional
by locating a region of interest on which to perform temporal
ICA, and Van et al. restrict the temporal analysis to a prede-
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termined region of voxels deemed relevant to their particular
problem of speech pattern monitoring [33].

Although temporal ICA would benefit tremendously from
increasing the temporal frequency of scanners, or analyzing a
large number of subjects at a central location, as mentioned
above, this is not always feasible. To overcome the challenges
of centralized temporal ICA, we present a novel method, decen-
tralized joint Independent Component Analysis (djICA), which
allows for the computation of aggregate spatial maps and lo-
cal independent time courses across decentralized data stored
at different servers belonging to independent labs. Our ap-
proach combines individual computations performed locally
with global processes to obtain both local and global results.
The resulting method for temporal ICA produces results with
similar performance to the pooled-data case and provides esti-
mated components in line with previous literature, demonstrat-
ing the effectiveness of decentralized collaborative algorithms
for this difficult task.

In sum, the contributions of this paper are as follows:

• In Section 2, we present decentralized joint independent
component analysis (algorithm 1, Section 2.2), which is
closely related to Infomax ICA (Section 2.1) with decen-
tralized PCA preprocessing (Section 2.3).

• In Section 3 we include experiments and evaluation of
djICA over different subject and site distributions for sim-
ulated data sets, including simulated fMRI data, thus pro-
viding a baseline result and proper motivation for real-data
experiments.

• In Section 4, we perform experiments which evaluate
djICA on a real set of fMRI data in a simulated decen-
tralized environment, using a novel pseudo-ground-truth
evaluation scheme to compare our results with the pooled
case.

• Finally, in Section 5, we discuss the performance of
djICA as a novel method for performing temporal ICA
in decentralized settings, comparing our results with pre-
viously estimated results from the pooled temporal ICA
literature.

2. Materials and Methods

In this section, we provide the details of our method for de-
centralized joint independent component analysis and provide
a basis for its evaluation. We first review Independent Compo-
nent Analysis for the pooled case (where all samples are located
on a single site) in Section 2.1, which provides basis for our pre-
sentation of the djICA algorithm in section 2.2. In section 2.3
we discuss performing PCA preprocessing in a decentralized
setting, and finally, in section 2.4, we discuss our methods for
evaluating the djICA algorithm. The code used for evaluation
is available on GitHub1, and its inclusion in the COINSTAC
decentralized analysis framework is currently ongoing.

1https://github.com/MRN-Code/djica_paper_code_release

2.1. Independent Component Analysis

ICA is a popular blind source separation (BSS) method
which attempts to decompose mixed signals into independent
components (ICs), or sources, without prior knowledge of
the structure of those sources. Empirically, ICA applied to
brain imaging data produces robust features which are physi-
ologically interpretable and markedly reproducible across stud-
ies [31, 34, 35, 16]. Indeed, while justification for successful
ICA of fMRI results had been previously attributed to sparsity
alone [36], it has been shown that statistical independence be-
tween the underlying sources is in fact a key driving mecha-
nism of ICA algorithms [37], with additional benefits possible
by trading off between the two [38].

In linear ICA, we model a data matrix X ∈ Rd×N as a product
X ≈ AS, where S ∈ Rr×N is composed of N observations from r
statistically independent components, each representing an un-
derlying signal source. Thus, we can interpret ICA in terms of
this generative model, with independent sources S submitted to
a linear mixing process described by a mixing matrix A ∈ Rd×r,
forming the observed data X. Most ICA algorithms seek to re-
cover the “unmixing matrix” W = A−1 (or in the case where A
is not square, the pseudo-inverse, A+), by maximizing indepen-
dence between rows of the product WX, assuming the matrix
A is invertible.

Maximal information transfer (Infomax) [39] is a popular
heuristic for estimating W by maximizing an entropy func-
tional related to WX. This can alternatively be interpreted as a
Bayesian estimator with a super-Gaussian prior on the density
of the sources. More precisely, with some abuse of notation, let

g(z) =
1

1 + e−z (1)

be the sigmoid function with g(Z) being the result of element-
wise application of g(·) on the entries of a matrix or vector Z.
The differential entropy of a random vector Z with joint density
p is

h(Z) = −

∫
p(Z) log p(Z)dZ. (2)

The objective of Infomax ICA then becomes

Ŵ = argmax
W

h(g(WX)). (3)

Another class of algorithms includes the famous family of
fixed-point methods such as Fast ICA [40, 41, 42]. These lo-
cally optimize a “contrast” function such as kurtosis or negen-
tropy.

ICA, along with other methods for BSS, has found wide ap-
plication. In particular, functional magnetic resonance imaging
(fMRI) and other biomedical imaging data use ICA models to
interpret subject imaging data [35]. For fMRI, many models
assume that functionally connected regions in the brain are sys-
tematically nonoverlapping. ICA has been used in applications
ranging from interpreting physiology to analyzing task-related
signals in both the spatial and temporal domains.
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X S A UΣV
Data Matrix Source Matrix Mixing Matrix SVD results
Xi Xi,red Ui Gi( j)
Data Site i Reduced Data Site i Eigenvectors Site i Gradient Site i
∆W( j) W( j) b( j) ( j)
Weight Update Weight Matrix Bias iter j
s r d N
# sites rank (# ICs) # rows # cols
ρ wmax θmax α

learning rate max weight max angle anneal rate

Table 1: A summary of important notation used throughout this paper, espe-
cially in Algorithms 1, 2, and 3.

Additionally, a number of extensions of ICA exist for the pur-
pose of jointly analyzing multiple data sets to perform a simul-
taneous decomposition across a large number number of sub-
jects and different modalities [43, 44, 45]. Group spatial ICA
(GICA) stands out as the leading approach for multi-subject
analysis of task- and resting-state fMRI data [46], building on
the assumption that the spatial map components (S) are com-
mon (or at least similar) across subjects. Another approach,
called joint ICA (jICA) [47], is popular in the field of multi-
modal data fusion and assumes instead that the mixing process
(A) over a group of subjects is common between a pair of data
modalities.

A largely unexplored area of fMRI research is group tempo-
ral ICA, which, like spatial ICA, assumes common spatial maps
but with statistically independent timecourses. Group temporal
ICA has been most commonly applied to EEG data [48] but
less frequently to fMRI data. Consequently, like jICA, in the
fMRI case, the common spatial maps from temporal ICA de-
scribe a common mixing process (A) among subjects. However,
temporal ICA of fMRI is not typically investigated because the
small number of time points in each data set can lead to un-
reliable estimates. Our decentralized jICA (djICA) approach
overcomes that limitation by leveraging information from data
sets distributed over multiple sites. This is an important exten-
sion of single-subject temporal ICA and a further example of
methods which can benefit from leveraging data in collabora-
tive settings.

2.2. Decentralized Joint ICA
Our goal in this paper is to show that the decentralized

joint ICA algorithm can be applied to decentralized fMRI data
and produce meaningful results for temporal ICA. We present
djICA in detail here and provide notation in table.

For an integer n let [n] = {1, 2, . . . , n}. Suppose that we have s
total sites indexed by [s]; each site i ∈ [s] has a data matrix Xi ∈

Rd×Ni consisting of a total time course of length Ni time points
over d voxels. Let N =

∑s
i=1 Ni be the total length. We model

the data at each site as coming from a common (global) mixing
matrix A ∈ Rd×r applied to local data sources Si ∈ Rr×Ni . Thus,
the total model can be written as

X = [AS1 AS2 · · · ASs] ∈ Rd×N . (4)

Our algorithm, decentralized joint ICA (djICA), uses locally
computed gradients to estimate a common, global unmixing

matrix W ∈ Rr×d corresponding to the Moore-Penrose pseudo-
inverse of A in (4), denoted A+.

Figure 1 summarizes the overall algorithm in the context of
temporal ICA for fMRI data. Each site i has data matrices
Xi,m ∈ Rd×ni corresponding to subjects m ∈ [Mi] with d voxels
and ni time samples. Sites concatenate their local data matri-
ces temporally to form a d × niMi data matrix Xi, so the total
time course length at site i is Ni = niMi, and the total number
of subjects is M =

∑s
i=1 Mi. Each site performs local PCA (Al-

gorithm 2) using the singular value decomposition (SVD), with
matrices Ui ∈ Rd×k and Σi ∈ Rk×k corresponding to the top k
singular vectors and values, respectively. Then, in a decentral-
ized principal component analysis (dPCA) framework, the sites
approximate a global PCA (Algorithm 3) to form a common r-
dimensional projection matrix U ∈ Rd×r. This approach is an
adaptation of the sub-sampled time PCA (STP) method [49] to
the case of decentralized data, offering an accurate bandwidth-
efficient alternative to other dPCA algorithms [50] which can
compute the global U directly (without local PCA) but at the
expense of communicating a large d × d matrix between sites.
Finally, all sites project their data onto the subspace correspond-
ing to U to obtain reduced local datasets Xi,red ∈ Rr×Ni .

The projected data is the input to the iterative djICA algo-
rithm that estimates the unmixing matrix W ∈ Rr×r, as de-
scribed in Algorithm 1. The full mixing matrix for the global
data is modeled as A ≈ (WU>)+ ∈ Rd×r. After initializing
W (for example, as the identity matrix), the djICA algorithm
iteratively updates W using a distributed natural gradient de-
scent procedure [51]. At each iteration j the sites update lo-
cally. In lines 5 and 6, the sites adjust the local source estimates
Zi = WXi,red by their bias estimates b( j − 1)1> ∈ Rr×Ni , fol-
lowed by the sigmoid transformation g(·); then, local gradients
are computed with respect to Wi and bi in lines 7 and 8. Here,
yl,i( j) is the l-th column of Yi( j). The sites then send their local
gradient estimates Gi( j) and hi( j) to an aggregator site, which
aggregates them according to lines 11-13. After updating W( j)
and b( j), the aggregator checks if any values in W( j) increased
above an upper bound of wmax = 109 in absolute value. If so,
the aggregator resets the global unmixing matrix, sets the cur-
rent iteration to j = 0, and anneals the learning rate by ρ = 0.9ρ.
Otherwise, before continuing, if the angle between ∆W( j) and
∆W( j−1) is above θmax = 60◦, the aggregator anneals the learn-
ing rate by ρ = 0.9ρ, preventing W from changing too quickly
without learning the structure of data. The aggregator sends the
updated W( j) and b( j) back to the sites. Finally, the algorithm
stops when ‖∆W( j)‖22 < t, and each site recovers the statistically
independent source estimates Si by

Si ≈WXi,red. (5)

For the pooled-data case, Amari et al. [52] demonstrate theo-
retically that Infomax ICA meets with the conditions that guar-
antee convergence of W to an asymptotically stable solution as
long as A−1 is also asymptotically stable. In other words, the
natural gradient provides convergence to an equilibrium point
corresponding to a local minimum; however, in the general case
for Infomax ICA, it is unfortunately not possible to assure con-
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Figure 1: An overview of the djICA pipeline. Each panel in the flowchart represents one stage in the pipeline and provides an overview of the processes done on
local sites and on the aggregator site, as well as communication between nodes. The dPCA panel corresponds to Algorithms 2 and 3, the djICA panel corresponds
to Algorithm 1, and the Source Estimation panel corresponds to the procedure for computing local sources given in equation (5). On each panel, local site i is an
arbitrary site in the decentralized network, and local site i + 1 represents the next site in a given ordering over the decentralized network. Broadcast communication
sends data to all sites, and Send communication sends data to one site. Lines with an arrowhead indicate procedural flow. Lines with diamond endpoints indicate
communication flow. Dotted lines with diamond endpoints indicate that the sending process occurs iteratively to neighbors until the aggregator is reached, or in the
case of broadcasting, indicates that all nodes receive the latest update. Double-lines indicate site-specific computations.

vergence to a global minimum, i.e. complete separation of the
source signals.

In the decentralized-data case, djICA converges to the so-
lution of the pooled-data case: the assumption of a common
mixing matrix across subjects assures that the global gradient
sum is identical to the pooled-data gradient on average, like-
wise moving the global weight matrix towards convergence.

Indeed, since the global iterates of djICA are taken as
the average of the individually computed, on-site gradients,
djICA run on a full-batch case (where each site has access to the
full batch of data) is equivalent to the pooled version of infomax
ICA. We show this empirically in section 1 of the supplemen-
tary material included with this work.

For our purposes, we chose the hyper-parameter values as
specified in the “Required” parameters for Algorithm 1, and
we utilized the stochastic version of the algorithm with block

size b =

⌊√
min(Ni)

20

⌋
, where min(Ni) is the minimum number of

param. t J ρ wmax θmax α

value 10−6 1024 0.015/ln(r) 109 60◦ 0.9

Table 2: A summary of the hyper-parameters used in all experiments, for both
simulations, and real-data scenarios.

concatenated time-points across all sites. We summarize these
parameters in Table 2.

2.3. PCA preprocessing

Here, we describe the decentralized principal component
analysis (dPCA) algorithms used for dimension reduction and
whitening in the djICA pipeline. The dPCA algorithm is a pre-
processing step that standardizes the data prior to djICA and
should also be decentralized so that the benefits of using a de-
centralized joint ICA are not made moot by dependence on a
previous pooled step. There are many approaches to approxi-
mating the global PCA with a distributed algorithm [53].
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Algorithm 1 decentralized joint ICA (djICA)

Require: data {Xi,red ∈ Rr×Ni : i ∈ [s]}, where r is the same
across sites, tolerance level t = 10−6, j = 0, maximum it-
erations J = 1024, initial learning rate ρ = 0.015/ ln(r),
maximum weight entry wmax = 109 , maximum angle
θmax = 60◦, annealing rate α = 0.9

1: Initialize W(0) ∈ Rr×r . for example, W(0) = I
2: for j < J and ‖∆W( j)‖22 ≥ t do
3: j = j + 1
4: for all sites i = 1, 2, . . . , s do
5: Zi( j) = W( j − 1)Xi,red + b( j − 1)1>
6: Yi( j) = g(Zi( j))
7: Gi( j) = ρ

(
I + (1 − 2Yi( j))Zi( j)>

)
W( j − 1)

8: hi( j) = ρ
∑Ni

l=1(1 − 2yl,i( j))
9: Send Gi( j) and hi( j) to the aggregator site.

10: end for
At the aggregator site, update global variables

11: ∆W( j) =
∑s

i=1 Gi( j)
12: W( j) = W( j − 1) + ∆W( j)
13: b( j) = b( j − 1) +

∑s
i=1 hi( j)

Check Upper-Bound Conditions
14: if wi, j ∈W, |wi, j| > wmax then . W has blown-up
15: Re-Initialize W(0), j = 0, ρ = αρ
16: else if ∠ (∆W( j),∆W( j − 1)) > θmax then
17: ρ = αρ . Prevent W from changing too quickly
18: end if
19: Broadcast global W( j) and b( j) to all sites.
20: end for

We first chose to examine dPCA from Bai et al. [50]. Their
proposed dPCA algorithm bypasses local data reduction, and
thus works directly with the full data, which motivates its
choice for some of our simulated experiments. One major
downside of their approach, however, is that it requires the
transfer of a large orthogonal matrix between all sites, thus in-
creasing bandwidth usage significantly. As an alternative to the
approach presented by Bai et al., a two-step dPCA approach
was considered based on the STP approach [54] recently devel-
oped for large PCA of multi-subject fMRI data. One advantage
of this approach is that only a small matrix P ∈ Rd×k is trans-
mitted from one site to another, a significant decrease compared
to the large d × d matrix [50]. The downside is that there are
no bounds on the accuracy of the final U and results can vary
slightly with the order in which sites and subjects are processed.
Nonetheless, our results suggest that the two-step dPCA ap-
proach, described in Algorithms 2 and 3, yields a fairly good
estimate of U. In principle, any suitable decentralized PCA al-
gorithm could replace the two methods tested here. Thus, we
leave room for future improvements of our framework to find
the most effective dPCA approach for the djICA pipeline.

Algorithm 3 uses a peer-to-peer scheme to iteratively refine
P( j), with the last site broadcasting the final U to all sites. U
is the matrix containing the top r′ columns of P(s) with largest
L2-norm, but normalized to unit L2-norm instead. Following
the recommendation in Calhoun et al. [54], we set r = 20 and

Algorithm 2 Local PCA algorithm (LocalPCA)

Require: data X ∈ Rd×N and intended rank k
1: Compute the SVD X = UΣV.
2: Let Σ(k) ∈ Rk×k contain the largest k singular values and

U(k) ∈ Rd×k the corresponding singular vectors.
3: Save U(k) and Σ(k) locally and return P = U(k)Σ(k).

Algorithm 3 Global PCA algorithm (GlobalPCA)

Require: s sites with data {Xi ∈ Rd×Ni : i = 1, 2, . . . , s}, in-
tended final rank r, local rank k ≥ r.

1: Choose a random order π for the sites.
2: P(1) = LocalPCA(Xπ(1),min{k, rank(Xπ(1))})
3: for all j = 2, 3, . . . , s do
4: Set site index i = π( j)
5: Send P( j − 1) from site π( j − 1) to site π( j)
6: k′ = min{k, rank(Xi)}
7: P′ = LocalPCA(Xi, k′)
8: k′ = max{k′, rank(P( j − 1))}
9: P( j) = LocalPCA([P′ P( j − 1)], k′)

10: end for
11: r′ = min{r, rank(P(s))}
12: U = NormalizeTopColumns(P(s),r′) . At last site
13: Send U to sites π(1), . . . , π(s − 1).
14: for all sites i = 1, 2, . . . , s do
15: Xi,red = U>Xi . The locally reduced data
16: end for

k = 5 · r for our simulations.

2.4. Evaluation Strategy

All of our experiments were run using the MATLAB 2007b
parallel computation toolbox, on a Linux Server running
Ubuntu 12.04 LTS, with a 9.6GHz processor (four Intel Xeon
E7-4870 @ 2.40GHz each), a 120MB L3 cache (30MB L3
cache per processor), and 512GB of RAM. For any one exper-
iment, we only used a maximum of 8 cores, due to a need to
share the server with other researchers.

As a performance metric for our experiments we choose the
Moreau-Amari [51] inter-symbol interference (ISI):

IS I(Q) =
1

2r(r − 1)

[ r∑
i=1

( r∑
j=1

|Qi j|

maxk |Qik |
− 1

)
+

r∑
j=1

( r∑
i=1

|Qi j|

maxk |Qk j|
− 1

)]
.

(6)

This is a function of the square matrix Q = ŴA, where Ŵ =

WU>, W is the estimated unmixing matrix from Algorithm 1,
U is the orthonormal projection matrix retrieved from dPCA,
and r = rank(Q), i.e. the number of sources. In particular,
a lower ISI measure indicates a better estimation of a set of
ground-truth components.
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3. Experiments with Simulated Data

First, we test djICA in a simulated environment where we
can manufacture a known ground-truth and use djICA to recon-
struct this ground-truth under different mixing and site config-
urations. For this simulated case, we explicitly construct the
signal matrices, S, and the mixing matrix A (using the methods
described in section 3), such that the source matrices are statis-
tically independent and provide, thus providing the assurance
that a solution to underyling BSS problem exists. If djICA per-
forms well in this simulated case, where a solution is given, we
can thus justify further experiments with real data, where a so-
lution to the underlying BSS problem is not readiily available.
To this end, we evaluated 5 different scenarios for synthesis and
analysis of synthetic data, as summarized in Table 3. Based on
what we have learned from these various scenarios, which in-
clude different PCA preprocessing strategies, we can construct
a promising pipeline for djICAwhich can then be translated to
the real data case.

Two kinds of mixing matrices A were used for experimenta-
tion:

1. Lower dimensional square mixing matrices were gener-
ated using MATLAB’s randn function [55], which gen-
erates matrices whose elements are selected from an
i.i.d. Gaussian distribution.

2. Higher dimensional mixing matrices were generated using
the MIALab’s fMRI simulation toolbox (simTB) [56]. The
simTB spatial maps are intended to simulate spatial com-
ponents of the brain which contribute to the generation of
the simulated time course. Higher dimensional mixtures
were masked using a simple circular mask which drops
empty voxels outside of the generated spatial map.

For the first two scenarios indicated in Table 3, we generated
i.i.d. Gaussian mixing matrices A ∈ Rr×r. For the higher-
dimensional problems (scenarios 3-5), we used the simTB spa-
tial maps [56] to generate different A ∈ Rd×r mixing matrices.

The independent signals Sm were simulated using a general-
ized autoregressive (AR) conditional heteroscedastic (GARCH)
model [57, 58], which has been shown to be useful in models of
causal source separation [59] and time-series analyses of data
from neuroscience experiments [59, 60], especially resting-
state fMRI time courses [61, 62]. We simulated fMRI time
courses using a GARCH model by generating an AR process
(no moving average terms) randomly such that the AR series
converges. We chose a random order between 1 and 10 and
random AR coefficients {α[`]} such that α[0] ∈ [0.55, 0.8] and
α[`] ∈ [−0.35, 0.35] for ` > 0. For the error terms δt = σtεt, we
used an ARMA model driven by εt from a generalized normal
distribution with shape parameter 100 (so it was approximately
uniform on [−1, 1]) and σ2

t = 0.1 + 0.1y[t− 1]2 + 0.75σ[t− 1]2.
For each of 1024 simulated subjects, we generated 20 time
courses with 250 time points, each after a “burn-in” period of
20000 samples, checking that all pair-wise correlations between
the 20 time courses stayed below 0.35. We generated a to-
tal of 1024 mixed datasets for each experiment by computing
Xm = ASm.

In summary, we considered the following combinations of
algorithm, preprocessing, and mixing matrix: 1) pooled (cen-
tralized) temporal ICA with no preprocessing (no data reduc-
tion) and a square i.i.d Gaussian mixing-matrix, 2) djICA with
no preprocessing and a square i.i.d. Gaussian mixing-matrix,
3) pooled temporal ICA with LocalPCA preprocessing (Algo-
rithm 2) and a simTB mixing matrix, 4) djICA with dPCA from
Bai et al. [50] and a simTB mixing matrix, and 5) djICA with
GlobalPCA (Algorithm 3) and a simTB mixing matrix.

scenario algorithm preprocessing mixing matrix A
1 ICA (pooled) none i.i.d. Gaussian
2 djICA none i.i.d. Gaussian
3 ICA (pooled) LocalPCA simTB map
4 djICA One-Step dPCA [50] simTB map
5 djICA GlobalPCA simTB map

Table 3: Five scenarios considered for synthesis and analysis of simulated data
experiments.

3.1. Simulation Results

In this section, the results for simulated experiments are pre-
sented. We are particularly interested in understanding how
the proposed algorithm performs with different kinds of pre-
processing, and how the results improve as a function of the
global number of subjects, the global number of sites, or how
the subjects are distributed over sites.

To test how the algorithms compare as we increase the data
at a fixed number of sites, we fixed s = 2 sites and evaluated
all five scenarios in Table 3, splitting the data evenly per site
in the non-pooled cases. Figure 2a shows ISI versus the total
data set size. As the data set increases all algorithms improve
and, more importantly, the distributed versions perform nearly
as well as the pooled-data counterparts. Results are averaged
over 10 randomly generated mixing matrices.

To test how the algorithms compare as we increase the num-
ber of sites s, we fix Mi = 32 subjects per site. Figure 2b
demonstrates the convergence of the ISI curve with an increas-
ing amount of combined data, with results averaged over 10
randomly generated mixing matrices. Again, we see that the
performance of djICA is very close to the centralized pooled
performance, even for such a small number of subjects per site.

To test how splitting the data sets across more sites affects
performance, we fixed the total of 1024 subjects and investi-
gated the effect of splitting them over a growing number of sites
s. Thus, the concentration of data per site Mi decreased with in-
creasing number of sites such that for small s each site had more
data sets and for large s each site had fewer data sets. Figure 2c
shows that the performance of djICA is very close to that of the
pooled-data ICA, even with more and more sites holding fewer
and fewer data points. This implies that we can support largely
decentralized data with little loss in performance.

4. Experiments with Real Data

The simulated experiments illustrate the clear benefit
djICA provides by enabling the joint analysis of large decen-
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Figure 2: The ISI for pooled and decentralized algorithms for different distributions of subjects over sites under the five simulated scenarios indicated in Table 3.
Panel 2a illustrates an increasing number of subjects over two, fixed sites. Panel 2b illustrates an increasing number of sites, with the number of subjects per site
staying constant at 32 subjects per site, with the number of sites starting at 2 and increasing by a factor of two. Panel 2c illustrates 1024 total subjects distributed
over an increasing number of sites. Panel 2d shows the 20 Ground-Truth spatial-maps, along with the estimated spatial-maps from Pooled ICA and djICA with 1024
subjects on 2 sites. In the cases with no PCA (panels 2a-??), the pooled and decentralized algorithms perform identically.

tralized data sets. In this section, we describe the methods uti-
lized for real-data experiments with resting-state fMRI datasets.
These experiments are intended to illustrate the effectiveness
of djICA (Algorithm 1) in the particular domain of exploratory
analysis of fMRI data. As mentioned earlier, the benefits of
using this algorithm for fMRI analysis are numerous, and the
experiments here aim to both highlight those benefits and illus-
trate the robustness of the algorithm when compared to pooled
analyses.

4.1. Data Description

In this section, we describe the data sets used for real data
analysis. The purpose here is to describe the preprocessing
steps specific to the data utilized here. Experiments used
data gathered on-site, according to the protocol in [46]. The
data were collected using a 3-Tesla Siemens Trio scanner with
a 12-channel radio frequency coil. T2*-weighted functional
images were acquired using a gradient-echo EPI sequence
with TE = 29 ms, TR = 2 s, flip angle = 75◦, slice thick-
ness = 3.5 mm, slice gap = 1.05 mm, field of view 240 mm, ma-
trix size = 64×64, voxel size = 3.75 mm × 3.75 mm × 4.55 mm.
In terms of duration, resting-state scans were a minimum of
2 min 8 s (64 volumes) long, on average 5 min 16 s (158 vol-
umes) long, and at maximum 10 min 2 s (301 volumnes) long
(see Table 4). In contrast to [46], subjects with greater number
of time-points were retained in order to illustrate the general
robustness of djICA to variation in the time-course length.

In terms of preprocessing, the data underwent rigid body
alignment for head motion, slice-timing correction, spatial nor-
malization to MNI space (using SPM5), regression of 6 motion
parameters and their derivatives in addition to any trends (up to
cubic or quintic), and spatial smoothing using a 10 mm3 full-
width at half-maximum (FWHM) Gaussian kernel.

We also used the minimum description length (MDL) crite-
rion [63] to estimate the number of independent components
for each individual subject with the algorithm available in the

min mean mode median max range std
64 158 158 158 301 237 9

Table 4: Statistics on the number of timepoints in the data set.

MIALab’s Group ICA of fMRI toolbox (GIFT) [64, 65, 11].
experiment. The median number of components over 2038 sub-
jects was 50, and the mean was 49.4636. In all experiments, we
thus elected to estimate r = 50 real components from the data.

4.2. Real Data with “Real” Ground-Truth
Our ultimate goal is to show that djICA can provide reason-

able decentralized estimates for real fMRI components which
are comparable to the pooled case. Thus, we first perform a
pooled analysis in order to establish a “pseudo” ground-truth
that can be used to evaluate djICA’s performance on real com-
ponent estimation. We estimated r = 50 real independent com-
ponents from M = 2038 subjects by running a pooled instance
of temporal ICA on a single site. The performance of djICA was
assessed by matching the estimated decentralized components
to the pooled components via the Hungarian algorithm [66] and
then computing the ISI between the two sets of components.
For PCA preprocessing, to avoid high communication costs, we
elect to test only the GlobalPCA method given in algorithm 3.

Using the pooled estimations as our basis for comparison, we
then tested djICA in four distinct scenarios, varying the distri-
bution of subjects across a network as follows:

1. when the global number of subjects in the network in-
creases, but the number of sites in the network stays con-
stant,

2. when the number of subjects per site stays constant, and
the number of sites in the network increases,

3. when the global number of subjects in the network stays
constant, but the number of sites in the network increases
(subjects distributed evenly across sites), and
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4. when the global number of subjects in the network stays
constant, and subjects are randomly distributed across
sites.

For the first three scenarios, we cap the maximum number of
subjects in the network at 1024 so that we can achieve an even
distribution of subjects in terms of powers of 2, and so that the
figures compare more directly with the simulated experiments.
Furthermore, in order to get a more detailed picture of the ef-
fects of small numbers of subjects per site, we also evaluate
djICA in the third scenario with a higher global number of sub-
jects (M = 2000), and closely examine the results in Figure 4.
For each of these scenarios, we performed 10 repeated estima-
tions of djICA components, where each run randomly assigned
subjects to different sites (without duplication of subjects).

For the fourth and last scenario, 2000 subjects were randomly
distributed across sites. Firstly, we selected a parametric prob-
ability distribution P(Θ) with parameters Θ. We then sampled
100 different values from P, where each value corresponds with
a potential number of subjects on the i-th site (Mi). We dis-
carded any values below 4, so that each site has a minimum of
4 subjects per site, and took the ceiling of each real value so
that site distributions are given as natural numbers. We then se-
lected the first s − 1 values, with s being the number of sites,
such that

∑s−1
i=1 Mi < M, where M is the global number of sub-

jects in the network. For the final site, we set Ms = M−
∑s−1

i=1 Mi

so that the total number of subjects in the network will remain
constant at M. This process results in a varying number of sites
between successive samplings, which we found more appealing
for testing as opposed to a randomization method that would
distribute a fixed number of subjects across a fixed number of
sites. We also considered the effect of different distribution pa-
rameter values (Θ) to assess the performance of djICA.

4.3. “Real” Ground-Truth Results

In this section, we present the results of djICA on the four
experiments described above. In all cases, djICA is compared
with a pooled case involving M = 2038 subjects, comparing
across conditions using the Moreau-Amari ISI index as we did
in the simulated experiments, now treating the pooled case as a
our real-data “ground-truth”.

4.3.1. How do the estimated components compare as we in-
crease the data, with a fixed number of sites?

In Figure 3a, we evaluate the ISI index for djICA using real-
data in a scenario where the global number of subjects in-
creases, but the number of sites in the network is fixed. This
figure illustrates that as the number of subjects increases, the
estimated djICA components converge towards the components
computed in the pooled case.

4.3.2. How do the estimated components compare as we in-
crease the number of sites, with a fixed amount of data
sets per site?

In Figure 3b, we evaluate the ISI index for djICA using real-
data in a scenario where the number of subjects on each site

is held constant, while the number of sites in the network in-
creases. This figure further illustrates that as the global number
of subjects increases, the estimated djICA components converge
towards the components computed in the pooled case. Indeed,
1024 global subjects was sufficient for good performance across
the smaller network.

4.3.3. How does spreading the data sets across more sites af-
fect performance?

In Figure 3c, we evaluate the ISI index for djICA using real
data in a scenario where the global number of subjects across
the entire network is held constant, while the number of sites
in the network increases. This figure illustrates that it is the
global number of subjects included in the analysis, rather than
the number of subjects per site, that mostly affects the perfor-
mance of djICA. The concentration of subjects per site only be-
gins to affect the performance of djICA when it is very low. At
four subjects per site (256 sites in panel 3c), the performance
is slightly worse than in previous runs. Thus, in Figure 4, we
provide more detailed results for the particular scenario using
2000 subjects in order to illustrate the effects of low number of
subjects per site.

The three cases A, B, and C in Figure 4 illustrate the per-
formance of the algorithm for the minimum, median and max-
imum inter-symbol interference (ISI) scenarios respectively on
an increasing number of sites, from 10 repeated runs for each
subject-site distribution. Each run randomly placed different
subjects on different sites. For all three cases, the plot to the
left illustrates the correlations of each pooled ICA component
with their corresponding match in each decomposition. It is
evident from these plots that the correlation values for the ma-
jority of the 50 components clustered tightly above the mean
correlation values (black horizontal bar) for the entire range of
number of sites, thus suggesting that the mean correlation val-
ues for all cases were driven to a lower value by a few outliers
(poorly replicated components). In fact, the lowest mean for the
worst ISI case was 0.83 (s = 1000). However, in general, the
mean value of the component correlations for any given case
decreased with an increase in number of sites.

A one-way analysis of variance (ANOVA) and multiple com-
parison of means tests were used to determine the specific cases
in which the mean Fisher-transformed correlation estimates (z-
space) were significantly different (at a corrected significance
level of 5% using Tukey’s honest significant difference (HSD)
method). For the minimum ISI case, significant differences
were observed in the first five decompositions (s = 4, 10, 25,
50, and 125) as compared to the last decomposition (s = 1000),
the first two decompositions (s = 4 and 10) as compared to the
second-to-last (s = 500), and the first decomposition (s = 4) as
compared to the fourth, fifth and sixth (s = 50, 125 and 250).
The median ISI case showed an almost identical set of differ-
ences, except for one less significant difference between the
first four decompositions (s = 4, 10, 25 and 50) as compared
to the last decomposition (s = 1000). Finally, for the maximum
ISI case, the first four decompositions (s = 4, 10, 25 and 50)
had mean correlation estimates significantly different than the
last two (s = 500 and 1000), and the first decomposition (s =
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Figure 3: The estimated ISI for real-data djICA over different distributions of subjects over sites. Panel 3a illustrates an increasing number of subjects over two fixed
sites. Panel 3b illustrates an increasing number of sites, with the number of subjects per site staying constant. Panel 3c illustrates 1024 global subjects distributed
over an increasing number of sites. Panel 3d shows three of the spatial maps from djICA with over 2016 subjects evenly split over 16 sites, the pooled temporal ICA
“pseudo ground-truth” with 2038 subjects, and the corresponding temporal fluctuation modes (TFM) from Smith et al. [21].
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Figure 4: Keeping the number of subjects fixed at 2000 and increasing the number of sites, we examine the correlations of the estimated components from djICA with
the corresponding best match component from the pooled ICA case. The plots to the left illustrate the correlations between pooled ICA components and their best
matched djICA components, from runs with the minimum (Case A, best), median (Case B), and maximum (Case C, worst) ISI selected out of 10 total runs. On
the box-plots, the black horizontal bar represents the mean value of the Fisher-transformed correlations (z-space) for a specific decomposition transformed back to
correlation space (r-space), the yellow shaded areas give the 95% confidence intervals of the Fisher-transformed correlations (z-space) transformed back to r-space,
and the red box boundaries show the sample standard deviation over the Fisher-transformed correlations (z-space) transformed back to r-space. The panels to the
right are a component-specific depiction of the similarity between the estimated djICA components and their corresponding pooled ICA component. Lighter colors
indicate that the estimated component highly resembled the pooled ICA component estimated from 2038 subjects. The components (columns) are arranged in
descending order of correlations for the minimum ISI case, and this sorting order was retained for the median and maximum ISI cases.

4) showed additional significant differences as compared to the
fifth and sixth (s = 125 and 250). This overall pattern clearly
indicates: (1) deterioration of performance with lower number
of subjects per site; (2) significantly lower mean correlations

for very low number of subjects per site (8 at s = 250, 4 at s =

500, and 2 at s = 1000).

For all cases A, B, and C, the component-specific perfor-
mance of the algorithm can be traced in the correlation intensity
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images to the right. It is evident that all three cases feature high
correlations for most of the components, especially in decom-
positions with lower number of sites. However, there are a few
components that exhibit poor (or outlying) performance. For
example, correlations for the last few (rightmost) components
degrade significantly in decompositions with higher number of
sites, while in the minimum ISI case the correlation for compo-
nent 25 is unexpectedly low for the first decomposition (s = 4)
and higher for the remaining decompositions. Finally, it can be
concluded from these correlation images that although the algo-
rithm performance degrades with increasing number sites, the
same set of components tends to be consistently well replicated.

4.3.4. How does randomly splitting the data sets across more
sites affect performance?

In real-world scenarios, fMRI data is not evenly distributed
across research sites, thus motivating an investigation into the
effect of randomly distributing the number of subjects per site
on the effectiveness of djICA . In Figure 5, we compare the es-
timated ISI of djICA using real-data in a scenario where 2000
subjects are randomly assigned to sites by sampling the num-
ber of subjects on each site from a given distribution P(Θ). We
tested three different distributions for site assignment: normal,
exponential, and uniform, setting the mean and standard de-
viation both at 128. The sampling process generates nodes
(research sites) with different dataset sizes, and we then run
djICA and compute the ISI as given above. We ran djICA five
times for each distribution, resampling the number of subjects
per site each time, and then plotted the ISI for each run. Each
panel in figure 5 also illustrates a graph of a network where
each site is represented as a node. The size of each node in the
network corresponds to the number of subjects on a given site,
which is sampled from the given distribution.

As the figure shows, uniformly distributing subjects across
the network reduces variance in computations when compared
to normally distributed subjects; however, all of the given runs
do not vary more than 0.02 with respect to the ISI, and all fall
below 0.1 ISI, indicating favorable performance.

4.3.5. How do the estimated maps compare with previous re-
sults?

In Figure 3d we provide the spatial maps from three of
the highest-correlated components estimated using djICA and
pooled ICA for comparison to their corresponding temporal
fluctuation modes (TFM) from Smith et al. [21], which also in-
vestigated temporal ICA of fMRI. We discuss this comparison
in the following section.

5. Discussion

In contrast to systems optimized for processing large
amounts of data by making computation more efficient (Apache
Spark, H2O and others), we focus on a different setting com-
mon in research collaborations: data are expensive to collect,
are spread across multiple sites, and possibly not shareable
directly. To that end, we proposed a distributed data joint

ICA algorithm that, in synthetic experiments, finds underlying
sources in decentralized data nearly as accurately as its central-
ized counterpart. This shows that algorithms like djICA may
enable collaborative processing of decentralized data by com-
bining local computation and communication of local sum-
maries. djICA represents an important iteration towards tool-
boxes for computing on data distributed across private sites with
an emphasis on collaboration. While other distributed meth-
ods for decentralized fMRI analysis have been recently pro-
posed [67, 68], djICA in particular is able to benefit from the
unique opportunity of globally accumulated multi-subject data.

To further validate our method we have evaluated it in ex-
periments on real fMRI data. Our use of djICA to perform
temporal ICA of fMRI produces results which compare well
to the pooled version of the algorithm and produces estimated
components which compare well with other work on temporal
fMRI analysis [21] that uses much more elaborate multi-step
analyses techniques. Additionally, djICA is robust to random
allocation of subjects to sites, generally performing well with a
high number of globally accumulated subjects, and insensitive
to how these subjects are distributed across the sites. We have
discovered one edge-case for real-data djICA in which having
less than four subjects per site across all sites in the network
leads to a slight decrease in global performance. While further
investigation using a robust hyper-parameter search (which we
did not pursue in this paper) may mitigate this performance re-
duction, the scenario where all or many sites in a collaborative
analysis would each have fewer than four subjects is highly un-
likely. Other decentralized approaches to fMRI analysis, such
as approaches which use the ENIGMA consortium [4], do not
explore this edge-case. Indeed, the lowest number of subjects
on a site within the ENIGMA consortium was 36, with the ma-
jority of other sites in the consortium possessing over 200 sub-
jects [7].

Our decentralized djICA algorithm is a good fit for decen-
tralized collaborative frameworks, such as the COINSTAC col-
laboration platform, and is amenable to the privacy guaran-
tees including in those platforms. The inclusion of djICA in
a system like COINSTAC would allow for shared analysis be-
tween members of pre-arranged consortia without the exchange
of raw data. This alone provides a level of plausible privacy to
djICA which is not available to centralized ICA approaches. As
we have explored elsewhere, djICA can be easily extended to
include quantifiable notions of privacy, such as differential pri-
vacy [15]. Further investigation is required, however, to inves-
tigate the robustness of both plausible and differential privacy
to scenarios involving malicious participants in the consortium.
For example, it has been shown that malicious participants in
a collaborative classification task using a decentralized Deep
Neural Network can reconstruct data samples by utilizing Gen-
erative Adversarial Networks to leverage shared gradient infor-
mation [69]. It is currently unclear whether or not methods such
as djICA suffer from this information leakage issue; however,
the issue demands future attention.

Privacy aside, real-world networks can suffer from a number
of additional implementation issues: individual sites may have
different computing hardware and messages may be dropped
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a. Gaussian b. Exponential c. Uniform

Figure 5: An illustration of the effect of randomly distributing subjects across a decentralized data network. Each panel contains an example graph of connected
nodes in the network, where each node represents a site in the network. The size of each node in the network corresponds to the number of subjects located on
that site. The estimated ISI is computed after running djICA over 5 repeated runs, where each distinct run utilized a different network sampled from the same
distribution. Panel (a) illustrates a network where the number of subjects on each site was sampled from a gaussian distribution, panel (b) illustrates a network of
subjects where the number of subjects on each site was sampled from an exponential distribution, and panel (c) illustrates a network where the number of subjects
on each site was sampled from a uniform distribution. In the bottom-left the corner of each panel, we plot the ISI after performing djICA for 5 different runs, where
each run resampled the number of subjects on each site from the given distribution.

due to network latency or slow processing. While it is likely
that issues such as hardware variance will not significantly in-
fluence the analysis in the decentralized case, other practical
considerations should be handled by the overall software frame-
work in which djICA would be included. The djICA algorithm
can easily be made more robust to by including features such
as timeouts, automated resets in response to errors or dropout,
thresholds for minimum sufficient participation from each site,
and so on.

Additionally, a number of decentralization-friendly heuris-
tic choices can be made to improve runtime or performance
beyond that of the default settings in djICA. For example, a
stochastic gradient for weight updates can be computed over
blocks (or mini-batches) of data in order to improve runtime.
Thus, the block size b can be chosen as a heuristic or evaluated
as a hyper-parameter in order to examine the tradeoff between
algorithm runtime and performance. Other hyper-parameters
worth investigating are the tolerance level t, initial learning rate
ρ, maximum iterations J, and the number of components cho-
sen for local PCA.

In a pooled environment with a known ground-truth, it makes
sense to find optimal values for these hyper-parameters using
a grid search, or other hyper parameter selection method. In
many real-life collaborative environments, however, a thorough
hyper parameter search across sites may be impractical, and as
far as we have found, no established method exists for hyper
parameter optimization across decentralized sites. Finally, real-
data problems often lack a reliable ground-truth, which makes
it even more difficult and time-consuming to verify the effec-
tiveness of multiple hyper-parameters. Nonetheless, in situ-
ations where a reliable ground-truth is available, such as in
realistic simulations, one simple solution would be to aggre-
gate locally searched hyper-parameters; however, this method
is unlikely to yield good performance if the number of subjects

varies widely between sites, or if many of the sites contain only
a small amount of data. Another potential solution would be to
have each site participate in a global search using a randomly
sampled subset of the local data. This may prove effective pro-
vided that enough data can be made available from each site,
but would come at the expense of additional computation, and
additional release of information from each site. In ICA for
fMRI, certain auxiliary measures, such as the cross-correlation
between components or the kurtosis of estimated independent
components, could be used to assess performance empirically,
starting with an initial heuristic choice of parameters and mak-
ing adjustments if the auxiliary measures (or other indirect val-
idation surrogates) indicate it would be helpful to do so.

Due to the lack of sufficient data problem that our method
solves, temporal ICA networks from resting state neuroimag-
ing data are rarely reported in the literature. A straightforward
comparison of our observed networks with typical ones is not
possible. However, our maps should be comparable, to some
extent, to temporal fluctuation modes (TFMs) reported in Smith
et al. [21], which performed temporal ICA on denoised spatial
ICA component time courses. A qualitative comparison of the
observed ground-truth maps in our work to the TFM maps re-
ported in their work suggests similarities in certain spatial map
activation patterns between the two. Component 15 resembles
TFM 8 with task positive regions (dorsal visual regions and
frontal eye fields) anti-correlated to the default mode (posterior
cingulate, angular gyri, and medial prefrontal cortex). Compo-
nent 8, with anti-correlated foveal and high-eccentricity visual
areas corresponding to surround suppression observed in task
studies, shows a good resemblance to TFM 4 in that work. As
observed in TFM 2, component 6 shows coactivation patterns
of lateral visual areas and parts of thalamus. Component 17
from our work, shows a good correspondence to TFM 13 in that
work, with DMN regions anti-correlated with bilateral supra-
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marginal gyri and language regions, albeit without strong lat-
eralization reported in that work. TFM 1 and component 14 in
this work, demonstrate anti-correlated somatosensory regions
to DMN regions of the brain. A couple other TFMs, 12 and
15, show moderate correspondence to components 11 and 9,
respectively.

The differences between the networks we observed and the
TFMs reported in Smith et al. [21] may stem from method-
ological differences and choice of number of independent com-
ponents. In that work, instead of performing direct temporal
ICA on preprocessed data to identify fluctuation modes, Smith
et al. [21] use a two-step approach: firstly, performing a high
model order spatial ICA, identifying artifactual components,
and regressing out their variance from the time courses of seem-
ingly non-artifactual components, and secondly, performing a
temporal ICA on these denoised time courses. In contrast, we
perform direct temporal ICA, leveraging the large number of
samples available in large collaborative studies and directly get-
ting to dynamics of fMRI. Therefore, the amount of variance
captured during the PCA step in both methods differs. We iden-
tify 19 non-artifactual spatial modes, out of our 50 estimated
components; all with spatial map activation patterns localized
to gray matter regions and corresponding power spectra of in-
dependent time courses showing higher low frequency ampli-
tude, as observed for intrinsic connectivity networks from spa-
tial ICA analyses. These maps are included in Figure 6. Finally,
the data utilized in that work was from 36 ten minute-runs from
5 subjects, roughly sampled at TR=0.8s, which yielded 24000
concatenated timepoints, in contrast to roughly 300000 con-
catenated timepoints from 2000 subjects in this study, which
is arguably a more general result.

6. Conclusions & Future Work

We have presented djICA, a novel method for decentralized
temporal Independent Component Analysis, which represents
a step toward facilitating large, collaborative analyses of data
in a decentralized fashion. We evaluated djICA on simulated
and real fMRI data, with both experiments illustrating the ben-
efits of djICA, namely the increased availability of a larger, oth-
erwise inaccessible, subject pool shared across multiple sites.
Additionally, since djICA does not communicate subject data
across sites but only gradients, it is amenable to privatization
via approaches like differential privacy [14], thus further open-
ing the potential for collaboration between sites where direct
sharing of data is not possible. Indeed, the increased availability
of data provided by decentralized methods like djICA enables
data-intensive, and thus underutilized, analyses like temporal
Independent Component Analysis. Our comparison to the re-
sults from Smith et al. [21] confirms that djICA produces com-
parable temporal components. Finally, djICA and other meth-
ods like it foster further research on previously unexplored tem-
poral dynamics in fMRI, such as the effects on temporal ICA of
common confounds often found in datasets consisting of multi-
site data.

Additional extensions to the methods provided here include
reducing the bandwidth of the method and designing privacy-

preserving variants, possibly, with differential privacy guar-
antees, which we have previously investigated for simulated
cases [15]. In such cases, reducing the iteration complexity
will help guarantee more privacy and hence incentivize larger
research collaborations. If we were to return to the simulated
data case, additional explorations into robust hyper-parameter
searches and the deliberate corruption by noise may prove in-
teresting for discovering and ameliorating further edge-cases
for djICA. Beyond temporal ICA, decentralized spatial ICA is
also worth investigation, and could be paired with decentral-
ized clustering to evaluate decentralized dynamic functional
network connectivity. Finally, Infomax ICA represents only
one optimization approach to perform ICA, and while it is
amenable to decentralization, other algorithms for ICA, such
as fastICA [41] or the flexible entropy bound minimization
(EBM) [70] approach, may provide other benefits beyond ease
of decentralization.
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