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Abstract—In this paper, we consider the communication of in-
formation in the presence of a causal adversarial jammer. In the
setting under study, a sender wishes to communicate a message to
a receiver by transmitting a codeword bit-by-bit
over a communication channel. The sender and the receiver do not
share common randomness. The adversarial jammer can view the
transmitted bits one at a time and can change up to a -fraction
of them. However, the decisions of the jammer must be made in a
causal manner. Namely, for each bit , the jammer’s decision on
whether to corrupt it or not must depend only on for . This
is in contrast to the “classical” adversarial jamming situations in
which the jammer has no knowledge of , or knows completely.
In this study, we present upper bounds (that hold under both the
average and maximal probability of error criteria) on the capacity
which hold for both deterministic and stochastic encoding schemes.

Index Terms—Arbitrarily varying channels (AVCs), channel
coding, jamming.

I. INTRODUCTION

A LICE wishes to transmit a message to Bob over a bi-
nary-input binary-output channel. To do so, she encodes

into a length- binary vector and transmits it over the channel.
However, the channel is controlled by a malicious adversary
Calvin who may observe the transmissions, and attempts to jam
communication by flipping up to a fraction of the bits trans-
mitted by Alice. Since he must act in a causal manner, Calvin’s
decisions on whether or not to flip the bit must be a func-
tion solely of the bits he has observed thus far. This
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communication scenario models jamming by an adversary who
is limited in his jamming capability (perhaps due to limited
transmit energy) and is causal. This causality assumption is
reasonable for many communication channels, both wired and
wireless. Calvin can only corrupt a bit when it is transmitted
(and thus its error is based on its view so far). To decode the
transmitted message, Bob waits until all the bits have arrived.
In this paper, we investigate the information-theoretic limits

of communication in this setting. We stress that in our model,
Calvin knows everything that both Alice and Bob do—there
is no shared secret or common randomness (a model where
such a shared secret may be allowed has been considered
in the literature pertaining to arbitrarily varying channels
(AVCs), discussed further in Section I-A). However, we make
no assumptions about the computational tractability of Alice,
Bob, or Calvin’s encoding, decoding and jamming processes.
Our main contribution in this study is a converse that helps
to make progress toward a better understanding of the com-
munication rates (average number of bits per channel use)
achievable against a causal adversary. Specifically, we describe
and analyze a novel jamming strategy for Calvin and show that
it (upper) bounds the rate of communication regardless of the
coding strategy used by Alice and Bob. This jamming strategy
results in Calvin being able to force Bob’s average probability
of decoding error over all of Alice’s messages to be bounded
away from zero (and hence correspondingly also his maximum
probability of error).

A. Previous and Related Work

Many of the following works deal with related channels; we
restrict our discussion mostly to the binary-input binary-output
case, except where specifically indicated otherwise.
Coding theory model:Avery strong class of adversarial chan-

nels is one where Calvin is omniscient—he knows Alice’s entire
codeword prior to transmission and can tailor the pattern of up
to bit flips to each specific transmission. This is the “worst
case noise” model studied in coding theory. In this model, there
is no randomness in code design, and it is desired that Bob al-
ways decodes correctly. For binary channels, characterizing the
capacity has been an open problem for several decades. The best
known upper bound is due to McEliece et al. [2] as the solution
of an LP, and the best known achievable scheme corresponds
to codes suggested by Gilbert [3] and Varshamov [4], which
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achieve a rate of . Improving either of these bounds
would be a significant breakthrough.1

Information theory model: A much weaker class of adver-
sarial channels is one where Calvin generates bit flips in an i.i.d.
manner with probability and Bob must decode correctly “with
high probability” over the randomness in Calvin’s bit flips. The
original work of Shannon [8] effectively characterized the ca-
pacity of this binary symmetric channel . The capacity

in Shannon’s setting (for crossover probability ) is
strictly greater than that of the coding theory model.
Causal adversarial model: The class of channels considered

in this study, i.e., that of causal adversaries, falls in between the
above two extremes. In one direction, this is because a causal
adversary is certainly no stronger than an omniscient adver-
sary, since he cannot tailor his jamming strategy to take into
account Alice’s future transmissions. Indeed, the work of Haviv
and Langberg [9] indicates that (for )
rates strictly better than those achievable by Gilbert–Varshamov
codes [3], [4] against an omniscient adversary are achievable
against a causal adversary. However, since it is still unknown
whether Gilbert–Varshamov codes are optimal against omni-
scient adversaries, it is unknown whether causal adversaries are
indeed strictly weaker than omniscient adversaries. Nonethe-
less, the Gilbert–Varshamov bound and the bound of [9] indi-
cate that for , the capacity under causal adversaries is
bounded away from zero.
In the other direction, the causal adversarial model under

study is at least as strong as the information-theoretic model in
which Calvin generates bit flips in an i.i.d. manner. Specifically,
if , for any and sufficiently long block-length
a causal adversary can ignore the transmitted codeword seen so
far and just mimic the behavior of a binary symmetric channel

—with high probability, he does not exceed his
budget of bit flips. Similarly, if , Calvin simply
mimics the behavior of a . This implies that when
communicating in the presence of causal adversaries with jam-
ming capabilities that are parametrized by , is an
upper bound on the achievable rate for , and no posi-
tive rate is achievable for . Improving over this naïve
upper bound (and hence narrowing the gap to the lower bound
of [9]) is the focus of the paper.
The improved upper bounds we present hold for general

coding schemes that allow Alice to encode a message to
one of several possible codewords , where
is a random source available to Alice but unknown to either
Bob or Calvin. Such general coding schemes are referred to
as stochastic coding schemes. We stress that in such schemes,
there is no shared randomness between Alice and Bob, and the
source of randomness in Alice’s encoder is solely known to
Alice.

1As is often the case, results for channels over “large” alphabets are signifi-
cantly easier. In the “intermediate” alphabet-size regime, wherein the alphabet
is of size at least 49, advances in algebraic-geometry codes over the last three
decades (see [5] for a survey) have resulted in codes exceeding the Gilbert–Var-
shamov bound. For alphabets larger than , the bound of due to Sin-
gleton [6] is known to be achievable in a computationally efficient manner via
Reed–Solomon codes [7].

Arbitrarily Varying Channels: Our model is a variant of the
AVC model [10]. The AVC model where the adversary has
access to the entire codeword was considered by Ahlswede
and Wolfowitz [11], [12] but received little attention since [13,
Problem 2.6.21]. General AVC models have been extended to
include channels with constraints on the adversary (such as
bit flips) for cases where the adversary has no access to the
codeword [14], or has access to the full codeword [15]. For
binary channels in which the jammer has knowledge of the
entire codeword , Langberg [16] showed that bits of
common randomness is sufficient to achieve the optimal rate of

(and the work in [17] investigated computationally
efficient constructions of such codes). However, issues of
causality have only been studied in the context of randomized
coding (when the encoder and decoder share common random-
ness), but not for deterministic codes or stochastic encoding.
Delayed adversaries: The delayed adversary model was

studied in [18] and [19]. In this model, the jammer’s decision
on whether to corrupt must depend only on for
for a delay parameter . The case of is exactly
the causal setting studied in this paper, and that of
corresponds to the “oblivious adversary” studied by Langberg
[18]. In this oblivious adversary setting, the work in [20]
demonstrates computationally efficient code constructions that
achieve information-theoretically rate-optimal throughput of

for all .
In a different line of work, Dey et al. [19] showed that for

a large class of channels, the capacity for delay equals
that of the constrained AVC model [21]. In particular, a positive
delay implies that the optimal rate is achievable against
a delayed adversary over a binary-input binary-output channel.
In this paper, we show that a causal adversary is strictly stronger
than a delayed adversary with for all . For
smaller than this value, our techniques do not help separate the
capacity regions of these two models.
Causal and delayed adversaries for “large alphabets”: In the

large alphabet setting (where the alphabet size is allowed to
grow without bound with increasing block-length), Dey et al.
[22] give a full characterization of the capacity region of sev-
eral variants of both the causal adversary and the delayed adver-
sary models. They further give computationally efficient codes
achieving every point in the capacity regions for themodels con-
sidered. In general, in the large alphabet regime, code design is
easier than in the binary alphabet regime (that is the primary
focus of this study) since with large alphabets, a “few random
hashes” can be hidden inside each symbol with asymptotically
negligible rate-loss. These hashes aid the decoder in detecting
the adversarial attack pattern and correcting for it. In the binary
alphabet setting, this technique is not applicable—this is one of
the bottlenecks in further narrowing the gaps between outer and
inner bounds for the model considered in this study.
Previous attacks: This study continues our preliminary

work on binary causal channels [23] (and a related result of
Guruswami and Smith [20]), which proposed an upper bound
using the so called “wait-and-push” attack. This study improves
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Fig. 1. We plot previous bounds related to the channel at hand compared to
our bound. The upper bound of corresponds to the binary symmetric
channel. The lower bound [9] (denoted HL) is based on an evaluation of the
parameters specified by Haviv and Langberg [9] and it slightly improves on the
Gilbert–Varshamov bound . Our improved bound appears in between.

on this earlier work in two aspects—specifically the bound
presented is tighter and holds also for stochastic encoding.2

B. Main Result

Our improved bounds are given in the following theorem and
are depicted (in comparison with the previous bounds) in Fig. 1.
For any , let . In what follows,

is the capacity of the causal channel under study. For pre-
cise definitions and model, see Section II.
Theorem 1: For , the capacity of a binary

causal adversary channel with constraint satisfies

For , the capacity .
A few remarks are in order. Notice that in the regime
, it holds that , and thus, in the expression

2For completeness, we specify the two major differences between this paper
and [23]. First, we propose a different two-phase attack (“babble-and-push”)
which gives a tighter outer bound than the previous attack (“wait-and-push”).
In “wait-and-push,” Calvin passively eavesdrops in the first phase uses this in-
formation to design an error vector to confuse Bob in the second phase. In our
new attack, Calvin instead injects noise in the first phase to increase Bob’s un-
certainty about Alice’s transmissions. However, we must carefully choose the
number of bit flips Calvin injects in this “babble” phase to obtain a tighter outer
bound, because Calvin must trade-off between using bit flips to increase Bob’s
uncertainty and to push to an alternative codeword in the second phase. The
second improvement in this paper is that we prove that the “babble-and-push”
attack works even when Alice and Bob use stochastic encoding (i.e., for each
message she has, Alice may choose to transmit one of multiple possible code-
words , with an arbitrary random distribution over the set of codewords).
Our bounds therefore hold for general codes, as opposed to previous work [23],
where the outer bound was proved for codes in which each message corre-
sponded to a unique deterministically chosen by Alice.

of Theorem 1 is at most of value 1. We show in Appendix A that
the optimum in the computation of is

Namely, for greater than approximately 0.0804, the capacity
is bounded away from , and for less than this

value our bound equals (in the latter case we get
). For , the new strategy we propose for Calvin shows
that no positive rate is achievable; when , Calvin can
simply mimic the case .

C. Techniques and Proof Overview

To prove Theorem 1, we show that no matter which en-
coding/decoding scheme is used by Alice and Bob, there exists
a strategy for Calvin that does not allow communication at rate
higher than . Specifically, we demonstrate that whenever
Alice and Bob attempt to communicate at a rate higher than

, there exists a causal jamming strategy (that in general
depends on Alice and Bob’s encoding/decoding strategy) that
allows Calvin to enforce a constant probability of error bounded
away from zero. More precisely, for any block-length , any

and any encoding/decoding scheme of Alice and Bob
of rate , Calvin can cause a decoding error
probability of at least .
At a high level, Calvin uses a two-phase “babble-and-push”

strategy. In the first phase of channel uses, Calvin “bab-
bles” by behaving like a for some chosen as a func-
tion of . In the second phase of channel uses, Calvin
randomly selects a codeword from Alice and Bob’s codebook
that is consistent with what Bob has received so far. Calvin then
“randomly pushes” the remaining part of Alice’s codeword to-
ward his selected codeword (i.e., in every location in the “push”
phasewhereAlice’s codeword bit differs from his selected code-
word, he adds a with probability half). A decoding error occurs
if Calvin is able to push the transmitted codeword half the dis-
tance toward the codeword selected by Calvin (via a standard
symmetrization argument [14]).
Roughly speaking, the first phase allows Calvin to gain in-

formation regarding which codeword was transmitted by Alice,
while the second phase allows Calvin to use this information in
order to design a corresponding symmetrization-based jamming
strategy.
In Section III, we present the proof of our main result, that of

the outer bound on the capacity of online adversaries. Section IV
then improves on this result (by giving a tighter bound on the
probability of error) for the special case of deterministic en-
coders (rather than the general stochastic encoders considered
in Section III).

II. MODEL AND PRELIMINARIES

We first reprise some standard notation. Let denote
theHamming distance function between two vectors (number of
locations in which two vectors of the same length differ). The
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Hamming weight of a vector is the Hamming dis-
tance between that vector and the all-zero vector. Let de-
note the binary logarithm, here and throughout. As is common,
the notation is used to denote the (binary) entropy of a
random variable , to denote the conditional entropy
of given , and to denote the mutual information
between and . Also, for any real number ,
denotes the binary entropy function. Properties of and inequal-
ities between these functions are referenced at the point in the
text where needed. The indicator function takes
value 1 if is true, and 0 otherwise.
Let the input and the output alphabets of the channel

be and , respectively. For any positive integer , let
. We let denote Alice’s message

set, and denote the message random variable uniformly dis-
tributed in . A deterministic code of rate and block-length
is a pair of maps where and

are deterministic maps. The map is called the
encoder and the map is called the decoder.
A code with stochastic encoding and decoding of rate and

block-length is a pair of maps where
and are probabilistic maps. The random map
gives a probability distribution on for every .

The mapping is a random variable taking values from .
The encoding is equivalently represented by first picking a
random variable from a set R according to a conditional
distribution , and then applying a deterministic en-
coder map R . Note that our definition does
not preclude there existing pairs and such that

. As we are addressing upper bounds on
the capacity in this study, it is crucial to prove our results
in the stochastic setting above—any bounds proved in the sto-
chastic setting also hold in the deterministic setting.
A causal adversarial strategy of block-length is a sequence

of (possibly random) mappings . Here,
each depends on , and for each time,

chooses an action at time ,
—the inputs to are the past and current channel inputs

and its own previous actions .
The resulting channel output at time is . In our
setting, . The strategy obeys constraint if the Ham-
ming weight of is at most
over the randomness in themessage, encoder, and strategy. For a
given adversarial strategy and an input codeword , the strategy
produces a (possibly random) and the output is .
Let denote the probability of an output given an
input under the strategy where this strategy might depend
on via the adversary’s causal observations of —to sim-
plify notation we henceforth do not make this explicit. When the
block-length is understood from the context, let denote
all adversarial strategies obeying constraint .
The (average) probability of error for a code with stochastic

encoding and decoding is given by

R

(1)

where the probability is over any randomness in
the decoder (but there is no conditioning on since shared ran-
domness between the encoder and the decoder is not allowed).
We can interpret the errors as the error in expectation over Alice
choosing a message and a codeword ac-
cording to the conditional distribution .
A rate is achievable against a causal adversary under av-

erage error if for every there exist infinitely many block-
lengths , such that for each there is an block-length
(stochastic) code of rate at least and average probability of
error at most . The supremum of all achievable rates is the ca-
pacity. We denote by the capacity of the channel corre-
sponding to adversaries parametrized by .
Consider a code of block-length , rate , and error proba-

bility . We can, without loss of generality (w.l.o.g.), assume
that the encoding probabilities

are rational. To see why this is the case, note that for any
small we can find rational numbers such that

. Now consider a code with en-
coding probabilities for and assign the
remaining probability to . Under the same decoder, this code
has error probability at most , but since was arbi-
trary, the error is at most .
Now, for a given stochastic code, let be the least common

multiple of the denominators of for all . Each code-
word of can be treated as copies of the same code-
word with conditional probability each. So we can equiv-
alently associate a random variable with R s.t. the
conditional distribution is uniform, and the encoding
map is not necessarily injective. Since we consider the
uniform message distribution, henceforth, w.l.o.g., we assume
that the joint distribution is uniform.
We use a version of Plotkin’s bound [24] in our proof. This

result gives an upper bound on the number of codes in any bi-
nary code with a given minimum distance.
Theorem 2 (Plotkin Bound [24]): There are at most

codewords in any binary code of block-length with minimum
distance .

III. PROOF OF THEOREM 1

In this section, we analyze an adversarial attack for the gen-
eral case of stochastic encoders and decoders. For fully deter-
ministic codes, the analysis is more combinatorial and the error
bounds are somewhat better, as shown in Section IV.
Let and let . Without loss of generality, we

assume that is an integer—if not, Calvin can simply choose
the largest smaller than such that is an integer. Asymp-
totically in , the effect of this quantization on our outer bound
is negligible. Let . In what follows, we prove that the rate
of communication over the causal adversarial channel (with pa-
rameter ) is bounded by

(2)

where

(3)
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and

(4)

as defined in Theorem 1. Namely, if (2)–(4) is violated, for any
sufficiently large block-length , and any ( -block stochastic)
code shared by Alice and Bob, there exists an
adversarial jammer that can impose a constant decoding
error. The decoding error we obtain will depend on .
For , the adversary can generate a noise sequence to

simulate a with crossover probability arbitrarily close to
, which yields an upper bound of on the capacity.
We, therefore, assume that and that .
We show that for such , there cannot exist a sequence of
codes (each with rate at least ) of increasing block-length
, such that the probability of error of these codes converges to
0 asymptotically in . To do so, we will consider block-lengths

. Note that this argument does not provide lower
bounds on the error of codes of a given block-length, but instead
shows a bound on the capacity. We elaborate on this point at the
end of the proof.
Our converse bound is based on a particular two-phase

adversarial strategy for Calvin that we call “babble-and-push.”
Let and w.l.o.g. assume . For
a vector of length , let and

. In what follows, will corre-
spond to the first phase of Calvin’s attack, while corresponds
to the second phase. For , the strategy is given as follows.
1) (“Babble”) Calvin chooses a random subset of in-
dices uniformly from the set of all -sized subsets of

. For , Calvin flips bit ; that is, for
, for and for .

2) (“Push”) Calvin constructs the set of that
have encodings that are close to

. Namely, Calvin constructs the set

(5)

and selects an element uniformly at random.
Calvin then considers the corresponding codeword

. Given the selected , for , if ,
Calvin sets equiprobably to 0 or 1 until
or . Note that, under our assumption (w.l.o.g.)

of uniform , the a posteriori distribution of Alice’s
choice given is also uniform in .

We start by proving the following technical lemma that we
use in our proof.
Lemma 3: Let be a random variable on a discrete finite

set with entropy , and let be i.i.d.
copies of . Then

(6)

Proof: Fix and a set . Let
and let , where denotes

the indicator function. We can write the distribution of as a
mixture:

We can bound from above the entropy of as

Since conditioning reduces entropy and the support of
conditioned on is at most , we have

Namely

But the event that each is distinct is equivalent to the event
that for each , is 0.
To prove the upper bound, we now present a series of claims.

Let denote the random variable corresponding to Alice’s
input codeword and let be the output of the channel. Thus,

is Alice’s input during the “babble” phase of
length and is her input during the “push” phase; the
randomness comes from the message and the stochastic
encoding. Similarly, is the random variable corresponding
to the bits received by Bob during the “babble” phase, and

the bits of the “push” phase. Let denote the
“babble-and-push” adversarial strategy.
Let

where the entropy is measured over the ran-
domness of the encoder, the message, and any randomness in
Calvin’s action during the “babble” phase. Further, let the event
be defined as

(7)

Claim 4: For the “babble-and-push” attack

(8)

Proof: By the data-processing inequality (
form a Markov chain and hence ), and
the choice of Calvin’s strategy, we have
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Therefore

Here, the first inequality follows from the definition of con-
ditional entropy, the second from the assumption underlying
this proof by contradiction that (and hence ) violates
(2)–(4), and the third from the fact that the function
is monotonically increasing in since the function’s derivative
with respect to equals which is always pos-
itive. Thus, the expected value of over
is at least , and the maximum value of
is . Applying the Markov inequality to the random variable

, we see that

and hence

Using the fact that yields the result.
Now consider drawing pairs from i.i.d.

(which happens to be uniform). Note that the marginal
distribution of is also i.i.d. , which is not necessarily
uniform. Let

(9)

Claim 5: Let be the conditional distribution of
given under . Let be random vari-
ables drawn i.i.d. according to . Then, for large enough

(10)

Proof: The proof follows from Claim 4 and Lemma 3 by
using , , and the fact that there are at most
messages, so . The lower bound in (6) then be-

comes . For fixed , there exists a suffi-

ciently large such that .
The preceding two claims establish a lower bound on the

probability that takes a value such that the distribution of the

message conditioned on has sufficient entropy. For such
values of , we now use the fact that Alice’s pair is
uniform in to analyze the probability that Calvin’s “push”
attack succeeds. Let and denote the random choice of
Calvin’s message and codeword in the “push” phase. We show
that the following two events occur with probability bounded
away from zero:

(11)

(12)

The first event is that Calvin chooses a different message than
Alice and the second is that he chooses a codeword that is close
enough to Alice’s. The occurrence of the first event ensures
that the codeword Calvin chooses to try to confuse Bob into
thinking might have been transmitted corresponds to a message
different than Alice’s actual message . The occurrence of the

second event ensures that the two codewords chosen ( chosen
by Alice, and by Calvin) are “close enough” for Calvin to be
able to push Bob’s received codeword halfway between and
.
Claim 6: For the “babble-and-push” attack

(13)

Proof: Conditioned on , the realization satisfies
. We first use Claim 5 to lower bound

the probability that holds. First consider randomly sampling
a set of mutually independent pairs
uniformly from , and let be the codeword for .
Claim 5 shows that with probability at least , all the

messages in are distinct. In particular, this shows that

Turning to , applying Claim 5 for general shows that the
probability that draws from the conditional distribution
yield unique messages is lower bounded by . Plotkin’s
bound [24] (reprised in Theorem 2) shows that there do not exist
binary error-correcting codes of block-length and min-
imum distance with more than codewords. Setting

, this bound implies that with probability at least
there must exist codewords corresponding to

and , respectively, (with ) within a distance
that satisfies

Solving for and using shows that
satisfies

Let .
Let be the fraction of pairs and in that

satisfy and . We would like to lower bound . A union
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bound shows that the probability over the selection of gives
the upper bound

(14)
However, the earlier argument shows that by selecting
pairs in , we get a lower bound of on the prob-

ability that (a) all are distinct, and (b) at least one pair ,
has distance less that :

(15)

As the event analyzed in (14) includes that analyzed in (15),
we have that

Therefore, by the definition of , we conclude our assertion.

The next step is to show that Calvin does not “run out” of bit
flips during the second “push” phase of his attack. This follows
directly from Chernoff’s bound [25].
We now analyze Calvin’s action during the “push” phase.

This action can be viewed as being equivalent to the following
two stages. In the first stage, bits are drawn i.i.d.
Bernoulli- —these bits comprise the intended error vector
. However, Calvin may not have the power to impose this in-
tended vector in the push phase if the weight of is too large.
In general, the bit flips in Calvin’s actual error vector corre-
spond to the components of up to the point that he runs out of
his bit-budget.
Let be the distance between the chosen by Alice and
chosen by Calvin, and let the event be defined as

(16)

Claim 7: For the “babble-and-push” attack

(17)

Proof: As is the distance between the chosen byAlice
and chosen by Calvin, without any constraint, Calvin would
flip locations in expectation. Conditioned on and , we
have the following upper bound:

Assume that (for smaller values of the
bound is only tighter). By Chernoff’s bound [25], the probability
that the number of bit flips in (i.e., the Hamming weight of )
deviates from the expectation by more than is at most

.
Note that the number of bit flips in the first phase of the al-

gorithm is exactly , and thus, Claim 7 implies that with high
probability, the total number of bit flips in in the second phase
will not exceed and will not be significantly

less than that expected (i.e., less than —in this case Bob
might be able to conclude that was not transmitted). If this
is not the case, our analysis assumes Calvin (in the worst case
for him) fails to jam Alice’s transmission to Bob.
Theorem 8: For any code with stochastic encoding of rate

, under Calvin’s “babble-and-push” strategy, the
average error probability is lower bounded by .

Proof: The main idea behind the proof of our outer bound
is that conditioned on events , , , and , (whose proba-
bilities of occurrence are analyzed in Claims 4, 6, and 7), Calvin
can “symmetrize” the channel [14]. That is, Calvin can choose
to inject bit flips in a manner so that Bob is unable to distinguish
between two possible codewords and (corresponding to dif-
ferent messages and ) transmitted by Alice. Calvin does this
by ensuring (with probability bounded away from zero) that the
codeword received by Bob, , is equally likely to be either
or for two valid pairs and of transmitted
codewords and bit-flip vectors.
Let denote the message and randomness of Alice,

be the received codeword in the “babble” phase, and be
the message and randomness chosen by Calvin for the “push”
phase. Let be the joint distribution of these
variables under Alice’s uniform choice of and Calvin’s
attack. For each , let be the conditional dis-
tribution of under Calvin’s attack.
The error probability can be written as

Let be the set of tuples satisfying events
, , and . Claims 4 and 6 show that

. For , we have that , and
that and are sufficiently close.
Assuming holds, if results from via , then may

also have resulted from via (the binary complement of
). Since is generated via i.i.d. Bernoulli- components,
and have the same probability.
Thus, the conditional distribution is symmetric:

(18)

Then, for , by Claim 7,

Now, returning to the overall error probability, let
be the unconditional probability of Bob receiving in the
“babble” phase, where the probability is taken over Alice’s
uniform choice of and Calvin’s random babble . Since
the a posteriori distribution of and given are
independent and both uniform in , the joint distribution can
be written as
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Recall that for any ,

Thus

(19)

Our analysis implies a refined statement of Theorem
1. Namely, let be a sufficiently large constant. For any
block-length , any , and any encoding/decoding scheme
of Alice and Bob of rate , Calvin can cause
a decoding error probability of at least .

IV. IMPROVED BOUNDS FOR DETERMINISTIC CODES

We now present an alternative analysis for the case of deter-
ministic encoding. Without loss of generality, we assume each
codeword corresponds to a unique message in so there are

distinct equiprobable codewords in , with
a unique codeword for each message. The attack is the same as
in Section III. Apart from the simpler proof, the analysis below
gives a decoding error proportional to , which improves over
the decoding error presented for stochastic encoding appearing
in the body of this work.
Using the notation of Section III, for any vector , consider

the set

(20)

Here, represents the potential error vector that Calvin im-
poses in the first stage of its attack on the transmitted code-
word . Notice that the set defined above is analogous to
the set defined in Section III. Namely, for any message
, a pair in Section III corresponds to a pair

defined above. We note that in the definition
above, for as we assume all codewords
to be distinct.
Claim 9: With probability at least over the codeword

sent by Alice and the actions of Calvin in the first stage of his
attack, the set is of size at least .

Proof: The proof is obtained by the following counting
argument. The number of possible sets is exactly

. The number of pairs for a codeword and
an error vector (to be applied in the first stage by Calvin) is

Here, the first inequality follows from the fact that , the
second inequality from the standard bound

(for instance [26, Th. 11.1.3]) and the fact that is suffi-
ciently large with respect to and hence is smaller
than any polynomial in , and the third inequality from
the starting assumption that is at least .
Thus, the average size of a set is at least . Consider
all the sets of size less than half the average . The
total number of codewords in the union of these sets is at most

which is half the number of pairs. As each pair is chosen
with the same probability, we conclude that with probability at
least , the pair appears in a set which is of size
at least . This completes the proof of our assertion.
We now show that Claim 9 above implies that the transmitted

codeword and the codeword chosen by Calvin are distinct
and of smallHamming distance apart with a positive probability
(independent of ).
Claim 10: Conditioned on Claim 9, with probability at least
, and .
Proof: Consider the undirected graph in which

the vertex set consists of the set and two nodes and
are connected by an edge if

. The set of codewords defined by the suffixes of an inde-
pendent set in corresponds to a binary error-correcting code
with block-length of size and
minimum distance .
By Plotkin’s bound [24] (reprised in Theorem 2), there

do not exist binary error correcting codes with more than
codewords. Thus, , any maximal

independent set in , must satisfy

(21)

By Turán’s theorem [27], any undirected graph on ver-
tices and average degree has an independent set of size at
least . This, along with (21), implies that the av-
erage degree of our graph satisfies

This, in turn, implies that
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The second inequality holds for our setting of , since is
of size at least . To summarize the above discussion, we
have shown that our graph has large average degree of size

. We now use this fact to analyze Calvin’s attack.
By the definition of deterministic codes, any valid codeword

in is transmitted with equal probability. Also, by definition,
both (the transmitted codeword) and (the codeword chosen
by Calvin) are in . Hence, both and are uniform in

. This implies that with probability , the nodes cor-
responding to codewords and are distinct and connected
by an edge in . This, in turn, implies that with probability

, and , as re-
quired. Now

The preceding claims provide the same guarantees as Claim
6 appearing in the body of the paper, and so Claim 7 follows.
Namely, w.h.p., Calvin does not “run out” of his budget of
bit flips. We conclude by proving that given the analysis above,
Bob cannot distinguish between the case in which or were
transmitted, using a similar symmetrization argument.
Theorem 11: For any code with deterministic encoding and

decoding of rate , under Calvin’s “babble-and-push”
strategy, the average error probability is lower bounded by

.

Proof: Let be the message chosen by Alice, be the
message chosen by Calvin, be the joint distribution
of the output during the “babble” phase and these two messages,
and be the conditional distribution of the output
on the result of the “babble” phase.
Let be the set of such that Claim 7 is satisfied for .

As in the arguments of Theorem 8, Calvin’s attack is symmetric,
so that

and therefore we have

Let be the set of tuples satisfying Claims 9 and 10.
Following the analysis in Theorem 8, from (20) and applying
Claims 9 and 10, we have

Dividing both sides by 2 yields the result.

V. CONCLUDING REMARKS

In this paper, we presented a novel upper bound on the rates
achievable on binary additive channels with a causal adversary.

This model is weaker than the traditional worst case error model
studied in coding theory, but is stronger than an i.i.d. model
for the noise. Indeed, our results show the binary symmetric
channel capacity is not achievable against causal ad-
versaries. By contrast, previous work shows that a delay of
(with a positive constant in ) for the adversary allows
Alice and Bob to communicate at rate . Thus, the causal
adversary is strictly more powerful than the delayed adversary
(which, in turn, is no stronger than i.i.d. noise).
To show our bound, we demonstrated a new “babble-and-

push” attack. The adversary increases the uncertainty at the de-
coder during the “babble” phase, enabling it to choose an al-
ternative codeword during the “push” phase. The “push” phase
succeeds because the adversary can effectively symmetrize the
channel. We demonstrate that the upper bound presented herein
holds against arbitrary codes, rather than simply against deter-
ministic codes, as is common in the coding theory literature.
Since our analysis pertains to adversarial jamming rather than
random noise, the proof techniques presented may be of inde-
pendent interest in the more general setting of AVCs.

APPENDIX
MINIMIZATION IN THEOREM 1

Let us denote by , and write the bound as a function of
as

So
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First, we check for any roots of in .

We now substitute, for brevity, .

We now consider two cases. If , we have that
for . Thus, setting will yield the minimum value
for .
For , we study the minimum value given .

When and , it holds that and .
Thus, for to be zero, we require that

, which can be found via the general formula for cubic
equations (for instance, [28, Chap. 6]) to have one real solution
and two complex conjugate solutions. The only real solution is

giving . However,
this value is greater than for .
For , this solution is in the range .
Now we will see that is negative for

.
For , and , we have

so

but since , we have . By
the continuity of the objective function, .
So, is decreasing in , and thus,
the optimum is given by
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