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Data Dependent Convergence For Consensus
Stochastic Optimization

Avleen Bijral, Anand D. Sarwate, Senior Member, IEEE, Nathan Srebro

Abstract—We study a distributed consensus-based stochastic
gradient descent (SGD) algorithm and show that the rate of
convergence involves the spectral properties of two matrices:
the standard spectral gap of a weight matrix from the network
topology and a new term depending on the spectral norm of
the sample covariance matrix of the data. This data-dependent
convergence rate shows that distributed SGD algorithms perform
better on datasets with small spectral norm. Our analysis method
also allows us to find data-dependent convergence rates as we
limit the amount of communication. Spreading a fixed amount
of data across more nodes slows convergence; for asymptotically
growing data sets we show that adding more machines can help
when minimizing twice-differentiable losses.

I. INTRODUCTION

Decentralized optimization algorithms for statistical com-
putation and machine learning on large data sets try to
trade off efficiency (in terms of estimation error) and speed
(from parallelization). From an empirical perspective, it is
often unclear when these methods will work for a particular
data set, and to what degree additional communication can
improve performance. For example, in high-dimensional prob-
lems communication can be costly. We would therefore like to
know when limiting communication is feasible or beneficial.
The theoretical analysis of distributed optimization methods
has focused on providing strong data-independent convergence
rates under analytic assumptions on the objective function such
as convexity and smoothness. In this paper we show how the
tradeoff between efficiency and speed is affected by the data
distribution itself. We study a class of distributed optimization
algorithms and prove an upper bound on the error that depends
on the spectral norm of the data covariance. By tuning the
frequency with which nodes communicate, we obtain a bound
that depends on data distribution, network size and topology,
and amount of communication. This allows us to interpolate
between regimes where communication is cheap (e.g. shared
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memory systems) and those where it is not (clusters and sensor
networks).

We study the problem of minimizing a regularized convex
function [1] of the form

J(w) =
1

N

N∑
i=1

`(w>xi; yi) +
µ

2
‖w‖2 (1)

= Ex∼P̂
[
`(w>x; y)

]
+
µ

2
‖w‖2 ,

where `(·) is convex and Lipschitz and the expectation is
with respect to the empirical distribution P̂ corresponding
to a given data set with N total data points {(xi, yi)}.
For the purposes of this work we will assume xi ∈ Rd
and yi ∈ R. This regularized empirical risk minimization
formulation encompasses algorithms such as support vector
machine classification, ridge regression, logistic regression,
and others [2]. For example x could represent d pixels in
a grayscale image and y a binary label indicating whether
the image is of the digit 7: w>x gives a confidence value
about whether the image is a 7 or not. We would like to
solve this problem using a network of m processors connected
via a communication network (represented mathematically by
a graph indicating which nodes can communicate directly
with each other). The system would distribute these N points
across the m nodes, inducing local objective functions Jj(w)
approximating (1).

In such a computational model, nodes can perform local
computations and send messages to each other to jointly
minimize (1). The strategy we analyze is what is referred to
as distributed primal averaging [3]: each node in the network
processes points sequentially, performing a stochastic gradient
descent (SGD) update locally and averaging the current iterate
values of their neighbors after each gradient step. This can
also be thought of as a distributed consensus-based version
of Pegasos [4] when the loss function is the hinge loss.
We consider a general topology with m nodes attempting to
minimize a global objective function J(w) that decomposes
into a sum of m local objectives: J(w) =

∑m
i=1 Ji(w). This

is a model for optimization in systems such as data centers,
distributed control systems, and sensor networks.

Main Results. Our goal in this paper is to characterize
how how the spectral norm ρ2 = σ1(EP̂ [xx>]) of the sample
covariance of the data affects the rate of convergence when
solving (1) and how limiting communication can also affect
the rate. Elucidating this dependence can help guide empirical
practice by providing insight into when these methods will
work well. We prove an upper bound on the suboptimality gap
for distributed primal averaging that depends on ρ2 as well as
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the mixing time of the weight matrix associated to the algo-
rithm. Our result shows that networks of size m < 1/ρ2 gain
from parallelization. To understand the communication-limited
regime, we extend our analysis to intermittent communication.
We show that by using a mini-batching strategy we can offset
the penalty of infrequent communication by communicating
after a mini-batch (sub)gradient step. Finally, in an asymptotic
regime with infinite data at every node we show that for twice-
differentiable loss functions this network effect disappears and
that we gain from additional parallelization.

Related Work. Several authors have proposed distributed
algorithms involving nodes computing local gradient steps
and averaging iterates, gradients, or other functions of their
neighbors [3], [5], [6]. By alternating local updates and
consensus with neighbors, estimates at the nodes converge to
the optimizer of J(·). In these works no assumption is made
on the local objective functions and they can be arbitrary.
Consequently the convergence guarantees do not reflect the
setting when the data is homogenous (for e.g. when data has
the same distribution), specifically error increases as we add
more machines. This is counterintuitive, especially in the large
scale regime, since this suggests that despite homogeneity the
methods perform worse than the centralized setting (all data
on one node).

We provide a first analysis of a consensus based stochastic
gradient method in the homogenous setting and demonstrate
that there exist regimes where we benefit from having more
machines in any network. To mitigate the effect of limited
communication, we propose and analyze a mini-batched ex-
tension to reduce communication costs. We interpret this as
an intermediate regime between full communication and one-
shot communication [7], [8]. Finally, we show that for twice-
differentiable losses, having more machines always helps (via
a variance reduction) in the infinite data regime, using results
of Bianchi et al. [9].

In contrast to our stochastic gradient based results, data
dependence via the Hessian of the objective has also been
demonstrated in parallel coordinate descent based approaches
of Liu et al. [10] and the Shotgun algorithm of Bradley et
al. [11]. The assumptions differ from us in that the objective
function is assumed to be smooth [10] or L1 regularized [11].
Most importantly, our results hold for arbitrary networks of
compute nodes, while the coordinate descent based results
hold only for networks where all nodes communicate with
a central aggregator (sometimes referred to as a master-slave
architecture, or a star network), which can be used to model
shared-memory systems.

Another interesting line of work is the impact of delay
on convergence in distributed optimization [12]. These results
show that delays in the gradient computation for a star network
are asymptotically negligible when optimizing smooth loss
functions. We study general network topologies but with
intermittent, rather than delayed communication. Our result
suggest that certain datasets are more tolerant of skipped
communication rounds, based on the spectral norm of their
covariance.

We take an approach similar to that of Takáč et al. [13], who
developed a spectral-norm based analysis of mini-batching for

non-smooth functions. We decompose the iterate in terms of
the data points encountered in the sample path [14]. This
differs from analysis based on smoothness considerations
alone [8], [12], [14], [15] and gives practical insight into how
communication (full or intermittent) impacts the performance
of these algorithms. Note that our work is fundamentally
different in that these other works either assume a centralized
setting [8], [14], [15] or implicitly assume a specific network
topology (e.g. [7] uses a star topology). For the main results
we only assume strong convexity while the existing guarantees
for the cited methods depend on a variety of regularity and
smoothness conditions.

Limitations. In the stochastic convex optimization (see for
e.g. [16]) setting the quantity of interest is the population
objective corresponding to problem 1. When minimizing this
population objective our results suggest that adding more
machines worsens convergence (See Theorem 1). For finite
data our convergence results satisfy the intuition that adding
more nodes in an arbitrary network will hurt convergence. The
finite homogenous setting is most relevant in settings such as
data centers, where the processors hold data which essentially
looks the same. In some sensor network applications such
as global calibration, this assumption may also hold, but for
spatially varying phenomena the task may be different and our
model may no longer be as relevant [17].

In this paper we focus on a simple and well-studied proto-
col [3] and for simplicity study a homogenous setting where
the data is split evenly across nodes. However, our analysis
approach and insights may yield data-dependent bounds for
other more complex algorithms such as distributed dual aver-
aging [5]. More sophisticated gradient averaging schemes such
as that of Mokhtari and Ribeiro [18] can exploit dependence
across iterations [19], [20] to improve the convergence rate;
analyzing the impact of the data distribution is considerably
more complex in these algorithms.

In the infinite or large scale data setting, common in ma-
chine learning applications, this is counterintuitive since when
each node has infinite data, any distributed scheme including
one on arbitrary networks shouldn’t perform worse than the
centralized scheme (all data on one node). Thus our analysis
is limited in that it doesn’t unify the stochastic optimization
and the consensus setting in a completely satisfactory manner.
To partially remedy this we explore distributed primal averag-
ing for smooth strongly convex objectives in the asymptotic
regime and show that one can gain from adding more machines
in any network.

We believe that our results are first step towards un-
derstanding data-dependent bounds for distributed stochastic
optimization in settings common to machine learning. Our
analysis coincides with phenomenon seen in practice: for
data sets with small ρ, distributing the computation across
many machines is beneficial, but for data with larger ρ more
machines is not necessarily better. We provide upper bounds
on the gap between the iterates and the optimal solution: these
bounds do not immediately yield parameters for practical use,
but our work does suggest that taking into account the data
dependence can improve the empirical performance of these
methods.
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II. MODEL

We will use boldface for vectors. Let [k] = {1, 2, . . . , k}.
Unless otherwise specified, the norm ‖·‖ is the standard
Euclidean norm. The spectral norm of a matrix A is defined
to be the largest singular value σ1(A) of the matrix A, or
equivalently the square root of the largest eigenvalue of A>A.
For a graph G = (V, E) with vertex set V and edge set E , we
will denote the neighbors of a vertex i ∈ V by N (i) ⊆ V .

Data model. Let P be a distribution on Rd+1 such that
for (x, y) ∼ P , we have ‖x‖ ≤ 1 almost surely. Let
S = {x1,x2, . . . ,xN} be i.i.d sample of d-dimensional
vectors from P and let P̂ be the empirical distribution of S.
Let Σ̂ = Ex∼P̂ [xx>] be the sample second-moment matrix of
S. Our goal is to express the performance of our algorithms
in terms of ρ = σ1(Σ̂), the spectral norm of Σ̂. The spectral
norm ρ can vary significantly across different data sets. For
example, for sparse data sets ρ is often small. This can also
happen if the data happens to lie in low-dimensional subspace
(smaller than the ambient dimension d).

Problem. Our problem is to minimize a particular instance
of (1) where the expectation is over a finite collection of data
points:

w∗
def
= argmin

w
J(w) (2)

We will take a model in which m individual nodes or
processors operate in a discrete-time fashion to compute
w∗. In each time-slot (or iteration) they can perform local
computations and pass messages for a fixed number T of
iterations. Let ŵj(t) be the estimate of w∗ at node j ∈ [m]
in the t-th iteration. We bound the expected gap (over the
data distribution) at iteration T between J(w∗) and the value
J(ŵi(T )) of the global objective J(ŵj(T )) at the output
ŵj(T ) of each node j in our distributed network. It would
also be interesting to study the gap between the iterates and
the minimizer of the population objective in (1); we defer this
for future work. We will denote the subgradient set of J(w)
by ∂J(w) and a subgradient of J(w) by ∇J(w) ∈ ∂J(w).

In our analysis we will make the following assumptions
about the individual functions `(w>x): (a) The loss functions
{`(·)} are convex, and (b) The loss functions {`(·; y)} are
L-Lipschitz for some L > 0 and all y. Note that J(w) is µ-
strongly convex due to the `2-regularization. Our analysis will
not depend on the the response y except through the Lipschitz
bound L so we will omit the explicit dependence on y to
simplify the notation in the future.

Network Model. We consider a model in which minimiza-
tion in (2) must be carried out by m computational devices, or
nodes. These nodes are arranged in a network whose topology
is given by a graph G – an edge (i, j) in the graph means
nodes i and j can communicate. A matrix P is called graph
conformant if Pij > 0 only if the edge (i, j) is in the graph.
We will consider algorithms which use a doubly stochastic
and graph conformant sequence of matrices P(t).

Sampling Model. We assume the N data points are divided
evenly and uniformly at random among the m nodes, and
define n def

= N/m to be the number of points at each node. This
is a necessary assumption since our bounds are data dependent

and depend on subsampling bounds of spectral norm of certain
random submatrices. However our data independent bound
holds for arbitrary splits. Let Si be the subset of n points
at node i. The local stochastic gradient procedure consists of
each node i ∈ [m] sampling from Si with replacement. This
is an approximation to the local objective function

Ji(w) =
∑
j∈Si

`(w>xi,j)

n
+
µ

2
‖w‖2 . (3)

Algorithm. In the subsequent sections we analyze the
distributed version (Algorithm 1) of standard SGD. This
algorithm is not new [3], [6] and has been analyzed extensively
in the literature. The step-size ηt = 1/(µt) is commonly used
for large scale strongly convex machine learning problems
like SVMs (e.g. [4]) and ridge regression: to avoid an extra
parameter in the bounds, we take this setting. More discussion
on the optimality of the step-size for general strongly convex
functions can be found in Rakhlin and Shamir [21]. In Algo-
rithm 1 node i samples a point uniformly with replacement
from a local pool of n points and then updates its iterate
by computing a weighted sum with its neighbors followed
by a local subgradient step. The selection is uniform to
guarantee that the subgradient is an unbiased estimate of a
true subgradient of the local objective Ji(w), and greatly
simplifies the analysis. Different choices of P(t) will allow
us to understand the effect of limiting communication in this
distributed optimization algorithm.

Algorithm 1 Consensus-based Strongly Convex Optimization
Input: {xi,j},where i ∈ [m] and j ∈ [n] and N = mn,
matrix sequence P(t), µ > 0, T ≥ 1

{Each i ∈ [m] executes}
Initialize: set wi(1) = 0 ∈ Rd.
for t = 1 to T do

Sample xi,t uniformly with replacement from Si.
Compute gi(t) ∈ ∂`(wi(t)

>xi,t)xi,t + µwi(t)
wi(t+ 1) =

∑m
j=1 wj(t)Pij(t)− ηtgi(t)

end for
Output: ŵi(T ) = 1

T

∑T
t=1 wi(t) for any i ∈ [m].

Expectations and probabilities. There are two sources of
stochasticity in our model: the first in the split of data points
to the individual nodes, and the second in sampling the points
during the gradient descent procedure. We assume that the split
is done uniformly at random, which implies that the expected
covariance matrix at each node is the same as the population
covariance matrix Σ̂. Conditioned on the split, we assume that
the sampling at each node is uniformly at random from the
data point at that node, which makes the stochastic subgradient
an unbiased estimate of the subgradient of the local objective
function. Let Ft be the sigma algebra generated by the random
point selections of the algorithm up to time t, so that the
iterates {wi(t) : i ∈ [m]} are measurable with respect to Ft.

III. CONVERGENCE AND IMPLICATIONS

Methods like Algorithm 1, also referred to as primal aver-
aging, have been analyzed previously [3], [6], [22]. In these



4

works it is shown that the convergence properties depend on
the structure of the underlying network via the second largest
eigenvalue of P. We consider in this section the case when
P(t) = P for all t where P is a fixed Markov matrix. This
corresponds to a synchronous setting where communication
occurs at every iteration.

We analyze the use of the step-size ηt = 1/(µt) in
Algorithm 1 and show that the convergence depends on the
spectral norm ρ2 = σ1(Σ̂) of the sample covariance matrix.

Theorem 1: Fix a Markov matrix P and let ρ2 = σ1(Σ̂)
denote the spectral norm of the covariance matrix of the data
distribution. Consider Algorithm 1 when the objective J(w)
is strongly convex, P(t) = P for all t, and ηt = 1/(µt). Let
λ2(P) denote the second largest eigenvalue of P. Then if the
number of samples on each machine n satisfies

n >
4

3ρ2
log (d) (4)

and the number of iterations T satisfies

T > 2e log(1/
√
λ2(P)) (5)

T

log(T )
> max

 4

3ρ2
log (d) ,

(
8
5

) 1
4
√
m/ρ

log(1/λ2(P))

 , (6)

then the expected error for each node i satisfies

E [J(ŵi(T ))− J(w∗)] ≤(
1

m
+

100
√
mρ2 · log T

1−
√
λ2(P)

)
· L

2

µ
· log T

T
. (7)

Remark 1: Theorem 1 indicates that the number of machines
should be chosen as a function of ρ. We can identify three
sub-cases of interest:

Case (a): m ≤ 1
ρ2/3

: In this regime since 1/m >
√
mρ2

(ignoring the constants and the log T term) we always benefit
from adding more machines.

Case (b): 1
ρ2/3

< m ≤ 1
ρ2 : The result tells us that there is

no degradation in the error and the bound improves by a factor√
mρ. Sparse data sets generally have a smaller value of ρ2

(as seen in Takáč et al. [13]); Theorem 1 suggests that for such
data sets we can use a larger number of machines without los-
ing performance. However the requirements on the number of
iterations also increases. This provides additional perspective
on the observation by Takáč et al [13] that sparse datasets are
more amenable to parallelization via mini-batching. The same
holds for our type of parallelization as well.

Case (c): m > 1
ρ2 : In this case we pay a penalty

√
mρ2 ≥ 1

suggesting that for datasets with large ρ we should expect to
lose performance even with relatively fewer machines.

Note that m > 1 is implicit in the condition T >
2e log(1/

√
λ2)) since λ2 = 0 for m = 1. This excludes

the single node Pegasos [13] case. Additionally in the case
of general strongly convex losses (not necessarily dependent
on w>x) we can obtain a convergence rate of O(log2(T )/T ).
We do not provide the proof here.
Remark 2: The lower bound on the number of iterations 6 can
be considerably improved by instead looking at the intrinsic
dimension of the data since for several real datasets the

intrinsic dimension can be much smaller than the dimension
of the ambient space. However this requires us to assume a
lower bound on the norm of the data samples, which is a less
natural assumption.

IV. STOCHASTIC COMMUNICATION

In this section we generalize our analysis in Theorem 1 to
handle time-varying and stochastic communication matrices
P(t). In particular, we study the case where the matrices
are chosen i.i.d. over time. Any strategy that doesn’t involve
communicating at every step will incur a larger gap between
the local node estimates and their average. We call this the
network error. Our goal is to show how knowing ρ2 can help
us balance the network error and optimality gap.

First we bound the network error for the case of stochastic
time varying communication matrices P (t) and then a simple
extension leads to a generalized version of Theorem 1.

Lemma 2: Let {P(t)} be a i.i.d sequence of doubly
stochastic Markov matrices and consider Algorithm 1 when
the objective J(w) is strongly convex. We have the following
inequality for the expected squared error between the iterate
wi(t) at node i at time t and the average w̄(t) defined in
Algorithm 1:√

E
[
‖w̄(t)−wi(t)‖2

]
≤ 2L

µ
·
√
m

b
· log(2bet2)

t
. (8)

where b = log
(
1/λ2

(
E
[
P2(t)

]))
.

Armed with Lemma 2 we prove the following theorem for
Algorithm 1 in the case of stochastic communication.

Theorem 3: Let {P(t)} be an i.i.d sequence of doubly
stochastic matrices and ρ2 = σ1(Σ̂) denote the spectral norm
of the sample covariance matrix. Consider Algorithm 1 when
the objective J(w) is strongly convex, and ηt = 1/(µt). Then
if the number of samples on each machine n satisfies

n >
4

3ρ2
log (d) (9)

and the number of iterations T satisfies

T > 2e log(1/
√
λ2(E [P2(t)])) (10)

and

T

log(T )
> max

(
4

3ρ2
log(d), ·

√
(8/5)m/ρ2

log(1/λ2(E [P2(t)]))

)
, (11)

then the expected error for the output of each node i satisfies

E [J(ŵi(T ))− J(w∗)]

≤

(
1

m
+

100
√
mρ2 · log T

1−
√
λ2(E [P2(t)])

)
· L

2

µ
· log T

T
. (12)

Remark: This result generalizes the conclusions of Theorem
1 to the case of stochastic communication schemes. Thus
allowing for the data dependent interpretations of convergence
in a more general setting.
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V. LIMITING COMMUNICATION

As an application of the stochastic communication scenario
of Theorem 3 we now analyze the effect of reducing the com-
munication overhead of Algorithm 1. This reduction can im-
prove the overall running time (“wall time”) of the algorithm
because communication latency can hinder the convergence of
many algorithms in practice [23]. A natural way of limiting
communication is to communicate only a fraction ν of the
T total iterations; at other times nodes simply perform local
gradient steps.

We consider a sequence of i.i.d random matrices {P(t)}
for Algorithm 1 where P(t) ∈ {I,P} with probabilities 1− ν
and ν, respectively, where I is the identity matrix (implying
no communication since Pij(t) = 0 for i 6= j) and, as in
the previous section, P is a fixed doubly stochastic matrix
respecting the graph constraints. For this model the expected
number of times communication takes place is simply νT .
Note that now we have an additional randomization due to
the Bernoulli distribution over the doubly stochastic matrices.
Analyzing a matrix P(t) that depends on the current value of
the iterates is considerably more complicated.

A straightforward application of Theorem 3 reveals that
the optimization error is proportional to 1

ν and decays as
O( 1

ν ·
log2(T )
T ). However, this ignores the effect of the local

communication-free iterations.
A mini-batch approach. To account for local communica-

tion free iterations we modify the intermittent communication
scheme to follow a deterministic schedule of communication
every 1/ν steps. However, instead of taking single gradient
steps between communication rounds, each node gathers the
(sub)gradients and then takes an aggregate gradient step. That
is, after the t-th round of communication, the node samples a
batch It of indices sampled with replacement from its local
data set with |It| = 1/ν. We can think of this as the base
algorithm with a better gradient estimate at each step. The
update rule is now

wi(t+ 1) =
∑
j∈Ni

wj(t)Pij(t)− ηtν
∑
i∈Ii

gi(t). (13)

We define g
1/ν
i (t) =

∑
i∈Ii gi(t). Now the iteration count is

over the communication steps and g
1/ν
i (t) is the aggregated

mini-batch (sub)gradient of size 1/ν. Note that this is anal-
ogous to the random scheme above but the analysis is more
tractable.

Theorem 4: Fix a Markov matrix P and let ρ2 = σ1(Σ̂)
denote the spectral norm of the covariance matrix of the data
distribution. Consider Algorithm 1 when the objective J(w)
is strongly convex, P(t) = P for all t, and ηt = 1/(µt) for
scheme (13). Let λ2(P) denote the second largest eigenvalue
of P. Then if the number of samples on each machine n
satisfies

n >
4

3ρ2
log (d) (14)

and

T >
2e

ν
log(1/

√
λ2(P))

T

log(νT )
> max

 4

3νρ2
log(d),

(
8
5

) 1
4
√
m/ρ2

log(1/λ2)


1

ν
>

4

3ρ2
· log(d) (15)

and then the expected error for each node i satisfies

E [J(ŵi(T ))− J(w∗)] ≤

(
1

m
+ 200

√
5

√
mρ4 log(νT )

1−
√
λ2

)

· L
2

µ
· log(νT )

T
.

(16)

where ν is the frequency of communication and where λ2 =
λ2(P).
Remark: Theorem 4 suggests that if the inverse frequency of
communication is large enough then we can obtain a sharper
bound on the error by a factor of ρ. This is significantly better
than a O(

√
mρ2 · log νT

νT ) baseline guarantee from a direct
application of Theorem 1 when the number of iterations is
νT .

Additionally the result suggests that if we communicate on
a mini batch(where batch size b = 1/ν) that is large enough
we can improve Theorem 1, specifically now we get a 1/m
improvement when m ≤ 1/ρ4/3.

VI. ASYMPTOTIC REGIME

In this section we explore the sub-optimality of distributed
primal averaging when T →∞ for the case of smooth strongly
convex objectives. As discussed before the results of Section
III suggest that we never gain from adding more machines in
any network. Now we investigate the behaviour of Algorithm
1 in the asymptotic regime and show that the network effect
disappears and we do indeed gain from more machines in any
network.

Our analysis depends on the asymptotic normality of a
variation of Algorithm 1 [9, Theorem 5]. The main differences
between Algorithm 1 and the consensus algorithm of Bianchi
et al. [9] is that we average the iterates before making the
local update.

We make the following assumptions for the analysis in
this section: (1) The loss function differentials {∂ (`(·))} are
differentiable and G-Lipschitz for some G > 0, (2) the
stochastic gradients are of the form gi(t) = ∇J(wi(t)) + ξt
where E[ξt] = 0 and E[ξtξ

>
t ] = C, and (3) there exists p > 0

such that E
[
‖ξt‖

2+p
]
< ∞. Our results hold for all smooth

strongly convex objectives not necessarily dependent on w>x.
Lemma 5: Fix a Markov matrix P. Consider Algorithm

1 when the objective J(w) is strongly convex and twice
differentiable, P(t) = P for all t, and ηt = 1/(λt). then
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TABLE I
DATA SETS AND PARAMETERS FOR EXPERIMENTS

data set training test dim. λ ρ2

RCV1 781, 265 23, 149 47, 236 10−4 0.01
Covertype 522, 911 58, 001 47, 236 10−6 0.21

the expected error for each node i satisfies for a arbitrary split
of N samples into m nodes

lim sup
T→∞

T · E

J
 m∑
j=1

Pijwj(T )

− J(w∗)


≤

∑
j∈N (i)

(Pij)
2 · Tr (H) · G

µ
(17)

where H is the solution to the equation

∇J2(w∗)H + H∇J2(w∗)T = C. (18)

Remark: This result shows that asymptotically the network
effect from Theorem 3 disappears and that additional nodes
can speed convergence.

An application of Lemma 5 to problem (1) gives us the
following result for the specialized case of a k-regular graph
with constant weight matrix P.

Theorem 6: Consider Algorithm 1 when the objective J(w)
has the form 1 , P(t) = P and corresponds to a k-regular
graph with uniform weights for all t, and ηt = 1/(λt). then
the expected error for each node i satisfies

lim sup
T→∞

T · E

J
 m∑
j=1

Pijwj(T )

− J(w∗)


≤ 25ρL2

k
· Tr

(
∇2J(w∗)−1

)
· G
µ

(19)

where the expectation is with respect to the history of the
sampled gradients as well as the uniform random splits of N
data points across m machines.
Remark: For objective (1) we obtain a 1/k variance reduction
and the network effect disappears.

VII. EXPERIMENTS

Our goals in our experimental evaluation are to validate the
theoretical dependence of the convergence rate on ρ2 and to
see if the conclusions hold when the assumptions we make
in the analysis are violated. Note that all our experiments are
based on simulations on a multicore computer. Implementation
in a truly distributed computation system raises many other
considerations such because the “wall time” depends on many
factors such as slow nodes and communication latency [23].

A. Data sets, tasks, and parameter settings

The data sets used in our experiments are summarized in
Table VII-A. Covertype is the forest covertype dataset [24]
used in [4] obtained from the UC Irvine Machine Learning
Repository [25], and rcv1 is from the Reuters collection [26]
obtained from libsvm collection [27]. The RCV1 data set has a
small value of ρ̂2, whereas Covertype has a larger value. In

all the experiments we looked at `2-regularized classification
objectives for problem (1). Each plot is averaged over 5 runs.

The data consists of pairs {(x1, y1), . . . , (xN , yN )} where
xi ∈ Rd and yi ∈ {−1,+1}. In all experiments we optimize
the `2-regularized empirical hinge loss where `(w>x) =
(1 − w>xy)+. The values of the regularization parameter µ
are chosen from to be the same as those in Shalev-Shwarz et
al. [4].

We simulated networks of compute nodes of varying size
(m) arranged in a k-regular graph with k = b0.25mc or a
fixed degree (not dependent on m). Note that the dependence
of the convergence rate of procedures like Algorithm 1 on
the properties of the underlying network has been investigated
before and we refer the reader to Agarwal and Duchi [12]
for more details. In this paper we experiment only with k-
regular graphs. The weights on the Markov matrix P are set
by using the max-degree Markov chain (see [28]). One can
also optimize for the fastest mixing Markov chain ( [28], [29]).
Each node is randomly assigned n = bN/mc points.

B. Intermittent Communication

In this experiment we show the objective function for
RCV1 and Covertype as we change the frequency of com-
munication (Figure 1), communicating after every 1, 10, 50
and 500 iterations. Indeed as predicted we see that the dataset
with the larger ρ2 appears to be affected more by intermittent
communication. This indicates that network bandwidth can be
conserved for datasets with a smaller ρ2.

C. Comparison of Different Schemes

We compare the three different schemes proposed in this
paper. On a network of m = 64 machines we plot the perfor-
mance of the mini batch extension of Algorithm 1 with batch
size 128 against the intermittent scheme that communicates
after every 128 iterations and also the standard version of the
algorithm. In Figure 3 we see that as predicted in Theorem 4
the mini batch scheme proposed in (13) does better than the
vanilla and the intermittent scheme.

D. Infinite Data

To provide some empirical evidence of Lemma 5 we
generate a very large (N = 107) synthetic dataset from a
multivariate Normal distribution and created a simple binary
classification task using a random hyperplane. As we can see
in figure 2 for the SVM problem and a k-regular network we
continue to gain as we add more machines and then eventually
we stabilize but never lose from more machines. We only show
the first few thousand iterations for clarity.

E. Diminishing Communication

To test if our conclusions apply when the i.i.d assumption
for the matrices P(t) does not hold we simulate a diminishing
communication regime. Such a scheme can be useful when
the nodes are already close to the optimal solution and
communicating their respective iterate is wasteful. Intuitively
it is in the beginning the nodes should communicate more
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Fig. 1. Performance of Algorithm 1 with intermittent communication scheme on datasets with very different ρ2. The algorithm works better for smaller
ρ2 and there is less decay in performance for RCV1 as we decrease the number of communication rounds as opposed to Covertype (ρ2 = 0.01 vs
ρ2 = 0.21).
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Fig. 3. Comparison of three different schemes a) Algorithm 1 with Mini-
Batching b) Standard c) Intermittent with b = (1/ν) = 128. As predicted
the mini-batch scheme performs much better than the others.

frequently. To formalize the intuition we propose the following
communication model

P(t) =

{
P w.p. Ct−p

I w.p. 1− Ct−p (20)

where C, p > 0. Thus the sequence of matrices are not
identically distributed and the conclusions of Theorem 3 do
not apply.
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Fig. 4. The performance on Covertype with a full and a diminishing
communication scheme is similar.

However in Figure 4 (C = 1,p = 0.5) we see that
on a network of m = 128 nodes the performance for the
diminishing regime is similar to the full communication case
and we can hypothesize that our results also hold for non i.i.d
communication matrices.

VIII. DISCUSSION AND IMPLICATIONS

In this paper we described a distributed primal-averaging
stochastic gradient descent algorithm and analyzed its perfor-
mance in terms of the spectral norm ρ2 of the data covariance
matrix under a homogenous assumption. In the consensus
problem this setting has not been analyzed before and existing
work corresponds to weaker results when this assumption
holds.

For certain strongly convex objectives we showed that
the objective value gap between any node’s iterate and the
optimum centralized estimate decreases as O(log2(T )/T );
crucially, the constant depended on ρ2 and the spectral gap
of the network matrix. This dependence on ρ2 also appears in
the analysis of mini-batching [13]. We showed how limiting
communication can improve the total runtime and reduce
network costs by extending our analysis with a similar data
dependent bound. Moreover we show that in the asymptotic
regime the network penalty disappears. Our analysis suggests
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that distribution-dependent bounds can help us understand how
data properties can mediate the tradeoff between computation
and communication in distributed optimization. In a sense,
data distributions with smaller ρ2 are easier to optimize over
in a distributed setting. This set of distributions includes sparse
data sets, an important class for applications.

In the future we will extend data dependent guarantees to
serial algorithms as well as the average-at-end scheme [7],
[8]. Extending our fixed batch-size to random size can help
us understand the benefit of communication-free iterations.
Finally, we can also study the impact of asynchrony and more
general time-varying topologies.

APPENDIX A
PROOF OF THEOREM 1

Theorem 1 provides a bound on the suboptimality gap for
the output ŵi(T ) of Algorithm 1 at node i, which is the
average of that node’s iterates. In the analysis we relate this
local average to the average iterate across nodes at time t:

w̄(t) =

m∑
i=1

wi(t)

m
. (21)

We will also consider the average of w̄(t) over time.
The proof consists of three main steps. First, we establish

the following inequality for the objective error:

E [J(w̄(t))− J(w∗)] ≤
(η−1t − µ)

2
E
[
‖w̄(t)−w∗‖2

]
− η−1t

2
E
[
‖w̄(t+ 1)−w∗‖2

]
+
ηt
2
E

∥∥∥∥∥
m∑
i=1

gi(t)

m

∥∥∥∥∥
2


+

m∑
i=1

√
E
[
‖w̄(t)−wi(t)‖2

]
·
√
E
[
(‖∇Ji(wi(t))‖+ ‖∇Ji(w̄(t))‖)2

]
/m, (22)

where w̄(t) is the average of the iterates at all nodes and
the expectation is with respect to Ft while conditioned on
the sample split across nodes. All expectations, except when
explicitly stated, will be conditioned on this split.

Second, we bound E
[
‖∇J(wi(t))‖2

]
and

ηt
2 E
[∥∥∥∑m

i=1
gi(t)
m

∥∥∥2] in terms of the spectral norm of

the covariance matrix of the distribution P by additionally
taking expectation with respect to the sample S. Finally, we
bound the network error E

[
‖w̄(t)−wi(t)‖2

]
in term of

the network size m and a spectral property of the matrix P.
Combining the bounds using inequality (22) and applying the
definition of subgradients yields the result of Theorem 1.

A. Spectral Norm of Random Submatrices

In this section we establish a Lemma pertaining to the
spectral norm of submatrices that is central to our results.

Specifically we prove the following inequality, which follows
by applying the Matrix Bernstein inequality of Tropp [30].

Lemma 7: Let P be a distribution on Rd with second
moment matrix Σ = EZ∼P [ZZ>] such that ‖Zk‖ ≤ 1 almost
surely. Let ζ2 = σ1(Σ). Let Z1,Z2, . . . ,ZK be an i.i.d.
sample from P and let QK =

∑K
k=1 ZkZ

>
k be the empirical

second moment matrix of the data. Then for K > 4
3ζ2 log(d),

E
[
σ1(QK)

K

]
≤ 5ζ2. (23)

Thus when P is the empirical distribution we get that
E
[
σ1(QK)
K

]
≤ 5ζ2.

Remark: We can replace the ambient dimension d in the
requirement for K by an intrinsic dimensionality term but this
requires a lower bound on the norm of any data point in the
sample.

Proof: Let Z be the d × K matrix whose columns are
{Zk}. Define Xk = ZkZ

>
k −Σ. Then E[Xk] = 0 and

λmax(Xk) = λmax

(
ZkZ

>
k −Σ

)
≤ ‖Zk‖2 ≤ 1,

because Σ is positive semidefinite and ‖xi‖ ≤ 1 for all i.
Furthermore,

σ1

(
K∑
k=1

E
[
X2
k

])
= Kσ1

(
E
[
ZkZ

>
k ZkZ

>
k

]
−Σ2

)
≤ Kσ1

(
E
[
‖Yk‖2 ZkZ

>
k

])
+Kσ1 (Σ)

2

≤ K(ζ2 + ζ4)

≤ 2Kζ2,

since ρ ≤ 1.
Applying the Matrix Bernstein inequality of Tropp [30,

Theorem 6.1]:

P

(
σ1

(
K∑
k=1

Xk

)
≥ r

)
≤

{
d exp

(
−3 r2

16Kζ2

)
r
K ≤ 2ζ2

d exp
(
−3 r8

)
r
K ≥ 2ζ2

.

(24)

Now, note that

σ1

(
K∑
k=1

Xk

)
= σ1

(
K∑
k=1

ZkZ
>
k −KΣ

)
,

so σ1
(∑K

k=1 Xk

)
≥ r is implied by∣∣∣∣∣ 1

K
σ1

(
K∑
k=1

ZkZ
>
k

)
− σ1 (Σ)

∣∣∣∣∣ ≥ r

K
.

Therefore

P
(∣∣∣∣σ1(QK)

K
− ζ2

∣∣∣∣ ≥ r′) ≤
d exp

(
− 3Kr′2

16ζ2

)
r′ ≤ 2ζ2

d exp
(
− 3Kr′

8

)
r′ ≥ 2ζ2

.

(25)
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Integrating (25) yields

E
[
σ1(QK)

K

]
=

∫ ∞
0

P
(
σ1(QK)

K
≥ x

)
dx

≤ 3ζ2 +

∫ ∞
3ζ2

P
(
σ1(Qt)

K
− ζ2 ≥ x− ζ2

)
dx

≤ 3ζ2 +

∫ ∞
2ζ2

P
(
σ1(Qt)

K
− ζ2 ≥ r′

)
dr′

≤ 3ζ2 +

∫ ∞
2ζ2

d exp

(
−3

8
Kr′

)
dr′

= 3ζ2 +
8

3
· d
K

exp

(
−3

4
ζ2K

)
For K > 4

3ζ2 log d,

E
[
σ1(QK)

K

]
≤ 3ζ2 +

8

3
· 3

4
· ζ2

log d
≤ 5ζ2.

B. Decomposing the expected suboptimality gap

The proof in part follows [3]. It is easy to verify that because
P is doubly stochastic the average of the iterates across the
nodes at time t, the average of the iterates across the nodes in
(21) satisfies the following update rule:

w̄(t+ 1) = w̄(t)− ηt
m∑
i=1

gi(t)

m
. (26)

We emphasize that in Algorithm 1 we do not perform a final
averaging across nodes at the end as in (21). Rather, we ana-
lyze the average at a single node across its iterates (sometimes
called Polyak averaging). Analyzing (21) provides us with a
way to understand how the objective J(wi(t)) evaluated at
any node i’s iterate wi(t) compares to the minimum value
J(w∗). The details can be found in Section A-G.

To simplify notation, we treat all expectations as condi-
tioned on the sample S. Then (26),

E
[
‖w̄(t+ 1)−w∗‖2

∣∣∣Ft]
= E

[
‖w̄(t)−w∗‖2 |Ft

]
+ η2tE

∥∥∥∥∥
m∑
i=1

gi(t)

m

∥∥∥∥∥
2 ∣∣∣Ft


− 2ηt(w̄(t)−w∗)>

m∑
i=1

E [gi(t)|Ft]
m

= E
[
‖w̄(t)−w∗‖2 |Ft

]
+ η2tE

∥∥∥∥∥
m∑
i=1

gi(t)

m

∥∥∥∥∥
2 ∣∣∣Ft


− 2ηt

m∑
i=1

(w̄(t)−w∗)>
E [gi(t)|Ft]

m
. (27)

Note that ∇Ji(wi(t)) = E [gi(t)|Ft], so for the last term,
for each i we have

∇Ji(wi(t))
>(w̄(t)−w∗)

= ∇Ji(wi(t))
> (w̄(t)−wi(t))

+∇Ji(wi(t))
> (wi(t)−w∗)

≥ −‖∇Ji(wi(t))‖ ‖w̄(t)−wi(t)‖
+∇Ji(wi(t))

> (wi(t)−w∗)

≥ −‖∇Ji(wi(t))‖ ‖w̄(t)−wi(t)‖

+ Ji(wi(t))− Ji(w∗) +
µ

2
‖wi(t)−w∗‖2

= −‖∇Ji(wi(t))‖ ‖w̄(t)−wi(t)‖
+ Ji(wi(t))− Ji(w̄(t))

+
µ

2
‖wi(t)−w∗‖2 + Ji(w̄(t))− Ji(w∗)

≥ −‖∇Ji(wi(t))‖ ‖w̄(t)−wi(t)‖
+∇Ji(w̄(t))> (wi(t)− w̄(t))

+
µ

2
‖wi(t)−w∗‖2 + Ji(w̄(t))− Ji(w∗)

≥ − (‖∇Ji(wi(t))‖+ ‖∇Ji(w̄(t))‖) ‖w̄(t)−wi(t)‖

+
µ

2
‖wi(t)−w∗‖2 + Ji(w̄(t))− Ji(w∗),

(28)

where the second and third lines comes from applying the
Cauchy-Shwartz inequality and strong convexity, the fifth line
comes from the definition of subgradient, and the last line is
another application of the Cauchy-Shwartz inequality.

Averaging over all the nodes, using convexity of ‖·‖2, the
definition of J(·), and Jensen’s inequality yields the following
inequality:

−2ηt

m∑
i=1

(w̄(t)−w∗)>
E[gi(t)|Ft]

m

≤ 2ηt

m∑
i=1

‖w̄(t)−wi(t)‖ (‖∇Ji(wi(t))‖+ ‖∇Ji(w̄(t))‖)
m

− 2ηt

(
m∑
i=1

Ji(w̄(t))− Ji(w∗)
m

)

− µηt
m∑
i=1

‖wi(t)−w∗‖2

m

≤ 2ηt

m∑
i=1

‖w̄(t)−wi(t)‖ (‖∇Ji(wi(t))‖+ ‖∇Ji(w̄(t))‖)
m

− 2ηt (J(w̄(t))− J(w∗))− µηt ‖w̄(t)−w∗‖2 (29)
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Substituting inequality (29) in recursion (27),

E
[
‖w̄(t+ 1)−w∗‖2

∣∣Ft]
≤ E

[
‖w̄(t)−w∗‖2 |Ft

]
+ η2tE

∥∥∥∥∥
m∑
i=1

gi(t)

m

∥∥∥∥∥
2 ∣∣∣ Ft


+ 2ηt

m∑
i=1

‖w̄(t)−wi(t)‖ (‖∇Ji(wi(t))‖+ ‖∇Ji(w̄(t))‖)
m

− 2ηt (J(w̄(t))− J(w∗))− µηt ‖w̄(t)−w∗‖2 . (30)

Taking expectations with respect to the entire history Ft,

E
[
‖w̄(t+ 1)−w∗‖2

]
≤ E

[
‖w̄(t)−w∗‖2

]
+ η2tE

∥∥∥∥∥
m∑
i=1

gi(t)

m

∥∥∥∥∥
2


+ 2ηt·
m∑
i=1

E [‖w̄(t)−wi(t)‖ (‖∇Ji(wi(t))‖+ ‖∇Ji(w̄(t))‖)]
m

− 2ηt (E [J(w̄(t))− J(w∗)])− µηtE
[
‖w̄(t)−w∗‖2

]
≤ −2ηt (E [J(w̄(t))− J(w∗)])

+ (1− µηt)E
[
‖w̄(t)−w∗‖2

]
+ η2tE

∥∥∥∥∥
m∑
i=1

gi(t)

m

∥∥∥∥∥
2


+
2ηt
m

m∑
i=1

√
E
[
‖w̄(t)−wi(t)‖2

]
·
√

E
[
(‖∇Ji(wi(t))‖+ ‖∇Ji(w̄(t))‖)2

]
(31)

This lets us bound the expected suboptimality gap
E [J(w̄(t))− J(w∗)] via three terms:

T1 =
(η−1t − µ)

2
E
[
‖w̄(t)−w∗‖2

]
− η−1t

2
E
[
‖w̄(t+ 1)−w∗‖2

]
(32)

T2 =
ηt
2
E

∥∥∥∥∥
m∑
i=1

gi(t)

m

∥∥∥∥∥
2
 (33)

T3 =
1

m

m∑
i=1

√
E
[
‖w̄(t)−wi(t)‖2

]
·
√
E
[
(‖∇Ji(wi(t))‖+ ‖∇Ji(w̄(t))‖)2

]
, (34)

where

E [J(w̄(t))− J(w∗)] ≤ T1 + T2 + T3. (35)

The remainder of the proof is to bound these three terms
separately.

C. Network Error Bound

We need to prove an intermediate bound first to handle term
T3.

Lemma 8: Fix a Markov matrix P and consider Algorithm
1 when the objective J(w) is strongly convex we have the
following inequality for the expected squared error between
the iterate wi(t) at node i at time t and the average w̄(t)
defined in Algorithm 1:√

E
[
‖w̄(t)−wi(t)‖2

]
≤ 2L

µ
·
√
m

b
· log(2bet2)

t
, (36)

where b = (1/2) log(1/λ2(P)).
Proof: We follow a similar analysis as others [3, Prop.

3] [5, IV.A] [22]. Let M = 1
m11>. Let W(t) be the m × d

matrix whose i-th row is wi(t) and G(t) be the m×d matrix
whose i-th row is gi(t) . Then the iteration can be compactly
written as

W(t+ 1) = P(t)W(t)− ηtG(t)

and the network average matrix W̄(t) = MW(t). Then we
can write the difference using the fact that P(t) = P for all
t:

W̄(t+ 1)−W(t+ 1) =

= (M − I) (PW(t)− ηtG(t))

= (M −P) W(t)− ηt (M − I) G(t)

= (M −P) (PW(t− 1)− ηt−1G(t− 1))

− ηt (M − I) G(t)

=
(
M −P2

)
W(t− 1)−

t∑
s=t−1

ηs
(
M −Pt−s)G(s).

Continuing the expansion and using the fact that W(1) = 0,

W̄(t+ 1)−W(t+ 1)

=
(
M −Pt

)
W(1)−

t∑
s=1

ηs
(
M −Pt−s)G(s)

= −
t∑

s=1

ηs
(
M −Pt−s)G(s)

= −
t−1∑
s=1

ηs
(
M −Pt−s)G(s)− ηt (M − I) G(t). (37)

Now looking at the norm of the i-th row of (37) and using
the bound on the gradient norm:

‖w̄(t)−wi(t)‖

≤

∥∥∥∥∥
t−1∑
s=1

ηs

m∑
j=1

(
1

m
− (Pt−s)ij

)
gj(s)

+ ηt

 m∑
j=1

1

m
gj(t)− gi(t)

∥∥∥∥∥ (38)

≤
t−1∑
s=1

L

µs
·
∥∥∥∥ 1

m
− (Pt−s)i

∥∥∥∥
1

+
2L

µt
. (39)
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We handle the term
∥∥ 1
m − (Pt−s)i

∥∥
1

using a bound on
the mixing rate of Markov chains (c.f. (74) in Tsianos and
Rabbat [22]):

t−1∑
s=1

L

µs
·
∥∥∥∥ 1

m
− (Pt−s)i

∥∥∥∥
1

≤ L
√
m

µ

t−1∑
s=1

(√
λ2(P)

)t−s 1

s
.

(40)

Define a =
√
λ2(P) ≤ 1 and b = − log(a) > 0. Then we

have the following identities:

t∑
τ=1

at−τ+1

τ
=

t∑
τ=1

aτ

t− τ + 1
=

t∑
τ=1

exp(−bτ)

t− τ + 1
. (41)

Now using the fact that when x > −1 we have exp(−x) <
1/(1 + x) and using the integral upper bound we get

t∑
τ=1

at−τ+1

τ
≤

t∑
τ=1

1

(1 + bτ)(t− τ + 1)

≤ 1

(1 + b)t
+

∫ t

1

dτ

(1 + bτ)(t− τ + 1)

=
1

(1 + b)t
+

[
log(bτ + 1)− log(t− τ + 1)

bt+ b+ 1

]t
τ=1

=
1

(1 + b)t
+

log(bt+ 1)− log(b+ 1) + log(t)

bt+ b+ 1

≤ log(et(bt+ 1))

bt

≤ log(2bet2)

bt
. (42)

Using (40) and (42) in (39) we get

‖w̄(t)−wi(t)‖ ≤
L
√
m

µ

log(2bet2)

bt
+

2L

µt

≤ 2L
√
m

µ

log(2bet2)

bt
. (43)

Therefore we have

√
E
[
‖w̄(t)−wi(t)‖2

]
≤ 2L

√
m

µ

log(2bet2)

bt
. (44)

D. Bounds for expected gradient norms

1) Bounding E
[
‖∇Ji(w̄(t))‖2

]
: Let βj,t ∈ ∂`(w̄(t)>xi,j)

denote a subgradient for the j-th point at node i and βt =
(β1,t, β2,t, . . . , βn,t)

> be the vector of subgradients at time t.
Let QSi

be the n×n Gram matrix of the data set Si. From the

definition of ‖∇Ji(w̄(t))‖ and using the Lipschitz property of
the loss functions, we have the following bound:

‖∇Ji(w̄(t))‖2 ≤

∥∥∥∥∥∥
∑
j∈Si

βj,txi,j
n

+ µw̄(t)

∥∥∥∥∥∥
2

≤ 2

∥∥∥∥∥∥
∑
j∈Si

βj,txi,j
n

∥∥∥∥∥∥
2

+ 2µ2 ‖w̄(t)‖2

=
2
∑
j∈Si

∑
j′∈Si

βj,tβj′,tx
>
i,jx
′
i,j

n2
+ 2µ2 ‖w̄(t)‖2

=
2

n2
β>t QSiβt + 2µ2 ‖w̄(t)‖2

≤ 2

n2
‖βt‖

2
σ1(QSi) + 2µ2 ‖w̄(t)‖2

≤ 2L2σ1(QSi
)

n
+ 2µ2 ‖w̄(t)‖2 . (45)

We rewrite the update (26) in terms of {xi,t}, the points
sampled at the nodes at time t:

w̄(t+ 1) = w̄(t)(1− µηt)− ηt
m∑
i=1

∂`(wi(t)
>xi,t)xi,t
m

.

(46)

Now from equation (46), after unrolling the recursion as in
Shalev-Shwarz et al. [4] we see

w̄(t) =
1

µ(t− 1)

t−1∑
τ=1

∑m
i=1 ∂`(wi(τ)>xi,τ )xi,τ

m
. (47)

Let γiτ ∈ ∂`(wi(τ)>xi,τ ) the subgradient set for the ith node
computed at time τ , then we have

‖w̄(t)‖ ≤ 1

µ(t− 1)
· 1

m

m∑
i=1

∥∥∥∥∥
t−1∑
τ=1

γiτxi,τ

∥∥∥∥∥ . (48)

Let us in turn bound for each node i the term∥∥∥∑t−1
τ=1 γ

i
τxi,τ

∥∥∥. Let γiτ ∈ ∂`(wi(τ)>xi,τ ) denote a sub-
gradient for the point sampled at time τ at node i and
γi = (γi1, γ

i
2, . . . , γ

i
t−1)> be the vector of subgradients up

to time t− 1. We have∥∥∥∥∥
t−1∑
τ=1

γiτxi,τ

∥∥∥∥∥
2

=
∑
τ,τ ′

γiτγ
i
τ ′x
>
i,τxi,τ ′

= (γi)>Qi,t−1γ
i

≤
∥∥γi∥∥2 σ1(Qi,t−1)

≤ (t− 1)L2σ1(Qi,t−1), (49)

where Qi,t−1 is the (t − 1) × (t − 1) Gram submatrix
corresponding to the points sampled at the i-th node until time
t− 1.

Further bounding (48):

‖w̄(t)‖2 ≤

(
1

µ(t− 1)

∑m
i=1

√
(t− 1)L2σ1(Qi,t−1)

m

)2

≤ L2

µ2

(
1

m

m∑
i=1

√
σ1(Qi,t−1)

t− 1

)2

.
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Since as stated before everything is conditioned on the sample
split we take expectations w.r.t the history and the random split
and using the Cauchy-Schwarz inequality again, and the fact
that the points are sampled i.i.d. from the same distribution,

E
[
‖w̄(t)‖2

]
≤ L2

µ2

1

m2

m∑
i=1

m∑
j=1

E

[√
σ1(Qi,t−1)σ1(Qj,t−1)

t− 1

]

≤ L2

µ2

1

m2

m∑
i=1

m∑
j=1

√
E
[
σ1(Qi,t−1)

t− 1

]
E
[
σ1(Qj,t−1)

t− 1

]
=
L2

µ2
E
[
σ1(Qi,t−1)

t− 1

]
. (50)

The last line follows from the expectation over the sampling
model: the data at node i and node j have the same expected
covariance since they are sampled uniformly at random from
the total data.

Taking the expectation in (45) and substituting (50) we have

E
[
‖∇Ji(w̄(t))‖2

]
≤ 2L2E

[
σ1(QSi

)

n

]
+ 2L2E

[
σ1(Qi,t−1)

t− 1

]
. (51)

Since Si is a uniform random draw from S and by assuming
both t and n to be greater than 4/(3ρ2) log(d), applying
Lemma 7 gives us

E
[
‖∇Ji(w̄(t))‖2

]
≤ 20L2ρ2. (52)

2) Bounding E
[
‖∇Ji(wi(t))‖2

]
: We have just as in the

previous subsection

‖∇Ji(wi(t))‖2 ≤ 2L2σ1(QSi
)

n
+ 2µ2 ‖wi(t)‖2 .

Using the triangle inequality, the fact that (a1 +a2)2 ≤ 2a21 +
2a22, the bounds (43) and (50), and Lemma 7:

E
[
‖wi(t)‖2

]
≤ 2E

[
‖wi(t)− w̄(t)‖2

]
+ 2E

[
‖w̄(t)‖2

]
≤ 8L2m

µ2

log2(2bet2)

b2(t− 1)2
+

5L2ρ2

µ2
. (53)

Since the second term does not scale with t, from (53) we can
infer that for the second term to dominate the first we require

t

log(t)
>

√
8

5

√
m

ρb
.

This gives us

E
[
‖wi(t)‖2

]
≤ 10L2ρ2

µ2
, (54)

and therefore

E
[
‖∇Ji(wi(t))‖2

]
≤ 30L2ρ2. (55)

E. Bound for T2

Because the gradients are bounded,

E

∥∥∥∥∥
m∑
i=1

gi(t)

m

∥∥∥∥∥
2
 = E

∑
i,j

gi(t)
>gi(t)

m2


=

m∑
i=1

E
[
‖gi(t)‖2

]
m2

+
∑
i 6=j

E
[
gi(t)

>gj(t)
]

m2

≤ L2

m
+
∑
i6=j

E
[
gi(t)

>gj(t)
]

m2

=
L2

m
+

∑
i 6=j EFt−1

[
E
[
gi(t)

>gj(t)|Ft−1
]]

m2
.

Now using the fact that the gradients gi(t) are unbiased
estimates of ∇Ji(wt) and that gi(t) and gj(t) are independent
given past history and inequality (55) for node i and j we get

∑
i 6=j EFt−1

[
E
[
gi(t)

>gj(t)|Ft−1
]]

m2

=
∑
i 6=j

EFt−1

[
∇Ji(wi(t))

>∇Jj(wj(t))
]

m2

≤
∑
i 6=j

√
EFt−1

[
‖∇Ji(wi(t))‖2

]√
EFt−1

[
‖∇Jj(wj(t))‖2

]
m2

=
(m− 1)

m
· 30L2ρ2

≤ 30L2ρ2. (56)

Therefore to bound the term T2 in (35) we can use

E

∥∥∥∥∥
m∑
i=1

gi(t)

m

∥∥∥∥∥
2
 ≤ L2

m
+ 30L2ρ2. (57)

F. Bound for T3

Applying (44), (52), and (55) to T3 in (35), as well as
Lemma 8 and the fact that (a1 + a2)2 ≤ 2a21 + 2a22 we obtain
the following bound:

T3 ≤ 1

m

m∑
i=1

√
E
[
‖w̄(t)−wi(t)‖2

]
·
√

E
[
(‖∇Ji(wi(t))‖+ ‖∇Ji(w̄(t))‖)2

]
≤ 1

m

m∑
i=1

2L
√
m

µ

log(2bet2)

bt
· 10Lρ

≤ 20L2

µ
·
√
m

b
· log(T )

t
· ρ. (58)
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G. Combining the Bounds

Finally combining (57) and (58) in (35) and applying the
step size assumption ηt = 1/(µt):

E [J(w̄(t))− J(w∗)]

≤ (η−1t − µ)

2
E
[
‖w̄(t)−w∗‖2

]
− η−1t

2
E
[
‖w̄(t+ 1)−w∗‖2

]
+

(
30L2ρ2

µ
+
L2

µm

)
· 1

t

+
20L2

µ
·
√
m

b
· log(2bet2)

t
· ρ

≤ µ(t− 1)

2
E
[
‖w̄(t)−w∗‖2

]
− µt

2
E
[
‖w̄(t+ 1)−w∗‖2

]
+K0 ·

L2

µt
, (59)

where K0 =
(

30ρ2 + 1/m+
(

60 ·
√
mρ2 · log(T )

)
/b
)

, us-
ing t ≤ T and assuming T > 2be.

Let us now define two new sequences, the average of the
average of iterates over nodes from t = 1 to T and the average
for any node i ∈ [m]

ŵ(T ) =
1

T

T∑
t=1

w̄(t) (60)

ŵi(T ) =
1

T

T∑
t=1

wi(t). (61)

Then summing (59) from t = 1 to T , using the convexity of
J and collapsing the telescoping sum in the first two terms of
(59),

E [J(ŵ(T ))− J(w∗)]

≤ 1

T

T∑
t=1

E [J(w̄(t))− J(w∗)]

≤ −µT
2

E
[
‖w̄(T + 1)−w∗‖2

]
+K0 ·

L2

µ
·
∑T
t=1 1/t

T

≤ K0 ·
L2

µ
· log(T )

T
. (62)

Now using the definition of subgradient, Cauchy-Schwarz,
and Jensen’s inequality we have

J(ŵi(T ))− J(w∗)

≤ J(ŵ(T ))− J(w∗) +∇J(ŵi(T ))>(ŵi(t)− ŵ(T ))

≤ J(ŵ(T ))− J(w∗) + ‖∇J(ŵi(T )‖ ‖ŵi(t)− ŵ(T )‖
≤ J(ŵ(T ))− J(w∗)

+ ‖∇J(ŵi(T ))‖ ·
T∑
t=1

‖wi(t)− w̄(t)‖
T

. (63)

To proceed we must bound E
[
‖∇J(ŵi(T ))‖2

]
in a similar

way as the bound (52). First, let αi = ∂`(ŵi(T )>xi) denote
the subgradient for the i-th loss function of J(·) in (1),

evaluated at ŵi(T ), and αT = (α1, α2, . . . , αN )> be the
vector of subgradients. As before,

‖∇J(ŵi(T ))‖2 =

∥∥∥∥∥ 1

N

N∑
i=1

αixi + µŵi(T )

∥∥∥∥∥
2

≤ 2

N2
α>Qα + 2µ2 ‖ŵi(T )‖2

≤ 10L2ρ2 + 2µ2 ‖ŵi(T )‖2

≤ 10L2ρ2 + 2µ2 1

T

T∑
t=1

‖wi(t)‖2 .

Taking expectations of both sides and using (54) as before:

E
[
‖∇J(ŵi(T ))‖2

]
≤ 30L2ρ2.

Taking expectations of both sides of (63) and using the
Cauchy-Schwarz inequality, (62), the preceding gradient
bound, Lemma 8 and the definition of K0 we get

E [J(ŵi(T ))− J(w∗)]

≤ K0 ·
L2

µ
· log(T )

T
+

2
√

30L2

µ
·
√
m

b
· ρ · log(T )

T
·
T∑
t=1

1

t

≤

(
K0 +

2
√

30 ·
√
mρ2 · log T

b

)
· log T

T

≤

(
30ρ2 +

1

m
+

70
√
mρ2 · log T

b

)
· L

2

µ
· log T

T
. (64)

Recalling that b = log(1/λ2(P)) ≥ 1 − λ2(P ), assuming
T > 2be and subsuming the first term in the third and taking
expectations with respect to the sample split the above bound
can be written as

E [J(ŵi(T ))− J(w∗)] ≤

(
1

m
+

100
√
mρ2 · log T

1− λ2(P )

)

· L
2

µ
· log T

T
. (65)

APPENDIX B
PROOF OF LEMMA 2

Proof: Let us define the product of the sequence of
random matrices {P(τ) : s ≤ τ ≤ t}:

Φ(s : t) = P(t) · · ·P(s). (66)

Then proceeding as in proof of Lemma 8 and using the step
size ηt = 1/(µt), we get

‖w̄(t)−wi(t)‖ ≤

∥∥∥∥∥
t−1∑
s=1

ηs

m∑
j=1

(
1

m
− Φ(s : t)ij

)
gj(s)

+ ηt

 m∑
j=1

1

m
gj(t)− gi(t)

∥∥∥∥∥ (67)

≤
t−1∑
s=1

L

µs
·
∥∥∥∥ 1

m
− Φ(s : t)ei

∥∥∥∥
1

+
2L

µt
. (68)
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Let ei be a vector with 0’s everywhere except at the the ith
position, then

E
[∥∥∥∥ 1

m
− Φ(s : t)ei

∥∥∥∥
1

]
≤
√
mE

[∥∥∥∥ 1

m
− Φ(s : t)ei

∥∥∥∥
2

]
.

(69)

Consider the recursion u(t+1) = P(t)u(t) and let v(t+1) =
P(t)u(t)− 1

m then we have

E
[
v(t+ 1)>v(t+ 1)|v(t)

]
= E

[
v(t)>P2(t)v(t)|v(t)

]
= v(t)>E

[
P2(t)

]
v(t)

≤ ‖v(t)‖2 λ2
(
E
[
P2(t)

])
,
(70)

since v(t) is orthogonal to the largest eigenvector of P(t).
Taking expectations w.r.t to v(t) we get

E
[
‖v(t+ 1)‖2

]
≤ E

[
‖v(t)‖2

]
λ2
(
E
[
P2(t)

])
. (71)

Recursively expanding (71) we obtain

E
[
‖v(t+ 1)‖2

]
≤ ‖v(0)‖2 λ2

(
E
[
P2(t)

])t−s+1
. (72)

Consider an initial vector u(0) = ei. We see that
‖v(t+ 1)‖2 =

∥∥ 1
m − Φ(s : t)i

∥∥
2
, this finally gives us

E
[∥∥∥∥ 1

m
− Φ(s : t)i

∥∥∥∥
1

]
≤
√
mE

[∥∥∥∥ 1

m
− Φ(s : t)i

∥∥∥∥
2

]
≤
√
m

∥∥∥∥ei − 1

m

∥∥∥∥2 λ2 (E [P2(t)
])t−s+1

≤
√
mλ2

(
E
[
P2(t)

])t−s+1
. (73)

Proceeding like the proof of Lemma 2 where a =
λ2
(
E
[
P2(t)

])
and b = − log(a) we get√

E
[
‖w̄(t)−wi(t)‖2

]
≤ 2L

√
m

µ

log(2bet2)

bt
. (74)

APPENDIX C
PROOF OF THEOREM 3

The proof follows easily from the proof of Theorem 1.
Proof: Since (35) still holds, we merely apply Lemma 2

in (35) and continue in the same way as the proof of Theorem
1.

APPENDIX D
PROOF OF THEOREM 4

We will first establish the network lemma for scheme (13).
Lemma 9: Fix a Markov matrix P and consider Algorithm 1

when the objective J(w) is strongly convex and the frequency
of communication satisfies

1/ν >
4

3ρ2
log(d) (75)

we have the following inequality for the expected squared error
between the iterate wi(t) at node i at time t and the average
w̄(t) defined in Algorithm 1 for scheme (13)√

E
[
‖w̄(t)−wi(t)‖2

]
≤ 4L

√
5mρ2

µ
· log(2bet2)

bt
(76)

where b = (1/2) log(1/λ2(P)).
Proof: It is easy to see that we can write the update

equation in Algorithm 1 as

wi(t+ 1) =

m∑
j=1

P̃ij(t)wj(t)− ηtg1/ν
i (t) (77)

where

P̃ij(t) =

{
Pij(t) when i 6= j
Pii(t)− 1

mt when i = j
(78)

and gi(t) = g
1/ν
i (t) + µwi(t).

We need first a bound on
∥∥∥g1/ν

j (s)
∥∥∥ using the definition of

the minibatch (sub)gradient:∥∥∥g1/ν
i (s)

∥∥∥2 =

∥∥∥∥∥
∑
iks∈Hi

s
∂`(wi(s)

>xkis )xkis
1/ν

∥∥∥∥∥
2

≤ L2ν
∥∥Q1/ν

∥∥ (79)

From (39) and the minibatch (sub)gradient bound

‖w̄(t)−wi(t)‖

≤

∥∥∥∥∥∥
t−1∑
s=1

ηs

m∑
j=1

(
1

m
− (P̃t−s)ij

)
g
1/ν
j (s)

∥∥∥∥∥∥
+ ηt

∥∥∥∥∥∥
 m∑
j=1

1

m
g
1/ν
j (t)− g

1/ν
i (t)

∥∥∥∥∥∥
≤ L

√
ν
∥∥Q1/ν

∥∥ t−1∑
s=1

∥∥∥ 1
m − (P̃t−s)i

∥∥∥
1

µs
+

2L
√
ν
∥∥Q1/ν

∥∥
µt

≤ L
√
ν
∥∥Q1/ν

∥∥
t−1∑
s=1

∥∥ 1
m − (Pt−s)i

∥∥
1

+
∥∥∥(Pt−s)i − (P̃t−s)i

∥∥∥
1

µs

+
2L
√
ν
∥∥Q1/ν

∥∥
µt

≤ 2L
√
ν
∥∥Q1/ν

∥∥ t−1∑
s=1

∥∥ 1
m − (Pt−s)i

∥∥
1

µs
+

2L
√
ν
∥∥Q1/ν

∥∥
µt

Continuing as in the proof of Lemma 8, taking expectations
and using Lemma 7, for 1/ν > 4

3ρ2 log(d) we have

√
E
[
‖w̄(t)−wi(t)‖2

]
≤

4L
√
mνE

[∥∥Q1/ν
∥∥]

µ

log(2bet2)

bt

≤ 4L
√

5mρ2

µ

log(2bet2)

bt
(80)
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For the scheme (13) all the steps until bound (35) from proof
of Theorem 3 remain the same. The difference in the rest of
the proof arises primarily from the mini batch gradient norm
factor in Lemma 9. We have the same decomposition as (35)
with T1, T2, and T3 as in (32), (33), and (34). The gradient
norm bounds also don’t change since the minibatch gradient
is also an unbiased gradient of the true gradient ∇J(·). Thus
substituting Lemma 9 in the above and following the same
steps as in proof of Theorem 3, replacing T by νT where
T is now the total iterations including the communication as
well as the minibatch gathering rounds, we get Theorem 4.

A. Proof of Lemma 5

In the proof we will first show that the iterate of Algorithm
1 is asymptotically normal by showing it is close to the iterate
of distributed algorithm of [9] and then use the corresponding
multivariate normality result of Bianchi et al. [9, Theorem 5].
Finally using smoothness and strong convexity we shall get
Lemma 5.

We need to verify that Algorithm 1 satisfies all the assump-
tions necessary (Assumptions 1, 4, 6, 7, 8a, and 8b in Bianchi
et al. [9]) for the result to hold.
• Assumption 1 requires the weight matrix P(t) to be row

stochastic almost surely, identically distributed over time,
and that E[P(t)] is column stochastic. Our Markov matrix
is constant over time and doubly stochastic. Assumption
1b follows because P is constant and independent of the
stochastic gradients, which are sampled uniformly with
replacement.

• Assumption 4 requires square integrability of the gradi-
ents as well as a regularity condition. In our setting, this
follows since the sampled gradients are bounded almost
everywhere.

• Assumption 6 imposes some analytic conditions at the
optimum value. These hold since the gradient is assumed
to be differentiable and the Hessian matrix at w∗ is
positive definite with its smallest eigenvalue is at least
µ > 0 (this follows from strong convexity).

• Assumption 7 of Bianchi et al. [9] follows from our
existing assumptions.

• Assumptions 8a and 8b are standard stochastic approx-
imation assumptions on the step size that are easily
satisfied by ηt = 1

µt .
It is easy to show that the average over the nodes of the

iterates w̃i(t), wi(t) for Algorithm 1 and distributed algorithm
of [9] are the same and satisfy

¯̃w(t+ 1) = ¯̃w(t)− ηt
∑m
i=1 gi(t)

m

w̄i(t+ 1) = w̄i(t+ 1)− ηt
∑m
i=1 gi(t)

m
(81)

Now note that

wi(t)−w∗ = wi(t)− w̄i(t)︸ ︷︷ ︸
T1=Network Error

+ w̄i(t)−w∗︸ ︷︷ ︸
T2=Asymptotically Normal

(82)

From Lemma 8 we know that the network error (T1) decays
and from update equation (81) we know that the averaged

iterates for both the versions are the same . Then the proof
of Theorem 5 of Bianchi et al. [9] shows that the term T2,
under the above assumptions when appropriately normalized
converges to a centered Gaussian distribution. Equation (82)
then implies

√
µt (wi(t)−w∗) ∼ N (0,H) , (83)

where H is the solution to the equation

∇J2(w∗)H + H∇J2(w∗)T = C. (84)

Let Y ∼ N (0, I). Then for X ∼ N (0,H) we have X =
YH1/2 and thus

‖X‖2 = Y>HY (85)

Then it is well known that ‖X‖2 ∼ χ2(Tr(H)) and so
E
[
‖X‖2

]
= Tr(H).

Let us now consider the suboptimality at the iterate∑m
j=1 Pijwj(t). It is easy to see that for a differentiable and

strongly convex function

J

 m∑
j=1

Pijwj(t)

− J(w∗) ≤ G

2

∥∥∥∥∥∥
m∑
j=1

Pijwj(t)−w∗

∥∥∥∥∥∥
2

.

(86)

Now it is easy to see from (83) that for a node j ∈ N (i)

Pij
√
µt (wj(t)−w∗) ∼ N

(
0, (Pij)

2H
)
. (87)

This implies that

∑
j∈N (i)

Pij
√
µt (wj(t)−w∗) ∼ N

0,

 ∑
j∈N (i)

(Pij)
2

H

 .

(88)

Then taking expectation w.r.t to the distribution (88) and using
standard properties of norms of multivariate normal variables,

E


∥∥∥∥∥∥
∑

j∈N (i)

Pij
√
µt (wj(t)−w∗)

∥∥∥∥∥∥
2


=

 ∑
j∈N (i)

(Pij)
2

Tr (H) . (89)

Then substituting in bound (86) and taking the limit we
finally get

lim sup
T→∞

T · E

J
 m∑
j=1

Pijwj(T )

− J(w∗)


≤

∑
j∈N (i)

(Pij)
2 · Tr (H) · G

µ
. (90)
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B. Proof of Theorem 6

The the covariance of the gradient noise under the sampling
with replacement model is

C = E
[
gi(t)gi(t)

>]−∇J(wi(t))∇J(wi(t))
>

=

∑N
i=1 βi,txix

T
i

N
+
µ

N

N∑
i=1

βi,t
(
xiwi(t)

> + wi(t)x
>
i

)
+ µ2wi(t)wi(t)

> −∇J(wi(t))∇J(wi(t))
>.

(91)

Thus we can bound the spectral norm of C as

σ1(C) ≤ L2ρ2 + 2µLE [‖wi(t)‖] + µ2E
[
‖wi(t)‖2

]
+ E

[
‖∇J(wi(t))‖2

]
. (92)

Now from bound (54) since T →∞ we have

E
[
‖wi(t)‖2

]
≤ 10L2ρ2

µ2

E
[
‖∇Ji(wi(t))‖2

]
≤ 30L2ρ2.

Putting everything together we get

σ1(C) ≤ 50ρL2. (93)

Next note that H = C
(
∇2J(w∗)

)−1
/2. From the com-

pleteness and uniform weight assumptions on the graph, we
have ∑

j∈N (i)

(Pij)
2 =

1

m
. (94)

Thus substituting in Lemma 5, using (93) gives us

lim sup
t→∞

t · E

J
 m∑
j=1

Pijwj(t)

− J(w∗)


≤ 1

m
·

Tr
((

C∇2J(w∗)
)−1)

2
· G
µ

≤ 25ρL2

m
· Tr

(
∇2J(w∗)−1

)
· G
µ
.
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