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Abstract—The utility of limited feedback for coding over an |
individual sequence of DMCs is investigated. This study com l l
plements recent results showing how limited or noisy feedhk m o vi
can boost the reliability of communication. A strategy with fixed R v A v
input distribution P is given that asymptotically achieves rates ENC W (yilzi, 2:) DEC
arbitrarily close to the mutual information induced by P and T Ra |
the state-averaged channel. When the capacity-achievingnput
distribution is the same over all channel states, this achies rates Fig. 1. Model setup with limited feedback and common randessn
at least as large as the capacity of the state-averaged chagin
sometimes called the empirical capacity.

Index Terms—Arbitrarily varying channels, common ran- In order to achieve this variation in performance, the en-
domness, feedback communication, hybrid ARQ, individual 8-  coder must obtain some measure of the quality of the state
quences, rateless codes, universal communication sequence. This requires additional resources, and the most

natural model is to introducdeedbackfrom the receiver
I. INTRODUCTION to the transmitter. A second resource is joniapdomization
between the encoder and the decoder, which can also be

Many contemporary communication systems can be moghapbled via feedback. The encoder can use feedback to es-
eled via a time-varying state. For example, in wireless comMtimate the channel quality and hence communicate at rates
nications, the channel variation may be caused by neighoricommensurate with the channel quality. Two fundamental
systems, mobility, or other factors that are difficult to rebd questions are the following: first, how good a performance
In order to design robust communication strategies, eRgine(in terms of achievable rate) can one expect for favorable
should adopt an appropriate model for the channel dynamiggate sequences? Second, how much feedback is required to
One such model is the so-called arbitrarily varying channgitain this performance? Many of the works in this area can be
(AVC), in which the state can depend on the communicatiQlhderstood in terms of how they answer these two questions.
strategy and is selected in the worst possible manner. Onérne main trade-off for the channel model at hand is the
interpretation of this model is that there is a fixed rate .(e.ggorrect balance between the resources spent on commonicati
for voice) that one wants to support over the worst possibl@rsys those spent on channel estimation. One extreme is the
channel states. An alternative and perhaps more relevagte where the channel state sequence is fully reveale@ to th
approach (e.g. for data traffic) is an individual sequencdeho receiver, as shown in the work of Drapetral. [2]. Regarding
where the state is fixed but unknown and not dependent @ first question, for any fixed input distribution, theihsme
the communication strategy. Here, a natural requirementdgn achieve rates arbitrarily close to the mutual infororatf
for a strategy to perform well whenever the state sequengg channel with the state known to both the transmitter and
is favorable, while for less favorable state sequenceerio recejver. They also provide an interesting answer to therskc
performance is acceptable. Essentially, this model censidqyestion: a feedback link of vanishing rate is sufficientttaia
the case in which one wants to adapt the rate to one whigfis performance. To sum up, when channel estimation at the
the specific state sequence can support. receiver is free, feedback of vanishing rate is enough.
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consider the same notion of “empirical capacity,” but pdavi  In the next section, we motivate the study of this problem
an answer to the second question. Specifically, for a fixedth some concrete examples. In Section Ill, we define the
input distribution, we show that if common randomness hannel model, state our main result, and describe the godin
available, a feedback link of vanishing rate is sufficient tstrategy. Section IV contains the analysis of our strateiily w
achieve the empirical mutual information, which in somenost of the technical details reserved for the Appendix.
settings, such as the class of channels considered by Strayev
and Feder, coincides with the “empirical capacity”. To dig.th
we adapt the feedback-reducing block/chunk strategied use
earlier in the context of reliability functions [4], [5], dmost The following two simple examples will prove useful in
specifically in [6]. They are in turn inspired by Hybrid ARQexplaining the meaning of the main result of this paper,
[7]. Thus, the flavor of our algorithm is different from [3]yB and help motivate the present study. The first is the model
doing away with the output feedback, we lose the simplicityonsidered in [3] — a binary modulo-additive channel with a
of the scheme in [3], but we show that similar rates can stilbise sequence whose empirical frequency’sfis unknown.
be obtained with almost negligible feedback. In this example, the “empirical mutual information” under
The strategy developed in this paper fits in the categosyl state sequences is maximized by the uniform distriloytio
of rateless codes, which are a class of coding strategiés @ our algorithm achieves the “empirical capacity”. In the
use limited feedback to adapt to unknown channel parametefiscond example we consider thechannel for which the input
Most studies about feedback for rate and reliability hawistribution maximizing the empirical mutual informatios
centered around full output feedback [4], [8]-[14];, howgvenot identical for all state sequences, so our scheme willmot
recent work has started to improve our understanding @éneral achieve rates as high as the empirical capacity.
how limited feedback affects these performance measuogs. F
instance, limited feedback can be used to improve relighili
[6], [15]. Furthermore, in some multiuser Gaussian chasnef. Binary modulo-additive channels

noisy feedback increases the achievable rates [16]-[18] an The simplest example of a channel with an individual noise
the reliability [S], [19]. In a rateless code the decoder cagequence is the binary modulo-additive channel. This oblann
use a low-rate feedback link to inform the encoder when ikes binary inputs and produces binary outputs, where the
decodes. These codes were first studied in the context of fiput is produced by flipping some bits of the channel input.

erasure channel [20], [21]. Later work focused on compouRghese flips do not depend on the channel input symbols. The
channels [22]-[24]. The work of Draper et al. [2] is to oupytputy € {0,1}¥ can be written as

knowledge the first step towards adapting rateless codes to
time-varying states. y=x®z,
We are now in a position to compare the modeling assump-
tions in these previous works with the current investiggtiowherex € {0,1}" is the channel inputz € {0,1}" is the
the comparisons are summarized in Table I. The initial ssidinoise sequence, and addition is carried out moduldhe
of rateless coding by Shulman [22] and Tchamkerten af@isez is arbitrary but fixed, and we lgt € [0,1] be the
Telatar [24] used feedback to tune the rate to the realizempirical fraction ofl’s in z, which is also arbitrary but fixed.
parameter governing the channel behavior. The study of-time Because the state sequences arbitrary and unknown, it
varying states was first introduced by Draper et al. [2], bayt is not clear how to find the highest possible rate of reliable
assumed full state information at the decoder, which leads@mmunication. For anyixed z, we could say naively that
higher rates. Most recently, Shayevitz and Feder [3] show#t® capacity is one bit, because the channel is deterntinisti
an explicit coding algorithm based on Horstein’s method [¢jowever,z is unknown and may, in fact, have been generated
that achieves the empirical capacity. Their scheme usés fiild. according to a Bernoulli distribution with parametg
feedback, but in turn works for a larger class of chann#] which case the capacity should be no larger thanh(p),
models. Moreover, it is a horizon-free scheme. namely, the capacity of a binary symmetric channel (BSC)
In our scheme, the encoder attempts to skrits over the With crossoverp. The algorithm in this paper guarantees a
channel during a variable-lengtiound The encoder sendsrate close tol — h(p) for any state sequence with an
chunks of the codeword to the decoder, after which thempirical fraction ofl’s equal top. This rate can be thought
decoder feeds back a decision as to whether it can decoefeas the empirical mutual information of the channel with a
The encoder and decoder use common randomness to chétsrm input distribution. Since the uniform input digtuition
a set of randomly chosetraining positions during which achieves the capacity for all BSCs, this rate can also bectall
the encoder sends a pilot sequence. The decoder usesthigempirical capacityas in the work of Shayevitz and Feder
training positions to estimate the channel. As soon as thg-
total empirical mutual informatiorover the aggregate channel
sufficiently exceeds: bits, the decoder attempts to decodeB 7-channels with unknown crossover
Through this combination of training-based channel edtoma ~—
and robust decoding we can exploit the limited feedback Whereas the example above can be thought of as an XOR
to achieve rates asymptotically equal to those with advangperation with the channel state, in our second example, we
knowledge of the average channel. consider a binary channel in which the output is the logical

Il. MOTIVATING EXAMPLES



| channel model | feedback| state information| common randomness

Shulman [22] compound full none none

Tchamkerten and Telatar [24] compound full none none

Draper, Frey, and Kschischang [2] AVC O-rate at decoder none

Shayevitz and Feder [3] individual sequenc full none yes, some

This paper individual sequenc O-rate none yes, lots
TABLE |

RELATED RESULTS AND ASSUMPTIONS ON CHANNEL MODELFEEDBACK, STATE INFORMATION AND COMMON RANDOMNESS

OR of the input and state. For inputand noisez, the output a noiseless channel that can be used evggyuses of the

y is given by the following: forward channel to send®;, bits. The rate of the feedback
v 2=0 is thus Rs, = Bm,/nm. To avoid integer effects, we will
Y= { B consider only integer values foty, and By,. We assume
0 z=1.
that the encoder and decoder have access to a common
Again, the noise sequeneds arbitrary but fixed. Le; denote random variables distributed uniformly over the unit interval
the empirical fraction ofl’s in z. [0,1]. This random variable can be used to generate common
The algorithm in this paper achieves rates close to th@ndomness that is shared between the encoder and decoder.
mutual information induced by a fixed input distributiéhto Because the maximum capacity of this set of channels is

a Z-channel with crossover probability The channel is the Cy,,, = logmin{|X|,|V|}, we define the set of possible
averagelV, of W (y|z, z;) overz. Unlike the binary modulo- messages to be the set of all binary sequed@es} ¥ Cmax,
additive example, this channel has a capacity-achievipgtin This message set is naturally nested — the truncatedse}”
distribution that depends an The algorithm proposed in thisis a set of prefixes fof0, 1}V max, At the time of decoding,
paper chooses a fixed input distributidh and achieves the the decoder will decide on a decoding truncatibre N and
mutual information/ (P, W,) of a Z-channel with that input a messagen € {0,1}”. The truncationl is itself a random
distribution. This leaves open the question of how to choosariable that will depend on the state sequenciie common
P. One method is to choose the that minimizes the gap randomness?, and the randomness in the channel.
betweenmaxq I(Q, W) — I(P, W,) over allz. However, in An (N, ng,, Bs,) coding strategyor blocklength/N' consists
many cases the uniform distribution is not a bad choice, a6 a sequence of (possibly random) encoding functions for
shown by Shulman and Feder [25]. In our results we leave-1,2,..., N,

the choice ofP open for the designer. m: 1 {0, 1} Cmax x {0, IYLG-D/malBa o [0.1] = & |

1. THE CHANNEL MODEL AND CODING STRATEGY a sequence of (possibly random) feedback functions fer
A. Notation Mib, 2N, -
. . . i B
Script letters will generally be used to denote sets and ¢i 2 V' x[0,1] — {0, 1},
alphabets and boldface to denote vectors. For a vecter and a decoding function
(z1,22,...,2,), We writex] for the tuple(z;, zit1,...,x;))

andx’ for the tuple(zy, o, . . ., z;). The notatior{.J] will be § YN [0,1] = {0, 1, .o, NCiaxc} x {0, 1}V,
used as shorthand for the sgt,2,...,J}. The probability We say a messagm € {0, 1}Ncmax is encodedinto a
distribution7,, is the type of a sequence For a distribution codewordx € X' if for i € [N],

Q, the setl'y (Q) is the set of all lengthV sequences of type

Q. T = ni(ma ¢1 (ynfba G)a LR ¢L%J (yL%J.nﬂ)v G)7 G) .
. For an (N, nw, Bi,) coding strategy, let)(y, G) = (T, ).
B. Channel model and coding The first outputT € {0,1,..., NCuay} is the decoding

The problem we consider in this paper is that of commdruncation and i’ is the message estimat@oth of these
nicating over a channel with an individual state sequendgJantities are random variables.
Let the finite sets¥ and ) denote the channel input and For a state sequeneg the maximal error probabilityof an
output alphabets, respectively. The channel model we densi (N, nm, Bi,) coding strategy, is defined as

consists of a family of channely) = {W(y|z,2) : z € Z} caee(z) = ma P (mT 2T ‘ ” m)

indexed by a state variable in a finite s&t For any state dect®) = me{o,l}f\r{cmax G.w ’ '

sequence = (z1, 22,...,zn), and outputy;, we assume  hore the probability is taken over the common randomness
P(y:|x’,y' ", 2) = W(ys|@s, i) - G and randomness in the channel. For a state sequgrze

rate R is said to beachievablewith probability 1 — .., (z) if
That is, the channel output depends only on the current input

and state. €ach(Z) =
. W_e consider codi_ng for this chann_el_using the setup shown max P (R > T/N, mT ” T | z, m) .
in Figure 1. We think of the rate-limited feedback link as me{0,1}N Cmax



Note that we can upper bound.,(z) : to the reference strategies for each sequence. We take an
approach inspired by source coding for individual sequence
in which we have a benchmark rate for each state sequence

z, m) . and then test whether a coding strategy attains the ben&hmar
for each state sequence.

Note that this channel model assumes a known finite horizonOne such benchmark that we consider in this paper is the

N, unlike the infinite horizon model of Shayevitz and Fedesmpirical capacity— for a fixedz, the empirical capacity is

[3]. Furthermore, the basic model assumes an unboundgsfined as the supremum over all input distributions of the

amount of common randomness in the form of the real numba&mpirical mutual information:

G. This point is discussed further in Section V.

Each (Z) S Edec (Z)

T P (R>TN
e (0 o TOW R 2T

C(z) = sup I (P,Wy,) .

P(x)
C. Mutual information definitions . . ( . o
First used by Shayevitz and Feder [3], empirical capacity is

T_he results_ In th's paper are stated in terms of mutual 'nfoéiven its name not because it is purported to be optimal, but
mation quantities involving time-averaged channels ddpeh <-4 because of its resemblance to the capacity of pmint-
on the individual state sequengeFor fixedz define thestate- point discrete memoryless channels
averaged channdb be There are two points that are worth mentioning before

1 & proceeding to describe the results in this paper. Firss, éaisy
Wa(ylz) = + > Wiyle, z) - (1) to see that the empirical capacity is a weaker target than the
i=1 best possible strategy for a given sequence. It is posdiale t
Note that if z and z’ have the same type, then the statea strategy can achieve rates larger than the empirical tgpac
averaged channels generated by them are the same. Definte binary modulo-additive example in Section II-A, ifth

the empirical channel for a distributio on Z: sequence: were all0 for the first half and alll for the second
half, the empirical capacity i8, whereas the coding strategy
Wolylz) = Z W(ylz, 2)Q(2) - presented in this paper is expected to achieve rates close to
z2€Z

Second, there may exist examples for which no strategy

For a fixed input distributionP(x) on X and channel s guaranteed to achieve the empirical capacity. The coding
W (y|r), the mutual informationis given by the usual defi- strategy proposed in this paper uses a fixed input distdbuti
nition: P, and in general, the maximizing’(z) may not be the

W (y|x)P(x same for allz.! In these cases our strategy can achieve rates
L(PW) = Zw(y|I)P(I) log Plx)> (fg[LV)(yéC/;p(x/) " close to the empirical mutual informatioh(P, W,) but not
oY ¢ the empirical capacity’(z). It may be possible to adag®

For an individual state sequence the empirical mutual over time, but at present we neither have a good strategy for
informationis given by I (P, W,). achievingC(z) nor a counterexample showing that for some
channels it is impossible to achiev¥z).

D. Optimality versus empirical capacity
We are interested in analyzing strategies that can adaipt the, Main result

rates de;ptendlng %n thtﬁ statte Sequfnced zgnd n toutr analy5|§,he main result in this paper is that the algorithm given in
we want o consider the rates achieved by a stralegy ay,a ay; section achieves rates that asymptotically ajgpribee

fungtlon of the state sequence. !.J_nhke the f:ompound Ch‘fjm%eutual informatiory (P, W,) for a large set of state sequences
setting (see e.g. [26] for definitions), which considers the

Wor§t-ctasz beh?wtor tOf a s;[rr]attegy fover a F:Iass I?f CZgnnés’l’heorem l:Let {W(y|x,z) : z € Z} be a given family of
we nstead want strategies that perform universafly Wesrov i, ,nnels Then given any> 0, € > 0, \* > 0, and channel
all sequences. However, this raises the problem of finding a
notion of optimality that does not depend on the worst-caseia question then arises of how one chooses the input disiibue. One
performance, possibility could be to choosé’ to be uniform over the input alphabet.
hility i ; ; wever, depending on the setting, other approaches mighpreferable.
One pOSSIbIlIty is to define _an optlmal strategy as one thﬁﬁpired by the theory of AVCs, one may choose the input idistion to be
for every state sequence, achieves a rate at least as laagg as
. . B !
other strategy for that sequence, and then define the capacit P= arglg}axQ‘I(P}nva )>pf(P WQ) @
as the rates achieved by this strategy. However, this means e
; i here p is a parameter governing the gap between the rates guadabyee
co_mpanng a _strategy for all Séquences agamSt all §tEﬂeﬁe algorithm and the empirical mutual information of theawhel. This
tailored to a fixed sequence. In the example in Section I1-Ayproach can run into problems in some situations in whiclihie P chosen,
for eachz there exists a decoding strategy which add® I (P, Wg) =0 for a large subset of state distributiofis but there exists a
the output, undoing all of the bit flips. Each strategy achgev distribution P for which I (15, WQ> > p for all Q. On the other hand, if

rate 1 for the specific choice ok, but this is clearly an one were to remove the condition tha(P’, W¢) > p, for the example in

unreasonable target. Section II-A,infq I (P’, Wq) = 0 for all choices ofP’, and the choice of
| d f h id fref P’ would be arbitrary. Because of such issues, we will leavegthestion of
nstead, for each sequence we can consider a set of refergg&, choose the input distributiaR unanswered in this work. The problem

strategies and measure the “regret” of our strategy witbe&ts of choosingP is similar to that studied by Shulman and Feder [25].



input distribution P, there exists anV sufficiently large and Thus, By, = 2, so the feedback ratBq, = A\(N) is given by

an (N, ng,, Br,) coding strategy with feedback rate the expression
B, B,
Rpy = — < \* 3 =
m= <A 3) Ry, ) (5)
such that for allz € T(N), the rate If the chunk sizeb(N) goes to infinity asN — oo, the

feedback rate\(N) — 0.
2) Rateless codingA rateless code is a variable-length
is achievable with probability — e. coding scheme to send a fixed number of bits. In the algorithm
Binary modulo-additive channels, revisitegor the binary Proposed here, the encoder attempts to send k() bits
additive example in Section 1I-Ap denoted the fraction of over several chunks comprisingaund Rounds vary in length
ones in the noise SequenzeThen' the empirica' Capacity is and terminate at the end of chunks in which the decoder feeds
1 — h(p), the capacity of the binary symmetric channel wittpack either “BAD NOISE" or “DECODED.” Let/,. denote
crossover probability. Theorem 1 implies the existence ofthe time index at the end of round
strategies employing asymptotically zero-rate feedbaaths
that for all p,e > 0 and sufficiently largeV,

R>1(PWq)-p @)

l.=min{j =17 -b(N) > l,._4

: ¢, = “BAD NOISE” or “DECODED"} , (6)

R>1-h(p)—p,
and setly = 0.
is achievable with probability at least— ¢. An (M*,c, k) rateless codeis a sequence of maps
Z-channels with unknown crossover, revisitéor the ex- {(,, 1,):i=1,2,... M*}, where

ample in Section 11-B withy equal to the fraction of’s in the
crossover sequence, the capacity-achieving input digioib wi {0, 11F — xe @)
is a function ofg, so the theorem cannot guarantee a scheme v YU — {0, 1} 8)
achieving the empirical capacity. Despite this, it stilbpides
achievable rates in this setting. If the channel input istton The encoding mapg; produce successive chunks of a code-
has P(X = 1) = p, for this channel, then the empiricalword for a given message, and the decoding maps attempt

mutual information for this channel can be written as to decode the message based on the channel outputs. An
Pad (M*,c, k) randomizedrateless code is a random variable
I(P,W,) = h(pz) — (1 — ps + pzq)h (ﬁ) ,  that takes values in the set ¢f\/*,c, k) rateless codes.
- Mz T

The maximal error probabilityé(M,z) = £(M,z,D) for a
and is asymptotically achievable from Theorem 1. As disandomized rateless code decoded at timel/c with state
cussed briefly at the end of Section IlI-D, the question afequencea € ZM¢ is

how to selectp, is outside the framework of this paper.

£(M,z,D) 9)
F. Proposed coding strategy: Randomized rateless code = mggﬁ(}k E [WMC ({VM(Y{WC) # m} ’ Hi(m)vz)}
The achievability result in Theorem 1 relies on the follogvin = max &,(M,z,D), (10)
coding strategy, which can be thought of as an iteratedasgel mef0,1}

code with randomized training (or, for short, randomizednere the expectation is taken over the randomness in the
rateless code). The overall scheme is illustrated in Figure cqqe. We will suppress dependence Bnwhen it is clear
The scheme divides time into chunksiéfV) channel uses and from context. The randomized rateless code used in thisrpape
in each round attempts to seR@N) bits using a randomized 55 codewords with constant compositiBfr) on X and uses
rateless code. Each chunk contains a randomly interleaved,sximum mutual information (MMI) decoder.

training sequences, so the decoder can estimate the eahpirics) Training : The coding strategy analyzed in this paper

channel. The decoder chooses to decode when the empirjgals 5 randomized rateless code in conjunction with randoml

rate falls below the estimated gmpirical mutual informatio;.,¢aq training symbols. The training allows the decoder t
calculated_from the channel estimates. The round ends a@‘%fimate the channel and choose an appropriate decodiag tim
the k(IV) bits are deched, and the encoder starts anewro each chunk ob channel uses, the scheme uses ¢(V)
to send the nexit(V) bits. The length of each round is Va”abl%ositions for training. Using the common randomnésghe
and depends on the empirical state sequence. _encoder and decoder selédtaining positionsT’.,, for then-

We now describe each component of the scheme in MQechunk of roundr. Formally, 7., is uniformly distributed
detail. over subsets of/,_; + (n — 1)15 +1,...,4.—1 + nb} of

1) Feedback: Divide the blocklengthN into chunksof  cardinalityt. This set is further randomly partitioned ina|
lengthb = b(N) channel uses. Feedback occurs at the e%ﬂbsetsTM(x) for x € X.

of chunks, song, = b with three possible messages: “BAD
NOISE,” “DECODED,” and “KEEP GOING,” which (?orre- 2There is a slight abuse of notation with the typg (Q), but the double
spond to the feedback messa@®s 01, and 10, respectively. subscript inT; ,, should make the distinction unambiguous.



4) Encoding: The encoder attempts to send a message a) If
{0,1}NCmax over several rounds. In each round it attempts to
send a sub-message, € {0,1}" consisting ofk bits of m. I (P, Wr(")) —ea <71, (15)
The sub-message:; is the firstk bits of m. If the round
r — 1 ended with “BAD NOISE” thermn, = m,_1, and if
roundr — 1 ended with “DECODED?” thenn,. is the nextk
bits of the message.

The encoder and decoder sharg &fi*, b—t, k) randomized
rateless code. Using the common randomigsat the start of
each round the encoder and decoder choosg\&h b — ¢, k)

wherer > 0 is a parameter of the algorithm, then

the decoder feeds back “BAD NOISE” and the

round is terminated without decoding theits. In

the next round, the encoder will attempt to resend
the k bits from this round.

rateless codd (p;,v;) : j = 1,2,...M*} according to the b) If
distribution of this randomized code. Define the encoding ma . L
n; in the n-th chunk of ther-th round: I (P, WT(")) —€ > =t xn’ (16)
ni(m,,G) =x i€ Trn(z) (11)
. . where t is defined in Section IlI-F3, then the
ni(my, G) = pin(mr) # Trn (12) decoder decodes, feeds back "TDECODED,” and the
That is, then-th chunk transmitted by the scheme is created by encoder starts a new round.
taking theb—t piece of the codeword,,(m,.) and inserting the c) otherwise the decoder feeds back “KEEP GOING”
t randomly chosen training positions, as illustrated in Fégu and goes to 2).

2. The dependence of on the feedback is suppressed here Thus, wherep, .
because a round is terminated as soon as the feedbacka nave that
message is no longer “"KEEP GOING."

5) Decoding: The decoder uses the training symbéis :
i € T, n(z)} to estimate the channel transition probabilitie

denotes feedback in chunkof roundr,

gr,n (v, G)

W, (y|z) and thereby obtain an estimate of the empirical “BAD NOISE” , I[P, Wﬁ") —¢e1 <7, and
mutual informationl (P, W,) during the chunk and over the I(PW™ _ ¢ <k
round so far. If the estimated mutual information is too low, = T L= =t)xn
then it feeds back “BAD NOISE." If the estimated mutual “DECODED”, I|(P, WT(”) —€ > m
information is above the empirical rate/(n(b — t)) + e “KEEP GOING” . otherwise

then it decodes the code using the MMI decodgrof the ’ (17)

rateless code and feeds back “DECODED.” Otherwise, it feeds

back "KEEP GOING." The parameter; ensures that with  p;q strategy has two main ingredients. First, the encoder

high probability the empirical rate is below the true emgafi g5 random training sequences to let the decoder acguratel

mutual information of the channel. estimate the empirical average channel. Given this aceurat

6) Algorithm : The parameters of the algorithm are th@giimate the decoder can track the empirical mutual infor-
chunk sizeh(N), training sizet(N), number of bits per round mation of the channel over the round. Second, the decoder

k, and decoding thresholds andr. only needs to know that the empirical rate is smaller than the

. k H
Given an (M*,b — t,k) randomized rateless code anqempirical mutual information in order guarantee a smalberr
message bitsn,., the encoder and decoder first use COMMQt}ohability

randomness to choose a realization of the randomized satele We note again that the channel model and problem for-

rcgjr?d:he following steps are then repeated for each Chunkrﬁrlljlation involve a fixed overall blocklengttv. and other

, parameters of the coding strategy are defined in terms of this
1) Using common rant_jpmness, the encoder and q,ecogﬁr’ameter. However, in practice it may be more desirable to
chooset = ¢(NV) positionsT;.,, and a random partition g, o \umber of bitsk (V) to send per round and then define
of 7, into | | subsets;. () of sizet/|X| fortraining e coding parameters in terms &f We have chosen the
in chunkn. _ _ ~ former method because it is convenient for our mathematical
2) The encoder transmits theth chunk using the encoding 5 51ysis, but we believe that in principle the problem cdagd

map as defined in Equations (11)~(12). In particular, the jated in an “infinite-horizon” manner as well. This may

symbolz is sent_during the train_ing positioﬂsﬁ(x). require developing appropriate tree-structured anytimges
3) The decoder estimates the empirical channel in chun 27].

and the empirical channel over the round so far:

~(n) :|X|. e T s 13
@ (yle) = == - [{j € Trnl2) 1y = whl - (13) V. ANALYSIS
R 1 & .
(n) - = (@)
W ylz) = n 21@ (le) - (14) Showing that the strategy proposed in the previous section

A satisfies the conditions of Theorem 1 requires some more
4) The decoder makes a decision basedigri”’ andn. notation. For each round, let the random variablé/(r) be



0 N
total: eee oo
round 1 2 3

b 2b 3b
roundF I I - - -
b
|

chunk[ N | |
AN

training codeword

Fig. 2. After each chunk of length feedback can be sent. Rounds end by decoding a message anirdethe noise to be bad.

the number of chunks in that round: I (R WﬁM))
empirical rate

,Mongg{l(ﬂﬁdm)—el<7
or —" <71 (P, WT(")) - 61} : /

b—tn
(18) T+ €1
T —
Let U, denote the time indices in the-th chunk of round 3 I I T ______
r that are not in the training séft, .. e %

The scheme depends on a number of parameters — the
overall blocklengthV, the number of bits per round(N), - _ ‘
the chunk sizeb(NV), the number of training positions pergggljn%Mc*‘ﬁgvgis(‘;:]hsye(’gg”ca' rate illustrating the bounds)d. The upper
chunkt¢(N), therate gape;(N), the error bound, and the '
feedback rate\(V). In order to make the proof of the result
clear, assume that there exist real constantg., g3 € (0, %)
with g1 > g2 > g3 and set or

E(N) = O(N?91), b(N) = O(N9), t(N) = O(N%) . S M(r
(N) ( ), b(N) (N9), t(N) ( %m) 4mem0_

In particular, this means that the ratig§N)/N — 0, L MO
n=1 i€Uy, »UTh r

A. Error events (21)

The scheme requires that the channel estimaigd’ ™) A decoding errorE,(r) happens in round if the rateless
in (14) be “good” in two senses. Firsty™")) should be code selected by the encoder and decoder experiences an erro
close to the average channel seen by the codeword in the non-
training positions{U,, .} (defined after (18) above), and itB. Preliminaries: Bounding the length of a round
should also be close to the channel averaged over the entire . o
round. The former guarantees that the estimates provided bypefore proceeding to bound the probabilities of the error
training are close enough to guarantee that the ratelegsisod®/ents, we will provide bounds on the length of a round. Our
decodable, and the latter guarantees the gap between éise £@sons for establishing these are two-fold. First, if antbu
achieved by the scheme and the empirical mutual informatiff!S to terminate or does not result in successful decading

is small. Achannel estimation erro; (r) occurs for round he round length should be sufficiently small so that its
rif impact on the overall rate should be small. Second, when

taking union bounds over chunks in a round, the round length
© (M) should be small enough to guarantee the corresponding error
I (R W ) - probabilities are small. Moreover, it helps set the maximum
length for the randomized rateless code. Lemma 1 provides
1 M(r) . bounds onM (r), the number of chunks in round which
I\P MO0 —1 > ) W(yle,z) || >~  can be expressed equivalently (@ — £,_)/b(N), wheret,
n=1 €Uy, is defined in (6). For simplicity, we will usé/ to denote
(20) M (r) when the round- is clear from context.



Lemma 1 (Bounds on/): Fix e; > 0 andt > 0. Then for that their empirical mean, which is}ﬁj)(ykc), is close to
the scheme described in Section I1I-F6, the stopping tihe W,(r, .(.)), the average channel during the training:
for any round satisfied/ < M*, where ,
P (|69 (412) = Wagr, ) (o) = e5)

E(N) w
M* = . 22
hb(N) —UN)) 7 (22) < 2exp (_2|t7|) )
If the decoder attempted to decode, thenz M., where Now, recall that the training position$,. ,, defined in
B k(N) Section 1lI-F3, are sampled uniformly without replacement
M, = (b(N) —t(N)) - Crnax from the whole chunk, so the average chariiglr, (. (y|z)

o . ] is itself a random variable formed by averaging the random

_P_roof: The argument is |_Ilustrated in Figure 3. Th@/ariable{W(y|x,zi) . i € T, ;(z)}. The mean of each of these
empirical rate given by (16) is shown in the curve. ThGariaples isW,, ., ), the state averaged channel over
empirical rate;—-; decreases monotonically with/. In e \hole chunk. For sampling without replacement, another
order for the algorithm to continue at time/, from (17) we resylt of Hoeffding [28, Theorem 4] states that the same
must havem > 1 (P, Wr(n)) — €1 > 7. Rearranging exponential inequalities for sampling with replacemenidho
shows that\/ must be less thai/* in (22). The lower bound so the channel during the training is a good approximation to
is trivial from the definition in (16) and the cardinality bmadi the entire channel during the chunk:

on mutual information. [ |
P (|War, s 2)) = Wa, 0t | = €5)

t 2
C. Channel estimation for a single round < 2exp <—2m65) - (24)

In this section, we provide an upper bound on the errgjy applying the triangle inequality to equations (23) and)(2
eventF(r). The argument relies on the following observage have the following:

tion: if sufficiently many samples are collected to estimate _
the channel, these estimates converge to the overall aerag P ‘wﬁj)(ylx) - W, ,ur, )
channel. Lemmas 2 and 3 make this precise. That is, with ‘
a modest number of randomly chosen training symbols, the < 4exp <—2m6§) . (25)
decoder can estimate the empirical mutual information ef th

channel such that the probability of the channel estimatidrinally, observe the following:

error eventF (r) is small. ‘

Lemma 2 (Simple channel estimatiofjecall the chunk

> 265)

Wz(Ur,j UTr;) — Wz(Um')’

training estimates defined in (13), and let parametersfgatis 1 1
the conditions in (19). Then for any > 0 there exists aV e Z W(ylz, z;) — b—1 Z Wylz, z)
sufficiently large and constant such that for thegj-th chunk i€UrjUTr s i€Un;
the training estimates satisfy: 1 ¢
_ =13 > Wiyl z) - sb=1) > Wiyle, =)
P (3 x,y S.t. ‘ng)(yh:) — WZ(UMUTM)(MI)‘ > 64) i€, ; ieU,
t
< exp (—aleit) <2-. (26)
P (3 T,y S.t. ‘wf«j) (ylz) — WZ(Ur,j)(ylx)‘ 2 64) The assumptions in (19) imply that (26) can be made small
< exp (—ar1€3t) for syffic;iently IargeN. Thgs forN.sufficientIy large, an_other
application of the triangle inequality to (25) and (26) g\tbe

wheret is the size of the training séf, ;. following:

Proof: Proving the claim requires two applications of ‘ ;
Hoeffding’s inequality [28] to the training data. The first P ‘Ibﬁj)(ylx)—Wz(U,‘,j) 2365) <4exp (—27%) :
uses the sampling with replacement version of the inequalit ] 27)
to show that the training estimates are close to the state-
averaged channel at those training positions. The seccesl Ughoosinges = 3¢; and a union bound over alf € A and
the sampling without replacement version to show that thec V we get

09 (y)2) — Waw, | > 1)
t

state-averaged channel in the training positions is closbe P (3 st
state-averaged channel over the entire chunk. An appitati Y st
of the triangle inequality and our parameter assumptions in 9
< - — .
(19) complete the argument. < exp | —(2/9) |)(|64 +log | X[[Y] +1log4
We now make this precise. First consider the random < exp (—a1€5t) ,
variables{1(y; = y) : ¢ € T, ;(z)} for eachz andy. Their B

expectations over the channel & (y|z, z;) : i € T, ;(z)}. where the last inequality f_oIIows from_taking’ sufficiently
Applying Hoeffding’s inequality to these variables show{@rge and the fact thafV) increases withV. u

J




Lemma 3 (Channel estimationRecall the error event Remark: Under the parameter assumptions in equation
E;(r) defined in Section IV-A, and let the parameters satisf{19), the number of bits of common randomness needed in
the conditions in (19). Then for angs > 0 there existsN Lemmas 2 and 3 to specify the training positions is sublinear
sufficiently large and an, > 0 such that for any round and in the blocklengthN. Note that a similar conclusion was
any state sequeneec ZM (b, reached by Shayevitz and Feder for their scheme, which also

uses training positions to the estimate the channel [3]s Thi

plls (P W(M(T))) point is discussed in more detail in Section V.

D. Rateless coding
M@ €1 The last ingredient in our strategy is the rateless code used
M@ b —1) YD Wlylrz) || > 5 | during each round. The key property we need is that if the
empirical rate drops below the empirical mutual informatio
< exp (—ast) (28) of the channel, then the code can be decoded with small
probability of error.
Lemma 4 (Rateless codedjor anyd’ > 0 and distribution
P, there exists an integer sufficiently large,es > 0 and an

(M*, ¢, k) randomized rateless code defined in Section IlI-F

n=1 i€U,,,

P |1 (P M0D)

M(r) such that if at decoding timeé\/ the state sequence}®
& satisfies
w i —
M0 Zl UZT (ylz,z) || > 5 i
n €U »UTh r VSI(P,WZ{W)—(SI,
< exp(—ast) . (29) ¢

then its maximal erroé (M, z), defined in (9), satisfies
ThereforeP(E; (1)) < 2exp(—axst).

Proof: For all (z,y), Lemma 2 guarantees that for any E€(M,z) < exp(—Mces) .
€4 > 0 the channel estlmated during the training of any chunk ,
is within ¢, of the average channel during the whole chunk and  PT00f: Fix 6" and a distribution”. We can approximate
during the codeword positions with probabllttyp( a162t) P arbitrarily closely with a type of a sufficiently large de-

For a round of lengtfd/(r), a union bound over chunks Showgwomlnator so without loss of generality, we assufds a
type and choose to be large enough so that the denominator

that M) of type P d_lyldes c. Let C.M( ) be a randomlzeq ra_lteless
Pl3awst 1 w(j>( 1) code. SpecificallyCys(J) is a random variable distributed
VI M) &Y on the set of rateless codes of blocklengthe whose .J
=1 codewords are drawn independently and uniformly from the
1 M@ compositionP set Ty.(P) and with a maximum mutual
—W Z Wz(U,‘,juT,‘,j)(?Ax) > €4 information (MMI) decoder. The remainder of the proof can be
j=1 sketched as follows: we verify that the codebabl(J) has
< M(r)exp (—aiest) (30) satisfactory error performance under the assumptionsisf th
M(r) Lemma. Then, we construct a codebdBk,(K) by keeping
P(3zyst 1 ) (yl2) only those codewords id,,(J) whose composm_on _|sP in
M(r) = " each chunk of symbols. We then show that the distribution of
M) Du(K) is the same as that of a codebadis- (K) truncated
1 to blocklengthM c.
CM(r) Z Waw,.,)Wle)| 2 e Codebook properties. Before proceeding to construct
=t Du(K), we first examine properties of the constant-
< M(r) exp (—alﬁif) . composition codebook,,(J) of compositionP. Recall the

(31) definition of maximal error for randomized rateless codes in
Since M (r) is at mostM*, for N sufficiently large the effect (9) and (10). A result of Hughes and Thomas [29, Theorem

of the union bound is negligible. 1] shows that for sufficiently largé/c, there exists a function
The remainder of the proof is to show that if the channdt- such that for allJ > 0, § > 0, and distribution on Z,

estimated from the training is close with high probablity to < maxe;(M,z,Cur(J))

both the average channel during the codeword positions aﬂ@%u (@) jelJ] i

the average channel during the whole round, then the erapiric <exp (—~Mc[E,(Mc) " log J + 6, W, P,Q) — §])

mutual informations must be close as well. Lemma 7 in the (32)

Appendix shows exactly this. For ary > 0 there exists a 1
€4 > 0 and N sufficiently large such if the events in (30) andE Me)™"log J +0,W, P.Q)

(31) fail to hold then the events in (29) and (28) also fail to > max{()’ [(P,Wg)— 06— ——log J} (33
hold. This completes the proof. n Mec
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Fix e7 = % and letQ(M) be the set of all) such that Settingd = ¢’/4 in the original construction o€y, (.J), for
s 1 sufficiently largec, equation (35) guarantees a bound on the
0< 1 <I(P,Wg)—2——1logJ . (34) error. In particular, since the codewords D, (K) are a

Mec
. . subset of the codewords @f;(K), the average error can
If @ € Q(M), then we can rewrite the bound in (32) a$,.rease at most by a factorﬂész)' g

follows:

max
i(M,z,Cp(J)) < -M . 2€To(Q):QEQ(M
zeTMc(rél)%XeQ(M) ?éz[lﬁaj( z,Car(J)) <exp( cer) €Tmc(Q):QEQ(M) .
In particular, this gives the following bound on the expéiota P LS oMoz Du () > e M)
overCy(J) of the average error Cu () K; 5(M, 2, Du (K)) 2 Bo(c, M)?
J exp (—Mcer)
! — (36)
E — (M , =
zGTMc(I(IQl)%EEQ(I\I) Car (J) |:J Z;aj( 7Z’CM(J)):| al(cvM)
= This shows that for any’ > 0 the average error can be
<exp(=Mcer) . pounded.
Use Markov's inequality to bound the probability that the Nesting. Consider the codebooky, (K) formed by draw-
average error exceeds a given value ing K codewords independently uniformly distributed on
{T.(P)} together with the MMI decoding rule. It is clear
ZETMC(ICIQl)%XGQ(A’f) thatD,, (K) has the same distribution &g, (K), so the bound
5 (36) holds for&,(K) as well:
1
P — (M J)) > M
Cu () (J FZlEJ( ,2,Cu(J)) = aa(c, )) T (OB o)
K
exp (—Mcer) 1 aq (e, M)
S W . PE}W(K) (EZEJ'(M,Z,(C;I\,{(K)) 2 W
) j:l b)
This establishes that for ary> 0 the codebook has average
> . exp (—Mcer)
error no more thany; (M) with high probability. . (37)

Expurgation. We define a thinning operation on the code- on(e, M)
bookCy;(J) to form the codeboo®,, (K) as follows: remove ~ Note that€,,(K) has the same distribution as the codebook
all codewords inCy;(J) which are not in the piecewise€um-(K) truncated to blocklengtti/c. The set ofz € 24"
constant-composition setZ.(P)}M. That is, we keep only for which the bounds (37) hold is
those codewords Whi(_:h_ have tyge in each ch_unk. If ther_e Z(K) = {Z c zMc. (21, 201e) € Tare(Q),
are fewer thank’ remaining codewords after this expurgation,
declare an encoding error — if there are more tifarthen Q€ Q(M), M € {M,,.. .,M*}} ,
keep the first codewords. The decoding rule is the same ) , ) ,

MMI rule as before. For any z in this set and decoding timé/ such that

The probability of this encoding error can be bounded usifg!: - - -»?Mc) € Thc(Q) for some@ € Q(M), the proba-
Lemma 8, which states that the probability that a codewoRiity that the random codeboak,- (K) truncated to(?lﬂ%k'
drawn uniformly fromTy.(P) is also in the se{T,(P)}M length M has average error probability exceed@@(a}\—{)z
is at leastfy(c, M) = exp(—nMlogc) for ¢ sufficiently ©¢&n be made arbitrarily small. _
large. Therefore the expected number of codewordji.J) Back to maximal error. The equation (37) says that the
that survive the thinning is at leastexp(—nM logc). Since 2average error under the randomized catig(K) can be
the codewords are i.i.d., the probability that the numb&fade arbitrarily small. Standard results on AVCs [26, Eieerc
of codewords surviving the thinning is at least/ can be 2.6.5] show that by permuting the message index the same

bounded: bound holds for the maximal error. Thus with probability
o 1 —exp(—Mecer)/an(e, M) the randomly selected codebook
P(’CM(J)Q{TC(P)} ’ < 5J) has maximal error smaller tha%. The probability
< J-exp (—J-D (B||Bo(c, M))) . of encoding error is vanishingly small with respect to these
By choosingK — f(c, M)2J, which corresponds t@ — quantltles, so the total probability of error can be upper
Bo(c, M)?, the probability of encoder error can be madgounded.

arbitrarily small. The rate of codebodR,,(K) is &(M, ) < max <exp (—=Mcez) ai(c, M) )

’ 2
1 1 2nlogec ai(e, M) " Po(e, M)
— log K = — log J - . eXp (_MC€7) 061(67 M)
Me Mec ¢ < max ,
ai(e,M) " exp(—2nM logc)

Settingk = log K, note from (34), for sufficiently large the

error can be made small as long as Selectingay (¢, M) = exp(—Mecez/2) yields the following
k 5 bound for sufficiently large:
< i — 35— — . .
Me — QemQI(I}M)I(P’ Wo) -39 4 (35) E(M,z) < exp(—Mcer/3) .



11

Settinges = €7/3 yields the result. m By Lemma 3,7 (P, WM is close toI (P, Wy(ry). That

Remark: As stated, the codebook constructed in Lemmai4, there exists arV sufficiently large such that with proba-
requires a very large amount of common randomness shafiity 1 — exp (—ast), we have thaf (P, Wz(r)) < T7+3€1/2.
between the encoder and decoder. This issue is discusse@dn anyp > 0, we can choose a largh’ and smallr such
more detail in Section V. that the following holds for all “BAD NOISE” rounds:

E. Proof of Theorem 1 I(P,Wy) <p/2. (41)

We now combine the results in the previous sections #erefore, for rounds which are terminated due to bad noise,
prove Theorem 1. Namely, in Section IV-A, we defined errgpe state sequenegr) has a typey,(,, such thatl (p’ Wz(r))
eventsE (r) and Ex(r). We then provided bounds oy () s small.
in Lemma 3 and proved the existence of a randomized ratelesg,, suppose the decoder attempted to decode at the end of
code with a small maximal error probability in Lemma 4;q,nq;. Then (16) implies that the estimated empirical mutual

As will be seen in the proof, Lemmas 3 and 4 provide gormation from the training satisfies a different inediyal
bound onE;(r). By combining this bound with the bound on

E1(r) and parameter assumptions in (19), the result follows SA(M()) k
straightforwardly. d (P’ Wi ))) VB M)

Proof: The proof is divided into three parts. We first A
establish in equation (38) that for sufficiently lar@e, the If the eventE;(r) does not happen, theh(P, WT(M(T))) is
feedback rate can be made arbitrarily small. In the seco@gthin ¢, /2 of the empirical mutual information during the
part, we bound the error probability in (44). In the third fparnon-training positions:
we give a lower bound on the rate under the assumption the

error event does not occur, which leads to equation (49)s&he k 1 MO
parts establish all necessary components in the staterfient qz 7y~ 777,] < I{Pp "o—1) S>> Wiylr,z)
the result. n=1i€Un,r

We use the coding strategy proposed in Section IlI-F. Note _a (42)
that under the parameter assumptions in (19), fonalt> 0, 2
there exists sufficiently largeV such that the feedback rateThys, conditioned orES(r) and under our assumption (19),
(5) satisfies the following bound: (42) and Lemma 4 imply that foi’ = ¢;/2 there exists a

Rpy < \* . (38) sufficiently largeN, exponents > 0, and an(M*,b — t, k)

_ _ ~ randomized rateless code with er&qi\/, z) < exp(—M (b —
Fp( a sequence. The schem_e induces a random pgartmon afies) for every roundr in which decoding occurs. A union
z into roundsr = 1,2,... attimes{¢, }. Letz(r) =z, ., bound then implies the decoding error probability over all

be the state sequence during thth round. The type of can rounds in which decoding occurs can be bounded:
be written as:

=3 %sz ) P (U Ey(r) | ﬂEf(r)> < %GXP(—(b— tes) . (43)

T

where /, is the length of a round, as defined in equatioBy (19), this can be made arbitrarily small for sufficiently
(6). Lemma 3 shows that for any; > 0 there exists an |arge N, and therefore for any > 0, (40) and (43) imply
N sufficiently large such that the channel estimation errgfiere exists anV sufficiently large such that the estimation

probability P(E1(r)) is exponentially small. Taking a unionerror and decoding error can be made smaller than
bound over all rounds, the probability of estimation eror i

P <U El(r)> < 2% exp (—axst) . (39) P U Ei(r) | <e. (44)

ri=1,2

By the parameter assumptions in (19)/b and ¢ grow  The remaining thing is to calculate the rate, given that none
polynomially in N, so for large N the exponential term of the error events occur. If the decoder attempted to decode

dominates and the probability of an estimation error in anyfter M (r) chunks, then afted/(r) — 1 chunks the threshold
round goes td). Given anye > 0, for sufficiently largeN, condition in (16) was not satisfied:

equation (39) gives the following bound: )

P <U El(r)> < % : (40) (b—1)- (M(r) =1)

_ Our assumption in equation (19) thé&(N))?/k(N) — 0
Suppose round was terminated due to “BAD NOISE.” In and our lower bound on the length of a round in Lemma
this case, from (15) we have the following: 1 is ©(k(N)/b(N)) channel uses imply that for sufficiently
7 (P, WT(M(T))) e <. large V, the amount that the estimated mutual information can
change over the course of a the final chunk in a roud’{

2 1 (Pa VAVT(IM(T)il)) — €1,
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channel uses) can be made arbitrarily small. More formally, V. DISCUSSION

for an > 0, for sufficiently largeN, . . . .
Yo ylarg The central question we tried to address in this paper was

2r(M(r)—1 2 (M(r how much feedback is needed to achieve the channel mutual

‘I (P’ WT( " )) -1 (P’ WT( ( )))‘ < information in the individual sequence setting of [3]. Lted
Thus feedback in two-way and relaying systems have been studied
before [30]-[32] and are used in many modern-day commu-

k . ( 1 ) k nication protocols for control information. Research iett

(b—1t)-M(r) M(r)) (b—1t)- (M(r)—1) on limited feedback for multiuser and multiantenna models
1 . P has grown tremendously (see [33] and references therein).
= (1 - W) (I (P’ WM 1)) - 61) Quantifying the role and possible benefits of limited feexkba

1 . is an important step in understanding how to structure agapt
> (1 - M(r)) (I (P, WT(M(T))) — €6 — 61) : communication systems.
In this paper we described a coding strategy under a gen-
Finally, the overall empirical rate for the round is slightl eral channel uncertainty model that uses limited feedback t

lower because of overhead from training: achieve rates arbitrarily close to an i.i.d. discrete mefiess
channel with the same first-order statistics. Feedbackvallo
k > (1 1 ) (1 _ f) the system to adapt the coding rate based on the channel
bM(r) — M(r) b conditions. When each element in the class of channels over
(I (R WT(M(T))) e — 61) which we are uncertain has the same capacity-achieving inpu

distribution, the coding strategy achieves rates at leakirge

Under the assumptions in (19) and conditioned on (21) n@® the empirical capacity, which is defined as the capacity of

Occurring’ for anyp > 0 there exists anV Sufﬁcienﬂy |arge an ||d disqrete memoryless channel with the same filcéor
such that statistics. Since the rates that we can guarantee for oenseh

are close to the average channel in a round, our total rate ove
> (p’ Wr(l\ff(r))) —p/2. (45) many rounds may in fact exceed the empirical capacity. This
is due to the convexity of mutual information in the channel.
The work is a commentary on an earlier investigation by
Shayevitz and Feder [3] that considered the case in which the
encoder has access to full output feedback from the decoder
and allows the encoder to provide control and estimation
bpse — Ly _q M*b information in a set of training sequences that can be salect
N I(P’ WZ(’”*>) < N max{| X[, [V]} . (46) via common randomness. Furthermore, their scheme does not
By (19), for sufficiently largeN, (46) can be made to satisfyLeq.Uire a fixed blocklength in advance and hgnce has an 'E.nfinit
the following condition: horizon. By contrast, our strqtegy can b(_e V|evyed as a kind of
incremental redundancy hybrid ARQ [7], in which the decoder
b — L _q uses the feedback link to terminate rounds that are too noisy
TI(R Wz(r*)) <p/2. (47)  while less noisy rounds are individually decoded. In order
to set the parameters for our scheme we must fix a total

To summarize, for sufficiently largeV and each round 6ckjength in advance, although it may be possible to radefi
in which the decoder feeds back “BAD NOISE” or “DE-y o scheme to operate without a horizon, as in [3].

E(gjageDdbt;e rate at which the scheme decodes can be lowery , interesting point is that our basic algorithm uses stan-

bM (r)

The final source of rate loss is the last rouridwhich may
not conclude within the overall blocklength, sinée = N.
The maximum length of this round i&/*b, and

dard “tricks” for communication systems, such as channel
estimation via pilot signals, ARQ with rateless codes, and
randomization. By adapting or reusing technologies thaeha

which follows from (41) and (45). Finally, we use (47), (48)§1Ire_ady been developed, _these gains can be realized more
and the convexity of mutual information to provide a lowefasily. Several open questions and extensions of the tigori

R(T) >1 (Pv Wz(r)) - p/2 ) (48)

bound on the overall rate of the scheme: presented here would be of interest, two of which are the
- following:
'~ b=l . 1) The necessary amount of common randomnéssn-
B2 ; N (I (P’W (T)) p/2) mon randomness serves at least three roles in coding
arguments. Firstly, standard probabilistic method argu-
> (RZMWZ(T)> —p ments to show the existence of good codes can be
- N thought of as a use of common randomness. Secondly,
=1 (P,W,)—p. (49) common randomness can be used as a modeling tool

to temper the inherently adversarial assumption that
As mentioned above, the result now follows immediately from  the state sequence is arbitrary while still preserving
(38), (44), and (49). [ ] the notion that the channel is unknown. In our work,



common randomness enforces the requirement that the
state selector act independently of the coding scheme.
Finally, common randomness is an operational resource
that is used as a secret key to combat malicious jammers
or prevent two nearby systems from using the same
codebook (e.g. spreading sequences in CDMA). Of these
three roles it is important to quantify ttemountof this
third type of common randomness. In our scheme it
is used by the encoder and decoder to chddsehe
channel training positions, an@), the codebook used

in each round.

For (i), the training positions, under our parameter
assumptions in (19)pg N bits are required to indicate
the position of each of the ©(N93) training
positions for each chunk of length= ©(N92), where
1> g > g3 > 0. Since there areV/b chunks, this

2
requires at total of

N V)
b(N)

which, under our parameter assumptions is sublinear
in N. For (ii), the selection of a codebook for each
round can require as much a®/* - Cy.x bits of
common randomness per codeword for a totallHf -
Chnax - 2M"Cmax bits of common randomness, where
Chnax = logmin{|X|, |V|}. The total number of rounds
can be as large ag-, whereM* and )M, are defined
in Lemma 1. Thus, codebook selection requires

2)

log N = © (N1*<92*93> log N) bits ,

. N
M* - Crpax - 2M -Cmax .
M,
2
_ Cna)” g Coe g
—
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by selecting one of thd" codes for use. This would
requirelog ' = O(log N) bits per round for a total cost

of at mostO((N/M..)log N), which would be sublinear

in N.

Another potential method, more in the interactive coding
spirit of feedback systems, could be to show the exis-
tence of deterministic list-decodable codes with small
list sizes. If the list is of sizd,, the decoder could find

bits in the message, which could be used to disambiguate
the list [6]. By usingLlogk bits in the feedback, the
decoder could request thode bits from the encoder.
By sacrificing justO(L) more forward channel uses, the
encoder could send the bits with negligible impact to
the rate. If the empirical mutual information in the next
round were above, this would be sufficient for success.
Adaptation of the channel input, and thus, codebook
distribution. An apparent limitation of the algorithm
presented here is that the channel input distribution is
selected once and kept fixed throughout, irrespective
of the behavior of the state sequence. Adaptation of
the channel input distribution may lead to highar
lower rates. One interesting question would be whether
universal prediction techniques [36] can be used in
conjunction with channel coding to adapt the channel
input. Another set of interesting questions emerges if we
consider performance on a sequence that comes from a
certain class of sequences. For example, if one were
to consider an alternate notion of empirical capacity
in which the empirical sequences were estimated as
finite-order Markov models, adapting the channel input
distribution may give quantifiable benefits.

The individual sequence model considered in this paper is
by no means the only way of modeling channel uncertainty.

wherer, defined in (15), is a parameter of the algorithnone model which does away with modeling the channel state
that does not depend olV. Thus, the total common yas recently proposed by Lomnitz and Feder [37]. An alter-

randomness required is superlinearNn

native model within the state sequence framework is a class o

Reducing this operational common randomness is Opise models that varies in a piecewise-constant fashibis. T
side the scope of the current work. However, if commomodel is related to the on-line estimation problems studied
randomness were not available between the encow Kozat and Singer [38] and may be useful to understand
and decoder, it could be provided by the feedbagiock fading. For such models we could consider modifying
link, but then the strategy considered in this papgjur strategy to adapt the value bfby trying to learn the
would require a prohibitively large feedback rate thaoherence time of the channel. In the sense of competitive
would increase with the blocklengfki. To show instead optimality, the competition class could be coding strategi
that the feedback rate could be made asymptoticallyat know the coherence intervals exactly. Variations am th
negligible in such a setting, one would need to provi@odel of the feedback link may also lead to interesting new
the existence of a strategy for which the total bits gfsylts. Alternative channel models in which the feedback i
common randomness required would be sublinear in thgjsy or allowed to have time-varying rate may present new

blocklength V.

issues to consider, particularly for the case in which there

A potential technique that might be useful could bg model uncertainty regarding the feedback link. For fetur
to adapt tools from the theory of arbitrarily varyingcommunications systems that must share common resources,

channels [34] to find nested code constructions that uggch investigations may shed new light on strategies inethes
a limited amount of common randomness [35]. Sucettings.

an argument would require showing that a randomized
code with support o’ = (M*b)? codes can be made
from i.i.d. sampling of the randomized code of Lemma
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of that work for UC Berkeley’s Fall 2006 advanced informaSince H(P) = hy(p) and H(Q) = hy(q), this proves our
tion theory course EE290S. Special thanks go to the othresult.
students in that class for helpful discussions. We alsokthan Now suppose that the lemma holds f@| < m — 1,
our Associate Editor loannis Kontoyiannis and the revieveand consider the casgS| = m. Without loss of gen-
for their insightful comments and Hari Palaiyanur and Jigni erality, let P(s,,) > 0 and Q(s,,) > 0. Let A =
Zhan for their comments on the manuscript. (1 = P(sy)) and . = (1 — Q(sm)) and note thaf\ —
u| < € by assumption. Define thém — 1) dimensional
APPENDIX distributions P’ = A "'(P(s1),...,P(sm-1)) and Q' =
We provide here the proofs of the lemmas used in the ' (Q(s1), .- Q(sm-1)), so that
analysis of our algorithfh

= (AP, (1 - N))
— / _
A. Bounds on entropy and mutual information Q= (1-p).
We need a short technical lemma about concave functiom$erefore,
Lemma 5:Let f be a concave increasing function pnb.
Thenifa <z <z + ¢ < b, we have H(P) = hy(\) + NH(P")
fla+o—f@) < fla+)—fla).  (50) H(Q) = ho(yo) + pH (@) -
Proof: Without loss of generality we can take = 0, Now we we can expand the difference of the entropies.
b=1, andf(a) = 0. Now consider Using the fact thatA < 1, the induction hypothesis on
. . |H(P") — H(Q")| and |hs(X) — hp(w)], and the cardinality
e R - . !/ 1 .
flx)y=1f (x " (x+¢€)+ e 0) bound on the entropyd (Q’) yields the result:
> ——fate+ l%ref(O) |H(P) = H(Q)| = [NH(P') — pH(Q') + hy(X) — ()|
IR < NH(P') ~ H@Q)| + X~ ulH(@) + [ho(X) — hu(p)
Cxte < (m—2)-hy(e) + (m —2)log(m —2) - ¢
f(e>=f( T g -<x+e>) T log(m — 1) - ¢ + h(c)
e e < (m = 1) hol€) + (m — 1) log(m — 1) - ¢
> J(0) + (e ) .
== j_ Ef(:v +e) . Lemma 7:Let W(y|z) and V(y|z) be two channels with
finite input and output alphabefs and ). If
Therefore
@)+ fle) > flz+e), W(ylz) = V(yle)| <e  V(z,y) e X xP,
as desired. m then for any input distributiol® on X we have

Using the preceding lemma, we can show that a bound on
the total variational distance between two distributiongesg (P,W) = I(P, V)| < 2(1¥| = 1) - hu(e)

a bound on the entropy between those two distributions. +2(|Y]| = Dlog(]Y|—1)-¢
Lemma 6:Let P and(@ be two distributions on a finite set
S with |S| > 2. If whereh,(-) is the binary entropy function.
Proof: We simply apply Lemma 6 twice. LeDy, and
|P(s) —Q(s)| <€ Vse§, Qv be the marginal distributions @y under channel$/’ and
then V respectively. Then
[H(P) = H(Q)| < (IS] = 1) - hu(e) [Qw () |<ZP W (ylz) = V(yle)| <e.
+ (IS = 1) log(|S| = 1) - €
whereh,(-) is the binary entropy function. Now we can break apart the mutual information and use

Proof: Let S = {s1, s2,...}. We proceed by induction on L€mma 6 on each term:
|S|. SupposeS| = 2, and letp = P(s1) andg = Q(s1). The
entropy functioni,(z) is concave, increasing df, 1/2] and [(P,W) — (P V)|
decreasing orj1/2, 1]. Applying Lemma 5 to each interval, <|HQw)—-H@Qv)|+ ZP(:C)|H(W(Y|X =2x))
we obtain the bound:

|ho(z + €) — by ()| < hp(e) - ~H(V(Y|X = 2))|

2(Y1 = 1) - ho(e) +2(]V] — 1) log(|Y] — 1) - €
3We were unable to find a standard reference for the entropydsobelow,
which is why we provide the derivation. |



B. Properties of concatenated fixed composition sets

Let T,(P) = {x € X" : Tx = P} be the set of of all
length+ vectors of typeP. For a vectorx, let x7* be the first
m elements ofx.

Lemma 8:For all finite setsY, and all typesP with py =
min,ex P(x) > 0, there exists) = n(P) < oo such that for
sufficiently largen, for all M > 0:

[T (P)[M
T (P)]
Proof: We begin with the following [26, p. 39] :

> exp(—nMlogn) .

KH(P) — WT_l log(27k) — 11 (P)
< log |Tx(P)|
< kH(P)-— WT_l log(27k) — va(P) ,

for 0 < 11(P) < oo and0 < v (P) < oo sincep, > po for
all z. From this we can take the ratio:
[T, (P)|M X -1

>yt
[T (P)] 2

Xl -1
% log(2mMn) + vo(P) .

log log(2mn) — Mv, (P)

+

For fixed P and sufficiently largen, this lower bound is
Q(M logn), which establishes the result. |

REFERENCES

[1] K. Eswaran, A. Sarwate, A. Sahai, and M. Gastpar, “Binadditive

channels with individual noise sequences and limited adéedback,” in

Proceedings of the 2007 IEEE International Symposium oorimdtion

Theory Nice, France, 2007.

S. Draper, B. Frey, and F. Kschischang, “Rateless coftingon-ergodic

channels with decoder channel state information,” suledhito IEEE

Transactions of Information Theory.

O. Shayevitz and M. Feder, “Achieving the empirical ceipa using

feedback: Memoryless additive model$EZEE Transactions on Infor-

mation Theoryvol. 55, no. 3, pp. 1269-1295, March 2009.

[4] A. Sahai, “Why block-length and delay behave differgnfi feedback
is present?”|EEE Transactions on Information Thegryol. 54, no. 5,
pp. 1860-1886, May 2008.

[5] A. Sahai and S. Draper, “Beating the Burnashev bound gusiaisy

(2]

(3]

[15]

[16]

[17]
(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

feedback,” inProceedings of the 44th Allerton Conference on Commuy33]

nication, Control, and Computingvionticello, IL, Sep. 2006.
[6] A. Sahai, “Balancing forward and feedback error cori@ctfor erasure
channels with unreliable feedback,” submitted to IEEE S$eanions of
Information Theory.
E. Soljanin, “Hybrid ARQ in wireless networks,” iDIMACS Workshop
on Network Information TheopyMarch 2003.
M. Horstein, “Sequential transmission using noiselteedback,”|EEE

(7]
(8]

Transactions on Information Thegryol. 9, no. 3, pp. 136-143, July

1963.

[9] J. P. M. Schalkwijk and T. Kailath, “A coding scheme forditile noise
channels with feedback I: No bandwidth constrailEEE Transactions
on Information Theoryvol. 12, pp. 172-182, 1966.

[10] M. Burnasheyv, “Data transmission over a discrete cbbwith feedback,

[34]

[35]
[36]

[37]

random transmission time,Problems of Information Transmission [38]

vol. 12, no. 4, October-December 1976.

T. Cover and S. Pombra, “Gaussian feedback capad¢EEE Transac-
tions on Information Theoryol. 35, pp. 37-43, 1989.

J. Ooi and G. Wornell, “Fast iterative coding technigufer feedback
channels,IEEE Transactions on Information Thegmpol. 44, no. 7, pp.
2960-2976, November 1998.

J. Ooi, Coding for channels with feedback Boston, MA: Kluwer
Academic Publishers, 1998.

Y.-H. Kim, “Feedback capacity of stationary Gaussiahamnels,”
2006, submitted to IEEE Transactions of Information The@nline].

Available: http://arxiv.org/abs/cs.IT/0602091

(11]

[12]

(23]

[14]

[39]

15

S. Draper and A. Sahai, “Variable-length channel cgdwith noisy
feedback,” European Transactions on Telecommunicatjonsl. 19,
no. 4, pp. 355-370, April 2008.

M. Gastpar and G. Kramer, “On noisy feedback for intefiee chan-
nels,” in Proceedings of the 2006 Asilomar Conference on Signals,
Systems, and Computei2006.

M. Wigger, “Noisy feedback is strictly better than nceftback on the
Gaussian MAC,” 2006 Kailath Symposium, July 2006.

A. Lapidoth and M. A. Wigger, “On the Gaussian MAC with prerfect
feedback,”IEEE Transactions on Information Theoryo appear.

Y.-H. Kim, A. Lapidoth, and T. Weissman, “On reliabjylitof Gaussian
channels with noisy feedback,” iRroceedings of the 44th Allerton
Conference on Communication, Control, and CompytiSgptember
2006.

M. Luby, “LT codes,” in Proceedings of the 43rd Annual IEEE Sympo-
sium on Foundations of Computer Scien2602.

A. Shokrollahi, “Fountain codes,” ifProceedings of the 41st Allerton
Conference on Communication, Control, and Computdgtober 2003,
pp. 1290-1297.

N. Shulman, “Communication over an unknown channel sémmon
broadcasting,” Ph.D. dissertation, Tel Aviv University)(3.

S. Draper, B. Frey, and F. Kschischang, “Efficient Vaida length
channel coding for unknown DMCs,” irProceedings of the 2004
International Symposium on Information Theo6hicago, USA, 2004.
A. Tchamkerten and I. E. Telatar, “Variable length aagliover an
unknown channel,IEEE Transactions on Information Theoryol. 52,
no. 5, pp. 2126-2145, May 2006.

N. Shulman and M. Feder, “The uniform distribution asnéerm prior,”
IEEE Transactions on Information Thegryol. 50, no. 6, pp. 1356—
1362, June 2004.

I. Csiszar and J. Kornerphformation Theory: Coding Theorems for
Discrete Memoryless Systems$Budapest: Akadémi Kiado, 1982.

A. Sahai and S. Mitter, “The necessity and sufficiency amiytime
capacity for control over a noisy communication link: Paft IEEE
Transactions on Information Theqryol. 52, no. 8, pp. 3369-3395,
August 2006.

W. Hoeffding, “Probability inequalities for sums of boded random
variables,”Journal of the American Statistical Associatjimol. 58, no. 1,
pp. 13-30, March 1963.

B. Hughes and T. Thomas, “On error exponents for antligraarying
channels,IEEE Transactions on Information Thegmpol. 42, no. 1, pp.
87-98, 1996.

L. Schwartz, “Feedback for error control and two-wayrcounication,”
IEEE Transactions on Communications Systevos 11, no. 1, pp. 49—
56, March 1963.

J. Hayes, “Adaptive feedback communicationdSEE Transactions on
Communications Technologyol. 16, no. 1, pp. 29-34, February 1968.
N. Ahmed, M. Khojastepour, A. Sabharwal, and B. Aazhdi@utage
minimization with limited feedback for the fading relay cimel,” IEEE
Transactions on Communications Systeml. 54, no. 4, pp. 659-669,
April 2006.

D. Love, R. Heath, Jr., V. Lau, D. Gesbert, B. Rao, and Nhdrews,
“An overview of limited feedback in wireless communicatiepstems,”
IEEE Journal on Selected Areas in Communicatjord. 26, no. 8, pp.
1341-1365, October 2008.

R. Ahlswede, “Elimination of correlation in random cxlfor arbitrarily
varying channels,Zeitschrift fir Wahrscheinlichkeitstheorie und Ver-
wandte Gebietevol. 44, no. 2, pp. 159-175, 1978.

A. Sarwate and M. Gastpar, “Rateless codes for AVC nxddlovem-
ber 2007, submitted to IEEE Transactions of Information oFize

N. Merhav and N. Feder, “Universal predictiodEEE Transactions on
Information Theoryvol. 44, no. 6, pp. 2124-2147, October 1998.

Y. Lomnitz and M. Feder, “Feedback communication owvedividual
channels,” inProceedings of the 2009 International Symposium on
Information Theory Seoul, South Korea, 2009.

S. Kozat and A. Singer, “Universal switching linear deasquares
prediction,” inProc. of the 2006 Information Theory and its Applications
Workshop La Jolla, CA: UCSD, February 2006.

M. Feder, “Achieving the empirical capacity of indiuidl noise channels
using feedback,” 2006 Kailath Symposium, July 2006.



PLACE
PHOTO
HERE

PLACE
PHOTO
HERE

Krishnan Eswaran Krishnan Eswaran received the
B.S. degree in electrical and computer engineet-
ing from Cornell University in 2003, the M.S. in

electrical engineering in 2005 from the University
of California, Berkeley. He is currently a PhD
candidate at the University of California, Berkeley.
He was a summer intern at AT&T Labs, the Palg
Alto Research Center, and the Broad Institute. His
research interests include wireless communicatio
information theory, and signal processing.

PLACE
PHOTO
HERE

16

Michael C. Gastpar Michael Gastpar (M’'04) re-
ceived the Dipl. El.-Ing. degree from the Swiss Fed-
eral Institute of Technology (ETH), Zirich, Switzer-
land, in 1997, the M. S. degree from the University
of lllinois at Urbana-Champaign, Urbana, IL, in
1999, and the Doctorat és Science degree from
the Swiss Federal Institute of Technology (EPFL),
Lausanne, Switzerland, in 2002, all in electrical
engineering. He was also a student in engineering
and philosophy at the University of Edinburgh, Ed-
inburgh, U.K., and the University of Lausanne.

He is currently an Associate Professor in the Departmenteaitical Engi-

neering and Computer Sciences at the University of Caid@grBerkeley. He
was a summer researcher in the Mathematics of Communisalepartment
at Bell Labs, Lucent Technologies, Murray Hill, NJ. His rasgh interests
are in network information theory and related coding anahaigorocessing
techniques, with applications to sensor networks and iseience. He won
the 2002 EPFL Best Thesis Award, an NSF CAREER award in 2002 aa
Okawa Foundation Research Grant in 2008.

Anand D. Sarwate Anand D. Sarwate (S99M09)
received B.S. degrees in electrical engineering and
computer science and mathematics from the Mas-
sachusetts Institute of Technology (MIT), Cam-
bridge, in 2002 and the M.S. and Ph.D. degrees
in electrical engineering in 2005 and 2008, respec-
tively, from the University of California, Berkeley.
He is currently a postdoctoral researcher at the
Information Theory and Applications Center at the
University of California, San Diego. His research in-
terests include information theory, distributed signal

processing, machine learning, communications, and raimoimalgorithms
for communications and signal processing in sensor nesvork

Dr. Sarwate received the Laya and Jerome B. Wiesner Studerward
from MIT, and the Samuel Silver Memorial Scholarship Awardi &Demetri
Angelakos Memorial Achievement Award from the EECS Departtat
University of California at Berkeley. He was awarded an NIBSEellowship
from 2002 to 2005. He is a member of Phi Beta Kappa and Eta Khjppa

PLACE
PHOTO
HERE

Anant Sahai Anant Sahai received the B.S. degree
from the University of California (UC), Berkeley
in 1994 and the S.M. and Ph.D. degrees from
the Massachusetts Institute of Technology (MIT),
Cambridge, in 1996 and 2001 respectively.

He joined the Department of Electrical Engi-
neering and Computer Sciences at UC Berkeley in
2002 and is affiliated with the Wireless Foundations
Center and the Berkeley Wireless Research Center.
In 2001, he spent a year as a Research Scientist
with the wireless startup Enuvis, developing adaptive

algorithms for extremely sensitive GPS receivers impleletnsing software-
defined radios. Prior to that, he was a graduate student atatheratory for
Information and Decision Systems at MIT.

His research interests are in wireless communication,asigrocessing,
information theory, and distributed control. He is paréely interested in
feedback, error exponents, and issues of spectrum sharing.



