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Zero-rate feedback can achieve the empirical
capacity
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Abstract—The utility of limited feedback for coding over an
individual sequence of DMCs is investigated. This study com-
plements recent results showing how limited or noisy feedback
can boost the reliability of communication. A strategy with fixed
input distribution P is given that asymptotically achieves rates
arbitrarily close to the mutual information induced by P and
the state-averaged channel. When the capacity-achieving input
distribution is the same over all channel states, this achieves rates
at least as large as the capacity of the state-averaged channel,
sometimes called the empirical capacity.

Index Terms—Arbitrarily varying channels, common ran-
domness, feedback communication, hybrid ARQ, individual se-
quences, rateless codes, universal communication

I. I NTRODUCTION

Many contemporary communication systems can be mod-
eled via a time-varying state. For example, in wireless commu-
nications, the channel variation may be caused by neighboring
systems, mobility, or other factors that are difficult to model.
In order to design robust communication strategies, engineers
should adopt an appropriate model for the channel dynamics.
One such model is the so-called arbitrarily varying channel
(AVC), in which the state can depend on the communication
strategy and is selected in the worst possible manner. One
interpretation of this model is that there is a fixed rate (e.g.
for voice) that one wants to support over the worst possible
channel states. An alternative and perhaps more relevant
approach (e.g. for data traffic) is an individual sequence model,
where the state is fixed but unknown and not dependent on
the communication strategy. Here, a natural requirement is
for a strategy to perform well whenever the state sequence
is favorable, while for less favorable state sequences, inferior
performance is acceptable. Essentially, this model considers
the case in which one wants to adapt the rate to one which
the specific state sequence can support.
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Fig. 1. Model setup with limited feedback and common randomness.

In order to achieve this variation in performance, the en-
coder must obtain some measure of the quality of the state
sequence. This requires additional resources, and the most
natural model is to introducefeedback from the receiver
to the transmitter. A second resource is jointrandomization
between the encoder and the decoder, which can also be
enabled via feedback. The encoder can use feedback to es-
timate the channel quality and hence communicate at rates
commensurate with the channel quality. Two fundamental
questions are the following: first, how good a performance
(in terms of achievable rate) can one expect for favorable
state sequences? Second, how much feedback is required to
attain this performance? Many of the works in this area can be
understood in terms of how they answer these two questions.

The main trade-off for the channel model at hand is the
correct balance between the resources spent on communication
versus those spent on channel estimation. One extreme is the
case where the channel state sequence is fully revealed to the
receiver, as shown in the work of Draperet al. [2]. Regarding
the first question, for any fixed input distribution, their scheme
can achieve rates arbitrarily close to the mutual information of
the channel with the state known to both the transmitter and
receiver. They also provide an interesting answer to the second
question: a feedback link of vanishing rate is sufficient to attain
this performance. To sum up, when channel estimation at the
receiver is free, feedback of vanishing rate is enough.

Shayevitz and Feder [3] consider the more realistic case
where the decoder has only the channel outputs. They develop
a scheme in which the receiver keeps estimating the state
sequence. The transmitter has full (causal) output feedback and
can thus also track the state sequence. For the class of channels
they consider, Shayevitz and Feder establish an achievablerate
that they call the “empirical capacity,” which they define as
the capacity of an i.i.d. channel with transition probabilities
corresponding to the empirical statistics of the noise sequence.
Therefore if feedback is free, then rates arbitrarily closeto the
“empirical capacity” are achievable.

This paper is a commentary on this development: we
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consider the same notion of “empirical capacity,” but provide
an answer to the second question. Specifically, for a fixed
input distribution, we show that if common randomness is
available, a feedback link of vanishing rate is sufficient to
achieve the empirical mutual information, which in some
settings, such as the class of channels considered by Shayevitz
and Feder, coincides with the “empirical capacity”. To do this,
we adapt the feedback-reducing block/chunk strategies used
earlier in the context of reliability functions [4], [5], and most
specifically in [6]. They are in turn inspired by Hybrid ARQ
[7]. Thus, the flavor of our algorithm is different from [3]. By
doing away with the output feedback, we lose the simplicity
of the scheme in [3], but we show that similar rates can still
be obtained with almost negligible feedback.

The strategy developed in this paper fits in the category
of rateless codes, which are a class of coding strategies that
use limited feedback to adapt to unknown channel parameters.
Most studies about feedback for rate and reliability have
centered around full output feedback [4], [8]–[14]; however,
recent work has started to improve our understanding of
how limited feedback affects these performance measures. For
instance, limited feedback can be used to improve reliability
[6], [15]. Furthermore, in some multiuser Gaussian channels,
noisy feedback increases the achievable rates [16]–[18] and
the reliability [5], [19]. In a rateless code the decoder can
use a low-rate feedback link to inform the encoder when it
decodes. These codes were first studied in the context of the
erasure channel [20], [21]. Later work focused on compound
channels [22]–[24]. The work of Draper et al. [2] is to our
knowledge the first step towards adapting rateless codes to
time-varying states.

We are now in a position to compare the modeling assump-
tions in these previous works with the current investigation;
the comparisons are summarized in Table I. The initial studies
of rateless coding by Shulman [22] and Tchamkerten and
Telatar [24] used feedback to tune the rate to the realized
parameter governing the channel behavior. The study of time-
varying states was first introduced by Draper et al. [2], but they
assumed full state information at the decoder, which leads to
higher rates. Most recently, Shayevitz and Feder [3] showed
an explicit coding algorithm based on Horstein’s method [8]
that achieves the empirical capacity. Their scheme uses full
feedback, but in turn works for a larger class of channel
models. Moreover, it is a horizon-free scheme.

In our scheme, the encoder attempts to sendk bits over the
channel during a variable-lengthround. The encoder sends
chunks of the codeword to the decoder, after which the
decoder feeds back a decision as to whether it can decode.
The encoder and decoder use common randomness to choose
a set of randomly chosentraining positions during which
the encoder sends a pilot sequence. The decoder uses the
training positions to estimate the channel. As soon as the
total empirical mutual informationover the aggregate channel
sufficiently exceedsk bits, the decoder attempts to decode.
Through this combination of training-based channel estimation
and robust decoding we can exploit the limited feedback
to achieve rates asymptotically equal to those with advance
knowledge of the average channel.

In the next section, we motivate the study of this problem
with some concrete examples. In Section III, we define the
channel model, state our main result, and describe the coding
strategy. Section IV contains the analysis of our strategy with
most of the technical details reserved for the Appendix.

II. M OTIVATING EXAMPLES

The following two simple examples will prove useful in
explaining the meaning of the main result of this paper,
and help motivate the present study. The first is the model
considered in [3] – a binary modulo-additive channel with a
noise sequence whose empirical frequency of1’s is unknown.
In this example, the “empirical mutual information” under
all state sequences is maximized by the uniform distribution,
so our algorithm achieves the “empirical capacity”. In the
second example we consider theZ-channel for which the input
distribution maximizing the empirical mutual informationis
not identical for all state sequences, so our scheme will notin
general achieve rates as high as the empirical capacity.

A. Binary modulo-additive channels

The simplest example of a channel with an individual noise
sequence is the binary modulo-additive channel. This channel
takes binary inputs and produces binary outputs, where the
output is produced by flipping some bits of the channel input.
These flips do not depend on the channel input symbols. The
outputy ∈ {0, 1}N can be written as

y = x ⊕ z ,

wherex ∈ {0, 1}N is the channel input,z ∈ {0, 1}N is the
noise sequence, and addition is carried out modulo-2. The
noise z is arbitrary but fixed, and we letp ∈ [0, 1] be the
empirical fraction of1’s in z, which is also arbitrary but fixed.

Because the state sequencez is arbitrary and unknown, it
is not clear how to find the highest possible rate of reliable
communication. For anyfixed z, we could say naı̈vely that
the capacity is one bit, because the channel is deterministic.
However,z is unknown and may, in fact, have been generated
i.i.d. according to a Bernoulli distribution with parameter p,
in which case the capacity should be no larger than1− h(p),
namely, the capacity of a binary symmetric channel (BSC)
with crossoverp. The algorithm in this paper guarantees a
rate close to1 − h(p) for any state sequencez with an
empirical fraction of1’s equal top. This rate can be thought
of as the empirical mutual information of the channel with a
uniform input distribution. Since the uniform input distribution
achieves the capacity for all BSCs, this rate can also be called
theempirical capacity, as in the work of Shayevitz and Feder
[3].

B. Z-channels with unknown crossover

Whereas the example above can be thought of as an XOR
operation with the channel state, in our second example, we
consider a binary channel in which the output is the logical
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channel model feedback state information common randomness
Shulman [22] compound full none none
Tchamkerten and Telatar [24] compound full none none
Draper, Frey, and Kschischang [2] AVC 0-rate at decoder none
Shayevitz and Feder [3] individual sequence full none yes, some
This paper individual sequence 0-rate none yes, lots

TABLE I
RELATED RESULTS AND ASSUMPTIONS ON CHANNEL MODEL, FEEDBACK, STATE INFORMATION AND COMMON RANDOMNESS

OR of the input and state. For inputx and noisez, the output
y is given by the following:

y =

{

x z = 0
0 z = 1 .

Again, the noise sequencez is arbitrary but fixed. Letq denote
the empirical fraction of1’s in z.

The algorithm in this paper achieves rates close to the
mutual information induced by a fixed input distributionP to
a Z-channel with crossover probabilityq. The channel is the
averageWz of W (y|x, zi) overz. Unlike the binary modulo-
additive example, this channel has a capacity-achieving input
distribution that depends onq. The algorithm proposed in this
paper chooses a fixed input distributionP and achieves the
mutual informationI(P,Wz) of a Z-channel with that input
distribution. This leaves open the question of how to choose
P . One method is to choose theP that minimizes the gap
betweenmaxQ I(Q,Wz) − I(P,Wz) over all z. However, in
many cases the uniform distribution is not a bad choice, as
shown by Shulman and Feder [25]. In our results we leave
the choice ofP open for the designer.

III. T HE CHANNEL MODEL AND CODING STRATEGY

A. Notation

Script letters will generally be used to denote sets and
alphabets and boldface to denote vectors. For a vectorx =
(x1, x2, . . . , xn), we writex

j
i for the tuple(xi, xi+1, . . . , xj)

andxj for the tuple(x1, x2, . . . , xj). The notation[J ] will be
used as shorthand for the set{1, 2, . . . , J}. The probability
distributionTz is the type of a sequencez. For a distribution
Q, the setTN(Q) is the set of all lengthN sequences of type
Q.

B. Channel model and coding

The problem we consider in this paper is that of commu-
nicating over a channel with an individual state sequence.
Let the finite setsX and Y denote the channel input and
output alphabets, respectively. The channel model we consider
consists of a family of channelsW = {W (y|x, z) : z ∈ Z}
indexed by a state variable in a finite setZ. For any state
sequencez = (z1, z2, . . . , zN), and outputyi, we assume

P(yi|x
i, yi−1, z) = W (yi|xi, zi) .

That is, the channel output depends only on the current input
and state.

We consider coding for this channel using the setup shown
in Figure 1. We think of the rate-limited feedback link as

a noiseless channel that can be used everynfb uses of the
forward channel to sendBfb bits. The rate of the feedback
is thus Rfb = Bfb/nfb. To avoid integer effects, we will
consider only integer values fornfb and Bfb. We assume
that the encoder and decoder have access to a common
random variableG distributed uniformly over the unit interval
[0, 1]. This random variable can be used to generate common
randomness that is shared between the encoder and decoder.

Because the maximum capacity of this set of channels is
Cmax = log min{|X |, |Y|}, we define the set of possible
messages to be the set of all binary sequences{0, 1}NCmax.
This message set is naturally nested – the truncated set{0, 1}T

is a set of prefixes for{0, 1}NCmax. At the time of decoding,
the decoder will decide on a decoding truncationT ∈ N and
a messagem ∈ {0, 1}T . The truncationT is itself a random
variable that will depend on the state sequencez, the common
randomnessG, and the randomness in the channel.

An (N,nfb, Bfb) coding strategyfor blocklengthN consists
of a sequence of (possibly random) encoding functions for
i = 1, 2, . . . , N ,

ηi : {0, 1}NCmax × {0, 1}⌊(i−1)/nfb⌋Bfb × [0, 1] → X ,

a sequence of (possibly random) feedback functions fori =
nfb, 2nfb, . . .:

φi : Yi × [0, 1] → {0, 1}Bfb ,

and a decoding function

ψ : YN × [0, 1] → {0, 1, . . . , NCmax} × {0, 1}NCmax .

We say a messagem ∈ {0, 1}NCmax is encodedinto a
codewordx ∈ XN if for i ∈ [N ],

xi = ηi(m, φ1(y
nfb , G), . . . , φ⌊ i−1

nfb
⌋(y

⌊ i−1

nfb
⌋·nfb , G), G) .

For an (N,nfb, Bfb) coding strategy, letψ(y, G) = (T, m̂).
The first outputT ∈ {0, 1, . . . , NCmax} is the decoding
truncation and m̂T is the message estimate. Both of these
quantities are random variables.

For a state sequencez, themaximal error probabilityof an
(N,nfb, Bfb) coding strategy, is defined as

εdec(z) = max
m∈{0,1}NCmax

PG,W

(

mT 6= m̂T
∣

∣

∣ z,m
)

.

where the probability is taken over the common randomness
G and randomness in the channel. For a state sequencez, a
rateR is said to beachievablewith probability1− εach(z) if

εach(z) =

max
m∈{0,1}NCmax

PG,W

(

R ≥ T/N, mT 6= m̂T
∣

∣

∣ z,m
)

.
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Note that we can upper boundεach(z) :

εach(z) ≤ εdec(z)

+ max
m∈{0,1}NCmax

PG,W

(

R ≥ T/N
∣

∣

∣
z,m

)

.

Note that this channel model assumes a known finite horizon
N , unlike the infinite horizon model of Shayevitz and Feder
[3]. Furthermore, the basic model assumes an unbounded
amount of common randomness in the form of the real number
G. This point is discussed further in Section V.

C. Mutual information definitions

The results in this paper are stated in terms of mutual infor-
mation quantities involving time-averaged channels dependent
on the individual state sequencez. For fixedz define thestate-
averaged channelto be

Wz(y|x) =
1

N

N
∑

i=1

W (y|x, zi) . (1)

Note that if z and z′ have the same type, then the state-
averaged channels generated by them are the same. Define
the empirical channel for a distributionQ on Z:

WQ(y|x) =
∑

z∈Z

W (y|x, z)Q(z) .

For a fixed input distributionP (x) on X and channel
W (y|x), the mutual informationis given by the usual defi-
nition:

I (P,W ) =
∑

x,y

W (y|x)P (x) log
W (y|x)P (x)

P (x)
∑

x′ W (y|x′)P (x′)
.

For an individual state sequencez the empirical mutual
information is given byI (P,Wz).

D. Optimality versus empirical capacity

We are interested in analyzing strategies that can adapt their
rates depending on the state sequence, and in our analysis,
we want to consider the rates achieved by a strategy as a
function of the state sequence. Unlike the compound channel
setting (see e.g. [26] for definitions), which considers the
worst-case behavior of a strategy over a class of channels,
we instead want strategies that perform universally well over
all sequences. However, this raises the problem of finding a
notion of optimality that does not depend on the worst-case
performance.

One possibility is to define an optimal strategy as one that,
for every state sequence, achieves a rate at least as large asany
other strategy for that sequence, and then define the capacity
as the rates achieved by this strategy. However, this means
comparing a strategy for all sequences against all strategies
tailored to a fixed sequence. In the example in Section II-A,
for eachz there exists a decoding strategy which addsz to
the output, undoing all of the bit flips. Each strategy achieves
rate 1 for the specific choice ofz, but this is clearly an
unreasonable target.

Instead, for each sequence we can consider a set of reference
strategies and measure the “regret” of our strategy with respect

to the reference strategies for each sequence. We take an
approach inspired by source coding for individual sequences,
in which we have a benchmark rate for each state sequence
and then test whether a coding strategy attains the benchmark
for each state sequence.

One such benchmark that we consider in this paper is the
empirical capacity– for a fixedz, the empirical capacity is
defined as the supremum over all input distributions of the
empirical mutual information:

C̄(z) = sup
P (x)

I (P,Wz) .

First used by Shayevitz and Feder [3], empirical capacity is
given its name not because it is purported to be optimal, but
instead because of its resemblance to the capacity of point-to-
point discrete memoryless channels.

There are two points that are worth mentioning before
proceeding to describe the results in this paper. First, it is easy
to see that the empirical capacity is a weaker target than the
best possible strategy for a given sequence. It is possible that
a strategy can achieve rates larger than the empirical capacity.
In the binary modulo-additive example in Section II-A, if the
sequencez were all0 for the first half and all1 for the second
half, the empirical capacity is0, whereas the coding strategy
presented in this paper is expected to achieve rates close to1.

Second, there may exist examples for which no strategy
is guaranteed to achieve the empirical capacity. The coding
strategy proposed in this paper uses a fixed input distribution
P , and in general, the maximizingP (x) may not be the
same for allz.1 In these cases our strategy can achieve rates
close to the empirical mutual informationI (P,Wz) but not
the empirical capacitȳC(z). It may be possible to adaptP
over time, but at present we neither have a good strategy for
achievingC̄(z) nor a counterexample showing that for some
channels it is impossible to achievēC(z).

E. Main result

The main result in this paper is that the algorithm given in
the next section achieves rates that asymptotically approach the
mutual informationI (P,Wz) for a large set of state sequences
z.

Theorem 1:Let {W (y|x, z) : z ∈ Z} be a given family of
channels. Then given anyρ > 0, ε > 0, λ∗ > 0, and channel

1A question then arises of how one chooses the input distribution P . One
possibility could be to chooseP to be uniform over the input alphabet.
However, depending on the setting, other approaches might be preferable.
Inspired by the theory of AVCs, one may choose the input distribution to be

P = argmax
P ′

inf
Q:I(P ′,WQ)>ρ

I
`

P ′, WQ

´

, (2)

whereρ is a parameter governing the gap between the rates guaranteed by
the algorithm and the empirical mutual information of the channel. This
approach can run into problems in some situations in which for theP chosen,
I

`

P, WQ

´

= 0 for a large subset of state distributionsQ, but there exists a

distribution P̃ for which I
“

P̃ , WQ

”

≥ ρ for all Q. On the other hand, if

one were to remove the condition thatI
`

P ′, WQ

´

> ρ, for the example in
Section II-A, infQ I

`

P ′, WQ

´

= 0 for all choices ofP ′, and the choice of
P ′ would be arbitrary. Because of such issues, we will leave thequestion of
how to choose the input distributionP unanswered in this work. The problem
of choosingP is similar to that studied by Shulman and Feder [25].
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input distributionP , there exists anN sufficiently large and
an (N,nfb, Bfb) coding strategy with feedback rate

Rfb =
Bfb

nfb
< λ∗ , (3)

such that for allz ∈ TQ(N), the rate

R ≥ I (P,WQ) − ρ (4)

is achievable with probability1 − ε.
Binary modulo-additive channels, revisited: For the binary

additive example in Section II-A,p denoted the fraction of
ones in the noise sequencez. Then, the empirical capacity is
1 − h(p), the capacity of the binary symmetric channel with
crossover probabilityp. Theorem 1 implies the existence of
strategies employing asymptotically zero-rate feedback such
that for all ρ, ε > 0 and sufficiently largeN ,

R ≥ 1 − h(p) − ρ ,

is achievable with probability at least1 − ε.
Z-channels with unknown crossover, revisited: For the ex-

ample in Section II-B withq equal to the fraction of1’s in the
crossover sequence, the capacity-achieving input distribution
is a function ofq, so the theorem cannot guarantee a scheme
achieving the empirical capacity. Despite this, it still provides
achievable rates in this setting. If the channel input distribution
has P (X = 1) = px for this channel, then the empirical
mutual information for this channel can be written as

I (P,Wq) = h(px) − (1 − px + pxq)h

(

pxq

1 − px + pxq

)

,

and is asymptotically achievable from Theorem 1. As dis-
cussed briefly at the end of Section III-D, the question of
how to selectpx is outside the framework of this paper.

F. Proposed coding strategy: Randomized rateless code

The achievability result in Theorem 1 relies on the following
coding strategy, which can be thought of as an iterated rateless
code with randomized training (or, for short, randomized
rateless code). The overall scheme is illustrated in Figure2.
The scheme divides time into chunks ofb(N) channel uses and
in each round attempts to sendk(N) bits using a randomized
rateless code. Each chunk contains a randomly interleaved
training sequences, so the decoder can estimate the empirical
channel. The decoder chooses to decode when the empirical
rate falls below the estimated empirical mutual information
calculated from the channel estimates. The round ends after
thek(N) bits are decoded, and the encoder starts a new round
to send the nextk(N) bits. The length of each round is variable
and depends on the empirical state sequence.

We now describe each component of the scheme in more
detail.

1) Feedback: Divide the blocklengthN into chunksof
length b = b(N) channel uses. Feedback occurs at the end
of chunks, sonfb = b with three possible messages: “BAD
NOISE,” “DECODED,” and “KEEP GOING,” which corre-
spond to the feedback messages00, 01, and10, respectively.

Thus,Bfb = 2, so the feedback rateRfb = λ(N) is given by
the expression

Rfb =
Bfb

b(N)
. (5)

If the chunk sizeb(N) goes to infinity asN → ∞, the
feedback rateλ(N) → 0.

2) Rateless coding:A rateless code is a variable-length
coding scheme to send a fixed number of bits. In the algorithm
proposed here, the encoder attempts to sendk = k(N) bits
over several chunks comprising around. Rounds vary in length
and terminate at the end of chunks in which the decoder feeds
back either “BAD NOISE” or “DECODED.” Letℓr denote
the time index at the end of roundr:

ℓr = min{j = i · b(N) > ℓr−1

: φi = “BAD NOISE” or “DECODED”} , (6)

and setℓ0 = 0.
An (M∗, c, k) rateless codeis a sequence of maps

{(µi, νi) : i = 1, 2, . . .M∗}, where

µi : {0, 1}k → X c (7)

νi : Yi·c → {0, 1}k . (8)

The encoding mapsµi produce successive chunks of a code-
word for a given message, and the decoding maps attempt
to decode the message based on the channel outputs. An
(M∗, c, k) randomizedrateless code is a random variable
that takes values in the set of(M∗, c, k) rateless codes.
The maximal error probabilityε̂(M, z) = ε̂(M, z,D) for a
randomized rateless codeD decoded at timeMc with state
sequencez ∈ ZMc is

ε̂(M, z,D) (9)

= max
m∈{0,1}k

E

[

WMc
(

{

νM (yMc
1 ) 6= m

}

∣

∣

∣ µi(m), z
)]

= max
m∈{0,1}k

εm(M, z,D) , (10)

where the expectation is taken over the randomness in the
code. We will suppress dependence onD when it is clear
from context. The randomized rateless code used in this paper
has codewords with constant compositionP (x) onX and uses
a maximum mutual information (MMI) decoder.

3) Training : The coding strategy analyzed in this paper
uses a randomized rateless code in conjunction with randomly
located training symbols. The training allows the decoder to
estimate the channel and choose an appropriate decoding time.
For each chunk ofb channel uses, the scheme usest = t(N)
positions for training. Using the common randomnessG, the
encoder and decoder selectt training positionsTr,n for then-
th chunk2 of roundr. Formally,Tr,n is uniformly distributed
over subsets of{ℓr−1 + (n − 1)b + 1, . . . , ℓr−1 + nb} of
cardinalityt. This set is further randomly partitioned into|X |
subsetsTr,n(x) for x ∈ X .

2There is a slight abuse of notation with the typeTN (Q), but the double
subscript inTr,n should make the distinction unambiguous.
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4) Encoding:The encoder attempts to send a messagem ∈
{0, 1}NCmax over several rounds. In each round it attempts to
send a sub-messagemr ∈ {0, 1}k consisting ofk bits of m.
The sub-messagem1 is the first k bits of m. If the round
r − 1 ended with “BAD NOISE” thenmr = mr−1, and if
roundr − 1 ended with “DECODED” thenmr is the nextk
bits of the messagem.

The encoder and decoder share an(M∗, b−t, k) randomized
rateless code. Using the common randomnessG, at the start of
each round the encoder and decoder choose an(M∗, b− t, k)
rateless code{(µj , νj) : j = 1, 2, . . .M∗} according to the
distribution of this randomized code. Define the encoding map
ηi in then-th chunk of ther-th round:

ηi(mr, G) = x i ∈ Tr,n(x) (11)

ηi(mr, G) = µn(mr) i /∈ Tr,n . (12)

That is, then-th chunk transmitted by the scheme is created by
taking theb−t piece of the codewordµn(mr) and inserting the
t randomly chosen training positions, as illustrated in Figure
2. The dependence ofηi on the feedback is suppressed here
because a roundr is terminated as soon as the feedback
message is no longer “KEEP GOING.”

5) Decoding: The decoder uses the training symbols{yi :
i ∈ Tr,n(x)} to estimate the channel transition probabilities
Wz(y|x) and thereby obtain an estimate of the empirical
mutual informationI (P,Wz) during the chunk and over the
round so far. If the estimated mutual information is too low,
then it feeds back “BAD NOISE.” If the estimated mutual
information is above the empirical ratek/(n(b − t)) + ǫ1
then it decodes the code using the MMI decoderνn of the
rateless code and feeds back “DECODED.” Otherwise, it feeds
back “KEEP GOING.” The parameterǫ1 ensures that with
high probability the empirical rate is below the true empirical
mutual information of the channel.

6) Algorithm : The parameters of the algorithm are the
chunk sizeb(N), training sizet(N), number of bits per round
k, and decoding thresholdsǫ1 andτ .

Given an (M∗, b − t, k) randomized rateless code and
message bitsmr, the encoder and decoder first use common
randomness to choose a realization of the randomized rateless
code. The following steps are then repeated for each chunk in
roundr:

1) Using common randomness, the encoder and decoder
chooset = t(N) positionsTr,n and a random partition
of Tr,n into |X | subsetsTr,n(x) of sizet/|X | for training
in chunkn.

2) The encoder transmits then-th chunk using the encoding
map as defined in Equations (11)–(12). In particular, the
symbolx is sent during the training positionsTr,n(x).

3) The decoder estimates the empirical channel in chunkn
and the empirical channel over the round so far:

ŵ(n)
r (y|x) =

|X |

t
· |{j ∈ Tr,n(x) : yj = y}| (13)

Ŵ (n)
r (y|x) =

1

n

n
∑

i=1

ŵ(i)
r (y|x) . (14)

4) The decoder makes a decision based onŴ
(n)
r andn.

a) If

I
(

P, Ŵ (n)
r

)

− ǫ1 < τ , (15)

whereτ > 0 is a parameter of the algorithm, then
the decoder feeds back “BAD NOISE” and the
round is terminated without decoding thek bits. In
the next round, the encoder will attempt to resend
the k bits from this round.

b) If

I
(

P, Ŵ (n)
r

)

− ǫ1 >
k

(b− t) × n
, (16)

where t is defined in Section III-F3, then the
decoder decodes, feeds back ”DECODED,” and the
encoder starts a new round.

c) otherwise the decoder feeds back “KEEP GOING”
and goes to 2).

Thus, whereφr,n denotes feedback in chunkn of roundr,
we have that

φr,n(y, G)

=



























“BAD NOISE” , I
(

P, Ŵ
(n)
r

)

− ǫ1 < τ, and

I
(

P, Ŵ
(n)
r

)

− ǫ1 ≤ k
(b−t)×n

“DECODED” , I
(

P, Ŵ
(n)
r

)

− ǫ1 >
k

(b−t)×n

“KEEP GOING” , otherwise
(17)

This strategy has two main ingredients. First, the encoder
uses random training sequences to let the decoder accurately
estimate the empirical average channel. Given this accurate
estimate, the decoder can track the empirical mutual infor-
mation of the channel over the round. Second, the decoder
only needs to know that the empirical rate is smaller than the
empirical mutual information in order guarantee a small error
probability.

We note again that the channel model and problem for-
mulation involve a fixed overall blocklengthN and other
parameters of the coding strategy are defined in terms of this
parameter. However, in practice it may be more desirable to
fix a number of bitsk(N) to send per round and then define
the coding parameters in terms ofk. We have chosen the
former method because it is convenient for our mathematical
analysis, but we believe that in principle the problem couldbe
formulated in an “infinite-horizon” manner as well. This may
require developing appropriate tree-structured anytime codes
[27].

IV. A NALYSIS

Showing that the strategy proposed in the previous section
satisfies the conditions of Theorem 1 requires some more
notation. For each roundr, let the random variableM(r) be
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total: b b b bbb

0 N

round 1 2 3

round: b b b

b 2b 3b
chunk 1 2 3

chunk:
b

training codeword

Fig. 2. After each chunk of lengthb feedback can be sent. Rounds end by decoding a message or declaring the noise to be bad.

the number of chunks in that round:

M(r) = inf
n>0

{

I
(

P, Ŵ (n)
r

)

− ǫ1 < τ

or
k

(b − t)n
< I

(

P, Ŵ (n)
r

)

− ǫ1

}

.

(18)

Let Un,r denote the time indices in then-th chunk of round
r that are not in the training setTn,r.

The scheme depends on a number of parameters – the
overall blocklengthN , the number of bits per roundk(N),
the chunk sizeb(N), the number of training positions per
chunk t(N), the rate gapǫ1(N), the error boundε, and the
feedback rateλ(N). In order to make the proof of the result
clear, assume that there exist real constantsg1, g2, g3 ∈ (0, 1

2 )
with g1 > g2 > g3 and set

k(N) = Θ(N2g1), b(N) = Θ(Ng2), t(N) = Θ(Ng3) .
(19)

In particular, this means that the ratiosk(N)/N → 0,
(b(N))2/k(N) → 0, andt(N)/b(N) → 0.

A. Error events

The scheme requires that the channel estimatesŴ
(M(r))
r

in (14) be “good” in two senses. First,̂W (M(r))
r should be

close to the average channel seen by the codeword in the non-
training positions{Un,r} (defined after (18) above), and it
should also be close to the channel averaged over the entire
round. The former guarantees that the estimates provided by
training are close enough to guarantee that the rateless code is
decodable, and the latter guarantees the gap between the rates
achieved by the scheme and the empirical mutual information
is small. A channel estimation errorE1(r) occurs for round
r if
∣

∣

∣

∣

∣

∣

I
(

P, Ŵ (M(r))
r

)

−

I



P,
1

M(r)(b − t)

M(r)
∑

n=1

∑

i∈Un,r

W (y|x, zi)





∣

∣

∣

∣

∣

∣

>
ǫ1
2

(20)

τ + ǫ1

ǫ1

M∗

empirical rate
I
(

P, Ŵ
(M)
r

)

M

Fig. 3. Curve of the empirical rate illustrating the bounds on M . The upper
boundM∗ is given by (22).

or
∣

∣

∣

∣

∣

∣

I
(

P, Ŵ (M(r))
r

)

−

I



P,
1

M(r)b

M(r)
∑

n=1

∑

i∈Un,r∪Tn,r

W (y|x, zi)





∣

∣

∣

∣

∣

∣

>
ǫ1
2
.

(21)

A decoding errorE2(r) happens in roundr if the rateless
code selected by the encoder and decoder experiences an error.

B. Preliminaries: Bounding the length of a round

Before proceeding to bound the probabilities of the error
events, we will provide bounds on the length of a round. Our
reasons for establishing these are two-fold. First, if a round
fails to terminate or does not result in successful decoding,
the round length should be sufficiently small so that its
impact on the overall rate should be small. Second, when
taking union bounds over chunks in a round, the round length
should be small enough to guarantee the corresponding error
probabilities are small. Moreover, it helps set the maximum
length for the randomized rateless code. Lemma 1 provides
bounds onM(r), the number of chunks in roundr, which
can be expressed equivalently as(ℓr − ℓr−1)/b(N), whereℓr
is defined in (6). For simplicity, we will useM to denote
M(r) when the roundr is clear from context.
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Lemma 1 (Bounds onM ): Fix ǫ1 > 0 andτ > 0. Then for
the scheme described in Section III-F6, the stopping timeM
for any round satisfiesM ≤M∗, where

M∗ :=

⌈

k(N)

(b(N) − t(N)) · τ

⌉

. (22)

If the decoder attempted to decode, thenM ≥M∗, where

M∗ =
k(N)

(b(N) − t(N)) · Cmax
.

Proof: The argument is illustrated in Figure 3. The
empirical rate given by (16) is shown in the curve. The
empirical rate k

(b−t)×M decreases monotonically withM . In
order for the algorithm to continue at timeM , from (17) we
must have k

(b−t)×M ≥ I
(

P, Ŵ
(n)
r

)

− ǫ1 ≥ τ . Rearranging
shows thatM must be less thanM∗ in (22). The lower bound
is trivial from the definition in (16) and the cardinality bound
on mutual information.

C. Channel estimation for a single round

In this section, we provide an upper bound on the error
eventE1(r). The argument relies on the following observa-
tion: if sufficiently many samples are collected to estimate
the channel, these estimates converge to the overall average
channel. Lemmas 2 and 3 make this precise. That is, with
a modest number of randomly chosen training symbols, the
decoder can estimate the empirical mutual information of the
channel such that the probability of the channel estimation
error eventE1(r) is small.

Lemma 2 (Simple channel estimation):Recall the chunk
training estimates defined in (13), and let parameters satisfy
the conditions in (19). Then for anyǫ4 > 0 there exists anN
sufficiently large and constanta1 such that for thej-th chunk
the training estimates satisfy:

P

(

∃ x, y s.t.
∣

∣

∣
ŵ(j)

r (y|x) −W
z(Ur,j∪Tr,j)(y|x)

∣

∣

∣
≥ ǫ4

)

≤ exp
(

−a1ǫ
2
4t
)

P

(

∃ x, y s.t.
∣

∣

∣ŵ(j)
r (y|x) −W

z(Ur,j)(y|x)
∣

∣

∣ ≥ ǫ4

)

≤ exp
(

−a1ǫ
2
4t
)

,

wheret is the size of the training setTr,j .
Proof: Proving the claim requires two applications of

Hoeffding’s inequality [28] to the training data. The first
uses the sampling with replacement version of the inequality
to show that the training estimates are close to the state-
averaged channel at those training positions. The second uses
the sampling without replacement version to show that the
state-averaged channel in the training positions is close to the
state-averaged channel over the entire chunk. An application
of the triangle inequality and our parameter assumptions in
(19) complete the argument.

We now make this precise. First consider the random
variables{1(yi = y) : i ∈ Tr,j(x)} for eachx and y. Their
expectations over the channel are{W (y|x, zi) : i ∈ Tr,j(x)}.
Applying Hoeffding’s inequality to these variables shows

that their empirical mean, which iŝw(j)
r (y|x), is close to

W
z(Tr,j(x)), the average channel during the training:

P

(∣

∣

∣ŵ(j)
r (y|x) −W

z(Tr,j)(y|x)
∣

∣

∣ ≥ ǫ5

)

≤ 2 exp

(

−2
t

|X |
ǫ25

)

. (23)

Now, recall that the training positionsTr,n, defined in
Section III-F3, are sampled uniformly without replacement
from the whole chunk, so the average channelW

z(Tr,j(x)(y|x)
is itself a random variable formed by averaging the random
variable{W (y|x, zi) : i ∈ Tr,j(x)}. The mean of each of these
variables isW

z(Ur,j∪Tr,j), the state averaged channel over
the whole chunk. For sampling without replacement, another
result of Hoeffding [28, Theorem 4] states that the same
exponential inequalities for sampling with replacement hold,
so the channel during the training is a good approximation to
the entire channel during the chunk:

P
(∣

∣W
z(Tr,j(x)) −W

z(Ur,j∪Tr,j)

∣

∣ ≥ ǫ5
)

≤ 2 exp

(

−2
t

|X |
ǫ25

)

. (24)

By applying the triangle inequality to equations (23) and (24),
we have the following:

P

(∣

∣

∣
ŵ(j)

r (y|x) −W
z(Ur,j∪Tr,j)

∣

∣

∣
≥ 2ǫ5

)

≤ 4 exp

(

−2
t

|X |
ǫ25

)

. (25)

Finally, observe the following:
∣

∣W
z(Ur,j∪Tr,j) −W

z(Ur,j)

∣

∣

=

∣

∣

∣

∣

∣

∣

1

b

∑

i∈Ur,j∪Tr,j

W (y|x, zi) −
1

b− t

∑

i∈Ur,j

W (y|x, zi)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

1

b

∑

i∈Tr,j

W (y|x, zi) −
t

b(b− t)

∑

i∈Ur,j

W (y|x, zi)

∣

∣

∣

∣

∣

∣

≤ 2
t

b
. (26)

The assumptions in (19) imply that (26) can be made small
for sufficiently largeN . Thus forN sufficiently large, another
application of the triangle inequality to (25) and (26) gives the
following:

P

(∣

∣

∣ŵ(j)
r (y|x) −W

z(Ur,j)

∣

∣

∣ ≥ 3ǫ5

)

≤ 4 exp

(

−2
t

|X |
ǫ25

)

.

(27)

Choosingǫ4 = 3ǫ5 and a union bound over allx ∈ X and
y ∈ Y we get

P

(

∃ x, y s.t.
∣

∣

∣ŵ(j)
r (y|x) −W

z(Ur,j)

∣

∣

∣ ≥ ǫ4

)

≤ exp

(

−(2/9)
t

|X |
ǫ24 + log |X ||Y| + log 4

)

.

≤ exp
(

−a1ǫ
2
4t
)

,

where the last inequality follows from takingN sufficiently
large and the fact thatt(N) increases withN .
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Lemma 3 (Channel estimation):Recall the error event
E1(r) defined in Section IV-A, and let the parameters satisfy
the conditions in (19). Then for anyǫ1 > 0 there existsN
sufficiently large and ana2 > 0 such that for any roundr and
any state sequencez ∈ ZM(r)b,

P







∣

∣

∣

∣

∣

∣

∣

I
(

P, Ŵ (M(r))
r

)

− I



P,
1

M(r)(b − t)

M(r)
∑

n=1

∑

i∈Un,r

W (y|x, zi)





∣

∣

∣

∣

∣

∣

∣

>
ǫ1
2







≤ exp (−a2t) (28)

P







∣

∣

∣

∣

∣

∣

∣

I
(

P, Ŵ (M(r))
r

)

− I



P,
1

M(r)b

M(r)
∑

n=1

∑

i∈Un,r∪Tn,r

W (y|x, zi)





∣

∣

∣

∣

∣

∣

∣

>
ǫ1
2







≤ exp (−a2t) . (29)

ThereforeP(E1(r)) ≤ 2 exp(−a2t).
Proof: For all (x, y), Lemma 2 guarantees that for any

ǫ4 > 0 the channel estimated during the training of any chunk
is within ǫ4 of the average channel during the whole chunk and
during the codeword positions with probabilityexp

(

−a1ǫ
2
4t
)

.
For a round of lengthM(r), a union bound over chunks shows
that

P



∃ x, y s.t.

∣

∣

∣

∣

∣

∣

1

M(r)

M(r)
∑

j=1

ŵ(j)
r (y|x)

−
1

M(r)

M(r)
∑

j=1

W
z(Ur,j∪Tr,j)(y|x)

∣

∣

∣

∣

∣

∣

≥ ǫ4





≤M(r) exp
(

−a1ǫ
2
4t
)

(30)

P



∃ x, y s.t.

∣

∣

∣

∣

∣

∣

1

M(r)

M(r)
∑

j=1

ŵ(j)
r (y|x)

−
1

M(r)

M(r)
∑

j=1

W
z(Ur,j)(y|x)

∣

∣

∣

∣

∣

∣

≥ ǫ4





≤M(r) exp
(

−a1ǫ
2
4t
)

.
(31)

SinceM(r) is at mostM∗, for N sufficiently large the effect
of the union bound is negligible.

The remainder of the proof is to show that if the channel
estimated from the training is close with high probablity to
both the average channel during the codeword positions and
the average channel during the whole round, then the empirical
mutual informations must be close as well. Lemma 7 in the
Appendix shows exactly this. For anyǫ1 > 0 there exists a
ǫ4 > 0 andN sufficiently large such if the events in (30) and
(31) fail to hold then the events in (29) and (28) also fail to
hold. This completes the proof.

Remark: Under the parameter assumptions in equation
(19), the number of bits of common randomness needed in
Lemmas 2 and 3 to specify the training positions is sublinear
in the blocklengthN . Note that a similar conclusion was
reached by Shayevitz and Feder for their scheme, which also
uses training positions to the estimate the channel [3]. This
point is discussed in more detail in Section V.

D. Rateless coding

The last ingredient in our strategy is the rateless code used
during each round. The key property we need is that if the
empirical rate drops below the empirical mutual information
of the channel, then the code can be decoded with small
probability of error.

Lemma 4 (Rateless codes):For anyδ′ > 0 and distribution
P , there exists an integerc sufficiently large,ǫ8 > 0 and an
(M∗, c, k) randomized rateless code defined in Section III-F
such that if at decoding timeM the state sequencezMc

1

satisfies

k

Mc
≤ I

(

P,W
z

Mc
1

)

− δ′ ,

then its maximal error̂ε(M, z), defined in (9), satisfies

ε̂(M, z) < exp(−Mcǫ8) .

Proof: Fix δ′ and a distributionP . We can approximate
P arbitrarily closely with a type of a sufficiently large de-
nominator, so without loss of generality, we assumeP is a
type and choosec to be large enough so that the denominator
of type P divides c. Let CM (J) be a randomized rateless
code. Specifically,CM (J) is a random variable distributed
on the set of rateless codes of blocklengthMc whose J
codewords are drawn independently and uniformly from the
composition-P set TMc(P ) and with a maximum mutual
information (MMI) decoder. The remainder of the proof can be
sketched as follows: we verify that the codebookCM (J) has
satisfactory error performance under the assumptions of this
Lemma. Then, we construct a codebookDM (K) by keeping
only those codewords inCM (J) whose composition isP in
each chunk ofc symbols. We then show that the distribution of
DM (K) is the same as that of a codebookEM∗(K) truncated
to blocklengthMc.

Codebook properties. Before proceeding to construct
DM (K), we first examine properties of the constant-
composition codebookCM (J) of compositionP . Recall the
definition of maximal error for randomized rateless codes in
(9) and (10). A result of Hughes and Thomas [29, Theorem
1] shows that for sufficiently largeMc, there exists a function
Er such that for allJ > 0, δ > 0, and distributionQ on Z,

max
z∈TMc(Q)

max
j∈[J]

εj(M, z, CM (J))

≤ exp
(

−Mc
[

Er((Mc)−1 log J + δ,W, P,Q) − δ
])

(32)

Er((Mc)−1 log J + δ,W, P,Q)

≥ max

{

0, I (P,WQ) − δ −
1

Mc
log J

}

. (33)
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Fix ǫ7 = δ′

4 and letQ(M) be the set of allQ such that

0 <
δ′

4
≤ I (P,WQ) − 2δ −

1

Mc
log J . (34)

If Q ∈ Q(M), then we can rewrite the bound in (32) as
follows:

max
z∈TMc(Q):Q∈Q(M)

max
j∈[J]

εj(M, z, CM (J)) ≤ exp (−Mcǫ7) .

In particular, this gives the following bound on the expectation
over CM (J) of the average error:

max
z∈TMc(Q):Q∈Q(M)

ECM (J)





1

J

J
∑

j=1

εj(M, z, CM (J))





≤ exp (−Mcǫ7) .

Use Markov’s inequality to bound the probability that the
average error exceeds a given valueα1:

max
z∈TMc(Q):Q∈Q(M)

PCM (J)





1

J

J
∑

j=1

εj(M, z, CM (J)) ≥ α1(c,M)





≤
exp (−Mcǫ7)

α1(c,M)
.

This establishes that for anyδ > 0 the codebook has average
error no more thanα1(M) with high probability.

Expurgation. We define a thinning operation on the code-
bookCM (J) to form the codebookDM (K) as follows: remove
all codewords inCM (J) which are not in the piecewise
constant-composition set{Tc(P )}M . That is, we keep only
those codewords which have typeP in each chunk. If there
are fewer thanK remaining codewords after this expurgation,
declare an encoding error – if there are more thanK then
keep the firstK codewords. The decoding rule is the same
MMI rule as before.

The probability of this encoding error can be bounded using
Lemma 8, which states that the probability that a codeword
drawn uniformly fromTMc(P ) is also in the set{Tc(P )}M

is at leastβ0(c,M) = exp(−ηM log c) for c sufficiently
large. Therefore the expected number of codewords inCM (J)
that survive the thinning is at leastJ exp(−ηM log c). Since
the codewords are i.i.d., the probability that the number
of codewords surviving the thinning is at leastβJ can be
bounded:

P
(∣

∣CM (J) ∩ {Tc(P )}M
∣

∣ ≤ βJ
)

≤ J · exp
(

−J ·D
(

β
∥

∥β0(c,M)
))

.

By choosingK = β0(c,M)2J , which corresponds toβ =
β0(c,M)2, the probability of encoder error can be made
arbitrarily small. The rate of codebookDM (K) is

1

Mc
logK =

1

Mc
log J −

2η log c

c
.

Settingk = logK, note from (34), for sufficiently largec the
error can be made small as long as

k

Mc
≤ min

Q∈Q(M)
I (P,WQ) − 3δ −

δ′

4
. (35)

Setting δ = δ′/4 in the original construction ofCM (J), for
sufficiently largec, equation (35) guarantees a bound on the
error. In particular, since the codewords ofDM (K) are a
subset of the codewords ofCM (K), the average error can
increase at most by a factor ofJ/K:

max
z∈TMc(Q):Q∈Q(M)

PCM(J)





1

K

K
∑

j=1

εj(M, z,DM (K)) ≥
α1(c,M)

β0(c,M)2





≤
exp (−Mcǫ7)

α1(c,M)
. (36)

This shows that for anyδ′ > 0 the average error can be
bounded.

Nesting. Consider the codebookEM (K) formed by draw-
ing K codewords independently uniformly distributed on
{Tc(P )}M together with the MMI decoding rule. It is clear
thatDM (K) has the same distribution asEM (K), so the bound
(36) holds forEM (K) as well:

max
z∈TMc(Q):Q∈Q(M)

PEM (K)





1

K

K
∑

j=1

εj(M, z, EM (K)) ≥
α1(c,M)

β0(c,M)2





≤
exp (−Mcǫ7)

α1(c,M)
. (37)

Note thatEM (K) has the same distribution as the codebook
EM∗(K) truncated to blocklengthMc. The set ofz ∈ ZM∗c

for which the bounds (37) hold is

Z(K) =
{

z ∈ ZM∗c : (z1, . . . , zMc) ∈ TMc(Q),

Q ∈ Q(M), M ∈ {M∗, . . . ,M
∗}
}

.

For any z in this set and decoding timeM such that
(z1, . . . , zMc) ∈ TMc(Q) for someQ ∈ Q(M), the proba-
bility that the random codebookEM∗(K) truncated to block-
length M has average error probability exceedingα1(c,M)

β0(c,M)2

can be made arbitrarily small.
Back to maximal error. The equation (37) says that the

average error under the randomized codeEM (K) can be
made arbitrarily small. Standard results on AVCs [26, Exercise
2.6.5] show that by permuting the message index the same
bound holds for the maximal error. Thus with probability
1 − exp(−Mcǫ7)/α1(c,M) the randomly selected codebook
has maximal error smaller thanα1(c,M)

β0(c,M)2 . The probability
of encoding error is vanishingly small with respect to these
quantities, so the total probability of error can be upper
bounded:

ε̂(M, z) < max

(

exp (−Mcǫ7)

α1(c,M)
,
α1(c,M)

β0(c,M)2

)

< max

(

exp (−Mcǫ7)

α1(c,M)
,

α1(c,M)

exp(−2ηM log c)

)

.

Selectingα1(c,M) = exp(−Mcǫ7/2) yields the following
bound for sufficiently largec:

ε̂(M, z) < exp(−Mcǫ7/3) .
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Settingǫ8 = ǫ7/3 yields the result.
Remark: As stated, the codebook constructed in Lemma 4

requires a very large amount of common randomness shared
between the encoder and decoder. This issue is discussed in
more detail in Section V.

E. Proof of Theorem 1

We now combine the results in the previous sections to
prove Theorem 1. Namely, in Section IV-A, we defined error
eventsE1(r) andE2(r). We then provided bounds onE1(r)
in Lemma 3 and proved the existence of a randomized rateless
code with a small maximal error probability in Lemma 4.
As will be seen in the proof, Lemmas 3 and 4 provide a
bound onE2(r). By combining this bound with the bound on
E1(r) and parameter assumptions in (19), the result follows
straightforwardly.

Proof: The proof is divided into three parts. We first
establish in equation (38) that for sufficiently largeN , the
feedback rate can be made arbitrarily small. In the second
part, we bound the error probability in (44). In the third part,
we give a lower bound on the rate under the assumption the
error event does not occur, which leads to equation (49). These
parts establish all necessary components in the statement of
the result.

We use the coding strategy proposed in Section III-F. Note
that under the parameter assumptions in (19), for allλ∗ > 0,
there exists sufficiently largeN such that the feedback rate
(5) satisfies the following bound:

Rfb < λ∗ . (38)

Fix a sequencez. The scheme induces a random partition of
z into roundsr = 1, 2, . . . at times{ℓr}. Let z(r) = z

ℓr

ℓr−1+1

be the state sequence during ther-th round. The type ofz can
be written as:

Tz =
∑

r

ℓr − ℓr−1

N
T
z(r) ,

where ℓr is the length of a round, as defined in equation
(6). Lemma 3 shows that for anyǫ1 > 0 there exists an
N sufficiently large such that the channel estimation error
probability P(E1(r)) is exponentially small. Taking a union
bound over all rounds, the probability of estimation error is

P

(

⋃

r

E1(r)

)

≤ 2
N

b
exp (−a2t) . (39)

By the parameter assumptions in (19),N/b and t grow
polynomially in N , so for largeN the exponential term
dominates and the probability of an estimation error in any
round goes to0. Given anyε > 0, for sufficiently largeN ,
equation (39) gives the following bound:

P

(

⋃

r

E1(r)

)

≤
ε

2
. (40)

Suppose roundr was terminated due to “BAD NOISE.” In
this case, from (15) we have the following:

I
(

P, Ŵ (M(r))
r

)

− ǫ1 < τ .

By Lemma 3,I
(

P, Ŵ
(M(r))
r

)

is close toI
(

P,W
z(r)

)

. That
is, there exists anN sufficiently large such that with proba-
bility 1− exp (−a2t), we have thatI

(

P,W
z(r)

)

< τ +3ǫ1/2.
For anyρ > 0, we can choose a largeN and smallτ such
that the following holds for all “BAD NOISE” rounds:

I
(

P,W
z(r)

)

< ρ/2 . (41)

Therefore, for rounds which are terminated due to bad noise,
the state sequencez(r) has a typeT

z(r) such thatI
(

P,W
z(r)

)

is small.
Now suppose the decoder attempted to decode at the end of

roundr. Then (16) implies that the estimated empirical mutual
information from the training satisfies a different inequality:

I
(

P, Ŵ (M(r))
r

)

− ǫ1 >
k

(b− t) ·M(r)
.

If the eventE1(r) does not happen, thenI
(

P, Ŵ
(M(r))
r

)

is

within ǫ1/2 of the empirical mutual information during the
non-training positions:

k

(b − t) ·M(r)
< I



P,
1

r(b − t)

M(r)
∑

n=1

∑

i∈Un,r

W (y|x, zi)





−
ǫ1
2
. (42)

Thus, conditioned onEc
1(r) and under our assumption (19),

(42) and Lemma 4 imply that forδ′ = ǫ1/2 there exists a
sufficiently largeN , exponentǫ8 > 0, and an(M∗, b − t, k)
randomized rateless code with errorε̂(M, z) < exp(−M(b−
t)ǫ8) for every roundr in which decoding occurs. A union
bound then implies the decoding error probability over all
rounds in which decoding occurs can be bounded:

P

(

⋃

r

E2(r)

∣

∣

∣

∣

∣

⋂

r

Ec
1(r)

)

≤
N

b
exp(−(b− t)ǫ8) . (43)

By (19), this can be made arbitrarily small for sufficiently
largeN , and therefore for anyε > 0, (40) and (43) imply
there exists anN sufficiently large such that the estimation
error and decoding error can be made smaller thanε:

P





⋃

r,i=1,2

Ei(r)



 ≤ ε . (44)

The remaining thing is to calculate the rate, given that none
of the error events occur. If the decoder attempted to decode
afterM(r) chunks, then afterM(r)− 1 chunks the threshold
condition in (16) was not satisfied:

k

(b− t) · (M(r) − 1)
≥ I

(

P, Ŵ (M(r)−1)
r

)

− ǫ1 ,

Our assumption in equation (19) that(b(N))2/k(N) → 0
and our lower bound on the length of a round in Lemma
1 is Θ(k(N)/b(N)) channel uses imply that for sufficiently
largeN , the amount that the estimated mutual information can
change over the course of a the final chunk in a round (b(N)
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channel uses) can be made arbitrarily small. More formally,
for any ǫ6 > 0, for sufficiently largeN ,

∣

∣

∣I
(

P, Ŵ (M(r)−1)
r

)

− I
(

P, Ŵ (M(r))
r

)∣

∣

∣ < ǫ6 .

Thus

k

(b− t) ·M(r)
=

(

1 −
1

M(r)

)

k

(b− t) · (M(r) − 1)

≥

(

1 −
1

M(r)

)

(

I
(

P, Ŵ (M(r)−1)
r

)

− ǫ1

)

≥

(

1 −
1

M(r)

)

(

I
(

P, Ŵ (M(r))
r

)

− ǫ6 − ǫ1

)

.

Finally, the overall empirical rate for the round is slightly
lower because of overhead from training:

k

bM(r)
≥

(

1 −
1

M(r)

)(

1 −
t

b

)

(

I
(

P, Ŵ (M(r))
r

)

− ǫ6 − ǫ1

)

Under the assumptions in (19) and conditioned on (21) not
occurring, for anyρ > 0 there exists anN sufficiently large
such that

k

bM(r)
≥ I

(

P, Ŵ (M(r))
r

)

− ρ/2 . (45)

The final source of rate loss is the last roundr∗, which may
not conclude within the overall blocklength, sinceℓr∗ = N .
The maximum length of this round isM∗b, and

ℓr∗ − ℓr∗−1

N
I
(

P,W
z(r∗)

)

≤
M∗b

N
max{|X |, |Y|} . (46)

By (19), for sufficiently largeN , (46) can be made to satisfy
the following condition:

ℓr∗ − ℓr∗−1

N
I
(

P,W
z(r∗)

)

≤ ρ/2 . (47)

To summarize, for sufficiently largeN and each roundr
in which the decoder feeds back “BAD NOISE” or “DE-
CODED”, the rate at which the scheme decodes can be lower
bounded by

R(r) ≥ I
(

P,W
z(r)

)

− ρ/2 , (48)

which follows from (41) and (45). Finally, we use (47), (48),
and the convexity of mutual information to provide a lower
bound on the overall rate of the scheme:

R ≥

r∗−1
∑

r=1

ℓr − ℓr−1

N

(

I
(

P,W
z(r)

)

− ρ/2
)

≥ I

(

P,
∑

r

ℓr − ℓr−1

N
W

z(r)

)

− ρ

= I (P,Wz) − ρ . (49)

As mentioned above, the result now follows immediately from
(38), (44), and (49).

V. D ISCUSSION

The central question we tried to address in this paper was
how much feedback is needed to achieve the channel mutual
information in the individual sequence setting of [3]. Limited
feedback in two-way and relaying systems have been studied
before [30]–[32] and are used in many modern-day commu-
nication protocols for control information. Research interest
on limited feedback for multiuser and multiantenna models
has grown tremendously (see [33] and references therein).
Quantifying the role and possible benefits of limited feedback
is an important step in understanding how to structure adaptive
communication systems.

In this paper we described a coding strategy under a gen-
eral channel uncertainty model that uses limited feedback to
achieve rates arbitrarily close to an i.i.d. discrete memoryless
channel with the same first-order statistics. Feedback allows
the system to adapt the coding rate based on the channel
conditions. When each element in the class of channels over
which we are uncertain has the same capacity-achieving input
distribution, the coding strategy achieves rates at least as large
as the empirical capacity, which is defined as the capacity of
an i.i.d. discrete memoryless channel with the same first-order
statistics. Since the rates that we can guarantee for our scheme
are close to the average channel in a round, our total rate over
many rounds may in fact exceed the empirical capacity. This
is due to the convexity of mutual information in the channel.

The work is a commentary on an earlier investigation by
Shayevitz and Feder [3] that considered the case in which the
encoder has access to full output feedback from the decoder
and allows the encoder to provide control and estimation
information in a set of training sequences that can be selected
via common randomness. Furthermore, their scheme does not
require a fixed blocklength in advance and hence has an infinite
horizon. By contrast, our strategy can be viewed as a kind of
incremental redundancy hybrid ARQ [7], in which the decoder
uses the feedback link to terminate rounds that are too noisy
while less noisy rounds are individually decoded. In order
to set the parameters for our scheme we must fix a total
blocklength in advance, although it may be possible to redefine
the scheme to operate without a horizon, as in [3].

An interesting point is that our basic algorithm uses stan-
dard “tricks” for communication systems, such as channel
estimation via pilot signals, ARQ with rateless codes, and
randomization. By adapting or reusing technologies that have
already been developed, these gains can be realized more
easily. Several open questions and extensions of the algorithm
presented here would be of interest, two of which are the
following:

1) The necessary amount of common randomness.Com-
mon randomness serves at least three roles in coding
arguments. Firstly, standard probabilistic method argu-
ments to show the existence of good codes can be
thought of as a use of common randomness. Secondly,
common randomness can be used as a modeling tool
to temper the inherently adversarial assumption that
the state sequence is arbitrary while still preserving
the notion that the channel is unknown. In our work,
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common randomness enforces the requirement that the
state selector act independently of the coding scheme.
Finally, common randomness is an operational resource
that is used as a secret key to combat malicious jammers
or prevent two nearby systems from using the same
codebook (e.g. spreading sequences in CDMA). Of these
three roles it is important to quantify theamountof this
third type of common randomness. In our scheme it
is used by the encoder and decoder to choose(i), the
channel training positions, and(ii), the codebook used
in each round.
For (i), the training positions, under our parameter
assumptions in (19),logN bits are required to indicate
the position of each of thet = Θ(Ng3) training
positions for each chunk of lengthb = Θ(Ng2), where
1
2 > g2 > g3 > 0. Since there areN/b chunks, this
requires at total of

N ·
t(N)

b(N)
· logN = Θ

(

N1−(g2−g3) · logN
)

bits ,

which, under our parameter assumptions is sublinear
in N . For (ii), the selection of a codebook for each
round can require as much asM∗ · Cmax bits of
common randomness per codeword for a total ofM∗ ·
Cmax · 2M∗·Cmax bits of common randomness, where
Cmax = log min{|X |, |Y|}. The total number of rounds
can be as large asNM∗

, whereM∗ andM∗ are defined
in Lemma 1. Thus, codebook selection requires

M∗ · Cmax · 2M∗·Cmax ·
N

M∗

=
(Cmax)

2

τ
·N · 2M∗·Cmax bits ,

whereτ , defined in (15), is a parameter of the algorithm
that does not depend onN . Thus, the total common
randomness required is superlinear inN .
Reducing this operational common randomness is out-
side the scope of the current work. However, if common
randomness were not available between the encoder
and decoder, it could be provided by the feedback
link, but then the strategy considered in this paper
would require a prohibitively large feedback rate that
would increase with the blocklengthN . To show instead
that the feedback rate could be made asymptotically
negligible in such a setting, one would need to prove
the existence of a strategy for which the total bits of
common randomness required would be sublinear in the
blocklengthN .
A potential technique that might be useful could be
to adapt tools from the theory of arbitrarily varying
channels [34] to find nested code constructions that use
a limited amount of common randomness [35]. Such
an argument would require showing that a randomized
code with support onT = (M∗b)2 codes can be made
from i.i.d. sampling of the randomized code of Lemma
4. This new randomized code could then be used to
establish a sublinear number of bits. Specifically, in
each round, this new randomized code could be used

by selecting one of theT codes for use. This would
requirelogT = O(logN) bits per round for a total cost
of at mostO((N/M∗) logN), which would be sublinear
in N .
Another potential method, more in the interactive coding
spirit of feedback systems, could be to show the exis-
tence of deterministic list-decodable codes with small
list sizes. If the list is of sizeL, the decoder could findL
bits in the message, which could be used to disambiguate
the list [6]. By usingL log k bits in the feedback, the
decoder could request thoseL bits from the encoder.
By sacrificing justO(L) more forward channel uses, the
encoder could send theL bits with negligible impact to
the rate. If the empirical mutual information in the next
round were aboveτ , this would be sufficient for success.

2) Adaptation of the channel input, and thus, codebook
distribution. An apparent limitation of the algorithm
presented here is that the channel input distribution is
selected once and kept fixed throughout, irrespective
of the behavior of the state sequence. Adaptation of
the channel input distribution may lead to higheror
lower rates. One interesting question would be whether
universal prediction techniques [36] can be used in
conjunction with channel coding to adapt the channel
input. Another set of interesting questions emerges if we
consider performance on a sequence that comes from a
certain class of sequences. For example, if one were
to consider an alternate notion of empirical capacity
in which the empirical sequences were estimated as
finite-order Markov models, adapting the channel input
distribution may give quantifiable benefits.

The individual sequence model considered in this paper is
by no means the only way of modeling channel uncertainty.
One model which does away with modeling the channel state
was recently proposed by Lomnitz and Feder [37]. An alter-
native model within the state sequence framework is a class of
noise models that varies in a piecewise-constant fashion. This
model is related to the on-line estimation problems studied
by Kozat and Singer [38] and may be useful to understand
block fading. For such models we could consider modifying
our strategy to adapt the value ofk by trying to learn the
coherence time of the channel. In the sense of competitive
optimality, the competition class could be coding strategies
that know the coherence intervals exactly. Variations on the
model of the feedback link may also lead to interesting new
results. Alternative channel models in which the feedback is
noisy or allowed to have time-varying rate may present new
issues to consider, particularly for the case in which there
is model uncertainty regarding the feedback link. For future
communications systems that must share common resources,
such investigations may shed new light on strategies in these
settings.
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APPENDIX

We provide here the proofs of the lemmas used in the
analysis of our algorithm3.

A. Bounds on entropy and mutual information

We need a short technical lemma about concave functions.
Lemma 5:Let f be a concave increasing function on[a, b].

Then if a ≤ x ≤ x+ ǫ ≤ b, we have

f(x+ ǫ) − f(x) ≤ f(a+ ǫ) − f(a) . (50)

Proof: Without loss of generality we can takea = 0,
b = 1, andf(a) = 0. Now consider

f(x) = f

(

x

x+ ǫ
· (x + ǫ) +

ǫ

x+ ǫ
· 0

)

≥
x

x+ ǫ
f(x+ ǫ) +

ǫ

x+ ǫ
f(0)

=
x

x+ ǫ
f(x+ ǫ)

f(ǫ) = f

(

x

x+ ǫ
· 0 +

ǫ

x+ ǫ
· (x+ ǫ)

)

≥
x

x+ ǫ
f(0) +

ǫ

x+ ǫ
f(x+ ǫ)

=
ǫ

x+ ǫ
f(x+ ǫ) .

Therefore

f(x) + f(ǫ) ≥ f(x+ ǫ) ,

as desired.
Using the preceding lemma, we can show that a bound on

the total variational distance between two distributions gives
a bound on the entropy between those two distributions.

Lemma 6:Let P andQ be two distributions on a finite set
S with |S| ≥ 2. If

|P (s) −Q(s)| ≤ ǫ ∀s ∈ S ,

then

|H(P ) −H(Q)| ≤ (|S| − 1) · hb(ǫ)

+ (|S| − 1) log(|S| − 1) · ǫ ,

wherehb(·) is the binary entropy function.
Proof: Let S = {s1, s2, . . .}. We proceed by induction on

|S|. Suppose|S| = 2, and letp = P (s1) andq = Q(s1). The
entropy functionhb(x) is concave, increasing on[0, 1/2] and
decreasing on[1/2, 1]. Applying Lemma 5 to each interval,
we obtain the bound:

|hb(x+ ǫ) − hb(x)| ≤ hb(ǫ) .

3We were unable to find a standard reference for the entropy bounds below,
which is why we provide the derivation.

SinceH(P ) = hb(p) and H(Q) = hb(q), this proves our
result.

Now suppose that the lemma holds for|S| ≤ m − 1,
and consider the case|S| = m. Without loss of gen-
erality, let P (sm) > 0 and Q(sm) > 0. Let λ =
(1 − P (sm)) and µ = (1 − Q(sm)) and note that|λ −
µ| < ǫ by assumption. Define the(m − 1) dimensional
distributions P ′ = λ−1(P (s1), . . . , P (sm−1)) and Q′ =
λ−1(Q(s1), . . . , Q(sm−1)), so that

P = (λP ′, (1 − λ))

Q = (µQ′, (1 − µ)) .

Therefore,

H(P ) = hb(λ) + λH(P ′)

H(Q) = hb(µ) + µH(Q′) .

Now we we can expand the difference of the entropies.
Using the fact thatλ < 1, the induction hypothesis on
|H(P ′) − H(Q′)| and |hb(λ) − hb(µ)|, and the cardinality
bound on the entropyH(Q′) yields the result:

|H(P ) −H(Q)| = |λH(P ′) − µH(Q′) + hb(λ) − hb(µ)|

≤ λ|H(P ′) −H(Q′)| + |λ− µ|H(Q′) + |hb(λ) − hb(µ)|

≤ (m− 2) · hb(ǫ) + (m− 2) log(m− 2) · ǫ

+ log(m− 1) · ǫ+ hb(ǫ)

≤ (m− 1) · hb(ǫ) + (m− 1) log(m− 1) · ǫ .

Lemma 7:Let W (y|x) and V (y|x) be two channels with
finite input and output alphabetsX andY. If

|W (y|x) − V (y|x)| ≤ ǫ ∀(x, y) ∈ X × Y ,

then for any input distributionP on X we have

|I(P,W ) − I(P, V )| ≤ 2(|Y| − 1) · hb(ǫ)

+ 2(|Y| − 1) log(|Y| − 1) · ǫ ,

wherehb(·) is the binary entropy function.
Proof: We simply apply Lemma 6 twice. LetQW and

QV be the marginal distributions onY under channelsW and
V respectively. Then

|QW (y) −QV (y)| ≤
∑

x

P (x)|W (y|x) − V (y|x)| ≤ ǫ .

Now we can break apart the mutual information and use
Lemma 6 on each term:

|I(P,W ) − I(P, V )|

≤ |H(QW ) −H(QV )| +
∑

x

P (x)|H(W (Y |X = x))

−H(V (Y |X = x))|

≤ 2(|Y| − 1) · hb(ǫ) + 2(|Y| − 1) log(|Y| − 1) · ǫ .
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B. Properties of concatenated fixed composition sets

Let Tn(P ) = {x ∈ Xn : Tx = P} be the set of of all
length-n vectors of typeP . For a vectorx, let xm

1 be the first
m elements ofx.

Lemma 8:For all finite setsX , and all typesP with p0 =
minx∈X P (x) > 0, there existsη = η(P ) < ∞ such that for
sufficiently largen, for all M > 0:

|Tn(P )|M

|TMn(P )|
≥ exp(−ηM logn) .

Proof: We begin with the following [26, p. 39] :

kH(P ) −
|X | − 1

2
log(2πk) − ν1(P )

≤ log |Tk(P )|

≤ kH(P ) −
|X | − 1

2
log(2πk) − ν2(P ) ,

for 0 < ν1(P ) < ∞ and0 < ν2(P ) < ∞ sincepx ≥ p0 for
all x. From this we can take the ratio:

log
|Tn(P )|M

|TMn(P )|
≥ −M

|X | − 1

2
log(2πn) −Mν1(P )

+
|X | − 1

2
log(2πMn) + ν2(P ) .

For fixed P and sufficiently largen, this lower bound is
Ω(M logn), which establishes the result.
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