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Abstract. Businesses (retailers) often offer personalized advertisements
(coupons) to individuals (consumers). While proving a customized shop-
ping experience, such coupons can provoke strong reactions from con-
sumers who feel their privacy has been violated. Existing models for
privacy try to quantify privacy risk but do not capture the subjective
experience and heterogeneous expression of privacy-sensitivity. We use a
Markov decision process (MDP) model for this problem. Our model cap-
tures different consumer privacy sensitivities via a time-varying state,
different coupon types via an action set for the retailer, and a cost for
perceived privacy violations that depends on the action and state. The
simplest version of our model has two states (“Normal” and “Alerted”),
two coupons (targeted and untargeted), and consumer behavior dynam-
ics known to the retailer. We show that the optimal coupon-offering strat-
egy for a retailer that wishes to minimize its expected discounted cost
is a stationary threshold-based policy. The threshold is a function of all
model parameters: the retailer offers a targeted coupon if their belief that
the consumer is in the “Alerted” state is below the threshold. We extend
our model and results to consumers with multiple privacy-sensitivity
states as well as coupon-dependent state transition probabilities.

Keywords: Privacy · Markov decision processes · Retailer-consumer
interaction · Optimal policies

1 Introduction

Programs such as retailer “loyalty cards” allow companies to automatically track
a customer’s financial transactions, purchasing behavior, and preferences. They
can then use this information to offer customized incentives, such as discounts on
related goods. Consumers may benefit from retailer’s knowledge by using more
of these targeted discounts or coupons while shopping. However, the coupon offer
may imply that the retailer has learned something sensitive or private about the
consumer (for example, a pregnancy [1]) – such violations may make consumers
skittish about purchasing from such retailers.
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However, modeling the privacy-sensitivity of a consumer is not always straight-
forward: widely-studied models for quantifying privacy risk using differential
privacy [2] or information theory [3] do not capture the subjective experience
and heterogeneous expression of consumer privacy. We introduce a framework
to model the consumer-retailer interaction problem and better understand how
retailers can develop coupon-offering policies that balances their revenue objec-
tives while being sensitive to consumer privacy concerns. The main challenge for
the retailer is that the consumer’s responses to coupons are not known a priori ;
furthermore, consumers do not “add noise” to their purchasing behavior as a
mechanism to stay private. Rather, the offer of a coupon may provoke a reaction
from the consumer, ranging from “indifferent” through “partially concerned” to
“creeped out.” This reaction is mediated by the consumer’s sensitivity level to
privacy violations, and it is these levels that we seek to model via a Markov deci-
sion process. In particular, the sensitivity of the consumers are often revealed
indirectly to the retailer through their purchasing patterns. We capture these
aspects in our model and summarize our main contributions below.

Main Contributions:We propose a partially-observed Markov decision process
(POMDP) model for this problem in which the consumer’s state encodes their
privacy sensitivity, and the retailer can offer different levels of privacy-violating
coupons. The simplest instance of our model is one with two states for the con-
sumer, denoted as “Normal” and “Alerted,” and two types of coupons: untar-
geted low privacy (LP) or targeted high privacy (HP). At each time, the retailer
may offer a coupon and the consumer transitions from one state to another
according to a Markov chain that is independent of the offered coupon. The
retailer suffers a cost that depends both on the type of coupon offered and the
state of the consumer. The costs reflect the advantage of offering targeted HP
coupons relative to untargeted LP ones while simultaneously capturing the risk
of doing so when the consumer is already “Alerted”.

Under the assumption that the retailer (via surveys or prior knowledge)
knows the statistics of the consumer Markov process, i.e., the likelihoods of
becoming “Alerted” and staying “Alerted”, and a belief about the initial con-
sumer state, we study the problem of determining the optimal coupon-offering
policy that the retailer should adopt to minimize the long-term discounted costs
of offering coupons. We show that the optimal stationary policy exists and it
is a threshold on the probability of the consumer being alerted; this threshold
is a function of all the model parameters. The simple model above is extended
to multiple consumer states and coupon-dependent transitions. We model the
latter via two Markov processes for the consumer, one for each type (HP or LP)
of coupon such that a persnickety consumer who is easily “Alerted” will be more
likely to do so when offered an HP (relative to LP) coupon. Our structural result
(a stationary optimal policy) holds for multiple states and coupon-dependent
transitions. While the MDP model used in this paper is simple, its application
to the problem of privacy cost minimization with privacy-sensitive consumers is
novel. In the conclusion we describe several other interesting avenues for future
work. Our results use many fundamental tools and techniques from the theory of
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MDPs through appropriate and meaningful problem modeling. We briefly review
the related literature in consumer privacy studies as well as MDPs.

Related Work: Several economic studies have examined consumer’s attitudes
towards privacy via surveys and data analysis including studies on the benefits
and costs of using private data (e.g., Aquisti and Grossklags in [4]). On the other
hand, formal methods such as differential privacy are finding use in modeling the
value of private data for market design [5] and for the problem of partitioning
goods with private valuation function amongst the agents [6]. In these models
the goal is to elicit private information from individuals. Venkitasubramaniam [7]
recently used an MDP model to study data sharing in control systems with time-
varying state. He explicitly quantifies privacy risk in terms of equivocation, an
information-theoretic measure, and his objective is to minimize the weighted sum
of the utility (benefit) that the system achieves by sharing data (e.g., with a data
collector) and the privacy risk. In our workwe do not quantify privacy risk directly;
instead the retailer learns about the privacy-sensitivity of the consumer indirectly
through the cost feedback. Our MDP’s state space is the privacy sensitivity of the
consumer. To the best of our knowledge, models capturing this aspect of consumer-
retailer interactions and the related privacy issues have not been studied before;
in particular, our work focuses on explicitly considering the consequence to the
retailer of the consumers’ awareness of privacy violations.

Markov decision processes (MDPs) have been widely used for decades across
many fields [8]; in particular, our formal model is related to problems in con-
trol with communication constraints [9,10] where state estimation has a cost.
However, our costs are action and state dependent and we consider a different
optimization problem. Classical state-search problems [11,12] also have optimal
threshold policies; however the retailer’s objective in our model is to minimize
cost, and not necessarily estimate the consumer state. Our model is most simi-
lar to Ross’s model of product quality control with deterioration [13], which was
more recently used by Laourine and Tong to study the Gilbert-Elliot channel
in wireless communications [14], in which the channel has two states and the
transmitter has two actions (to transmit or not). We cannot apply their results
directly due to our different cost structure, but use ideas from their proofs.
Furthermore, we go beyond these works to study privacy-utility tradeoffs in
consumer-retailer interactions with more than two states and action-dependent
transition probabilities. We apply more general MDP analysis tools to address
our formal behavioral model for privacy-sensitive consumers.

2 System Model

We model interactions between a retailer and a consumer via a discrete-time
system (see Fig. 1). At each time t, the consumer has a discrete-valued state
and the retailer may offer one of two coupons: high privacy risk (HP) or low
privacy risk (LP). The consumer responds by imposing a cost on the retailer
that depends on the coupon offered and its own state. For example, a consumer
who is “alerted” (privacy-aware) may respond to an HP coupon by refusing to
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shop at the retailer. The retailer’s goal is to decide which type of coupon to offer
at each time t to minimize its cost.

2.1 Consumer Model

Modeling Assumption 1 (Consumer’s State). We assume the consumer
is in one of a finite set of states that determine their response to coupons – each
state corresponds to a type of consumer behavior in terms of purchasing. The
consumer’s state evolves according to a Markov process.

For this paper, we primarily focus on the two-state case; the consumer may be
Normal or Alerted. Later we will extend this model to multiple consumer states.
The consumer state at time t is denoted by Gt ∈ {Normal,Alerted}. If a consumer
is in Normal state, the consumer is very likely to use coupons to make purchases.
However, in the Alerted state, the consumer is less likely to use coupons, since
it is more cautious about revealing information to the retailer. The evolution
of the consumer state is modeled as an infinite-horizon discrete time Markov
chain (Fig. 1). The consumer starts out in a random initial state unknown to
the retailer and the transition of the consumer state is independent of the action
of the retailer. A belief state is a probability distribution over possible states in
which the consumer could be. The belief of the consumer being in Alerted state
at time t is denoted by pt. We define λN,A = Pr[Gt = Alerted|Gt−1 = Normal]
to be the transition probability from Normal state to Alerted state and λA,A =
Pr[Gt = Alerted|Gt−1 = Alerted] to be the probability of staying in Alerted state
when the previous state is also Alerted. The transition matrix Λ of the Markov
chain can be written as

Λ =
(
1 − λN,A λN,A

1 − λA,A λA,A

)
. (1)

We assume the transition probabilities are known to the retailer; this may come
from statistical analysis such as a survey of consumer attitudes. The one step
transition function, defined by T (pt) = (1 − pt)λN,A + ptλA,A, represents the
belief that the consumer is in Alerted state at time t + 1 given pt, the Alerted
state belief at time t.

Modeling Assumption 2 (State Transitions). Consumers have an inertia
in that they tend to stay in the same state. Moreover, once consumers feel their
privacy is violated, it will take some time for them to come back to Normal state.

To guarantee Assumption 2 we consider transition matrices in (1) satisfying
λA,A ≥ 1 − λA,A, 1 − λN,A ≥ λN,A, and λN,A ≥ 1 − λA,A. Thus, by combining
the above three inequalities, we have λA,A ≥ λN,A.

2.2 Retailer Model

At each time t, the retailer can take an action by offering a coupon to the
consumer. We define the action at time t to be ut ∈ {HP, LP}, where HP denotes
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Fig. 1. Markov state transition model for a two-state consumer.

offering a high privacy risk coupon (e.g. a targeted coupon) and LP denotes
offering a low privacy risk coupon (e.g. a generic coupon). The retailer’s utility
is modeled by a cost (negative revenue) which depends on both the consumer’s
state and the type of coupon being offered. If the retailer offers an LP coupon,
it suffers a cost CL independent of the consumer’s state: offering LP coupons
does not reveal anything about the state. However, if the retailer offers an HP
coupon, then the cost is CHN or CHA depending on whether the consumer’s
state is Normal or Alerted. Offering an HP (high privacy risk, targeted) coupon
to a Normal consumer should incur a low cost (high reward), but offering an HP
coupon to an Alerted consumer should incur a high cost (low reward) since an
Alerted consumer is privacy-sensitive. Thus, we assume CHN ≤ CL ≤ CHA.

Under these conditions, the retailer’s objective is to choose ut at each time t
to minimize the total cost incurred over the entire time horizon. The HP coupon
reveals information about the state through the cost, but is risky if the consumer
is alerted, creating a tension between cost minimization and acquiring state
information.

2.3 The Minimum Cost Function

We define C(pt, ut) to be the expected cost acquired from an individual consumer
at time t where pt is the probability that the consumer is in Alerted state and
ut is the retailer’s action:

C(pt, ut) =
{
CL if ut = LP
(1 − pt)CHN + ptCHA if ut = HP

. (2)

Since the retailer knows the consumer state from the incurred cost only when an
HP coupon is offered, the state of the consumer may not be directly observable
to the retailer. Therefore, the problem is actually a Partially Observable Markov
Decision Process (POMDP) [15].

We model the cost of violating a consumer’s privacy as a short term effect.
We adopt a discounted cost model with discount factor β ∈ (0, 1). At each time
t, the retailer has to choose which action ut to take in order to minimize the
expected discounted cost over infinite time horizon. A policy π for the retailer
is a rule that selects a coupon to offer at each time. Given that the belief of
the consumer being in Alerted state at time t is pt and the policy is π, the
infinite-horizon discounted cost starting from t is
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V π,t
β (pt) = Eπ

[ ∞∑

i=t

βiC(pi, Ai)|pt

]
, (3)

where Eπ indicates the expectation over the policy π. The objective of the retailer
is equivalent to minimizing the discounted cost over all possible policies. We
define the minimum cost function starting from time t over all policies to be

V t
β (pt) = min

π
V π,t

β (pt) for all pt ∈ [0, 1]. (4)

We define pt+1 to be the belief of the consumer being in Alerted state at time
t+ 1. The minimum cost function V t

β (pt) satisfies the Bellman equation [15]:

V t
β (pt) = min

ut∈{HP,LP}
{V t

β,ut
(pt)} (5)

V t
β,ut

(pt) = βtC(pt, ut) + V t+1
β (pt+1|pt, ut). (6)

An optimal policy is stationary if it is a deterministic function of states, i.e.,
the optimal action at a particular state is the optimal action in this state at
all times. We define P = {[0, 1]} to be the belief space and U = {LP,HP} to
be the action space. In the context of our model, the optimal stationary policy
is a deterministic function mapping P into U . Since the problem is an infinite-
horizon, finite state, and finite action MDP with discounted cost, there exists an
optimal stationary policy [16] π∗ such that starting from time t,

V t
β (pt) = V π∗,t

β (pt). (7)

We only consider the optimal stationary policy because it is tractable and
achieves the same minimum cost as any optimal non-stationary policy.

By (5) and (6), the minimum cost function evolves as follows: if an HP coupon
is offered at time t, the retailer can perfectly infer the consumer state based on
the incurred cost. Therefore,

V t
β,HP(pt) = βtC(pt,HP) + (1 − pt)V t+1

β (λN,A) + ptV
t+1
β (λA,A). (8)

If an LP coupon is offered at time t, the retailer cannot infer the consumer state
from the cost since both Normal and Alerted consumer impose the same cost CL.
Hence, the discounted cost function can be written as

V t
β,LP(pt) = βtC(pt, LP) + V t+1

β (pt+1) = βtCL + V t+1
β (T (pt)). (9)

Correspondingly, the minimum cost function is given by

V t
β (pt) = min{V t

β,LP(pt), V
t
β,HP(pt)}. (10)

3 Optimal Stationary Policies

The first main result is a theorem providing the optimal stationary policy for
the two-state basic model in Sect. 2.
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Fig. 2. Discounted cost from by using different decision policies

Theorem 1. There exists a threshold τ ∈ [0, 1] such that the following policy is
optimal:

π∗(pt) =
{
LP if τ ≤ pt ≤ 1
HP if 0 ≤ pt ≤ τ

. (11)

More precisely, assume that δ = CHA − CHN + β(Vβ(λA,A) − V (λN,A)),

τ =

{
CL−(1−β)(CHN+βVβ(λN,A))

(1−β)δ T (τ) ≥ τ
CL+βλN,A(CHA+βVβ(λA,A))−(1−β(1−λN,A))(CHN+βVβ(λN,A))

(1−(λA,A−λN,A)β)δ T (τ) < τ
,

(12)
where for λN,A ≥ τ ,

Vβ(λN,A) = Vβ(λA,A) = CL/(1 − β) (13)

and for λN,A < τ ,

Vβ(λN,A) = (1 − λN,A)[CHN + βVβ(λN,A)] + λN,A[CHA + βVβ(λA,A)], (14)
Vβ(λA,A) = min

n≥0
{G(n)}, (15)

where

G(n) =
CL

1−βn

1−β + βn[T̄n(λA,A)(CHN + C(λN,A)) + Tn(λA,A)CHA]

1 − βn+1[T̄n(λA,A)
λN,Aβ

1−(1−λN,A)β + Tn(λA,A)]
, (16)

Tn(λA,A) =
(λA,A − λN,A)n+1(1 − λA,A) + λN,A

1 − (λA,A − λN,A)
(17)

T̄n(λA,A) = 1 − Tn(λA,A) (18)

C(λN,A) = β
(1 − λN,A)CHN + λN,ACHA

1 − (1 − λN,A)β
. (19)

The full proof of Theorem1 is in the extended version of this paper [17]. We
illustrate our policy’s performance by comparing its discounted cost to two other

anand.sarwate@rutgers.edu



Incentive Schemes for Privacy-Sensitive Consumers 365

Fig. 3. Threshold τ vs. β for different values of λA,A and λN,A
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Fig. 4. Threshold τ vs. β for different values of λA,A and λN,A

policies: a greedy policy which minimize the instantaneous cost at each decision
epoch and a lazy policy which the retailer only offers LP coupons. Figure 2 shows
the discounted cost averaged over 1000 independent MDPs versus the time t for
these different decision policies. The illustration demonstrates that the proposed
threshold policy performs better than the greedy policy and the lazy policy.

Figure 3a shows the optimal threshold τ as a function of λN,A for three fixed
choices of λA,A. The threshold increases when λN,A is small because the con-
sumer is less likely to transition from Normal to Alerted so the retailer can more
safely offer an HP coupon. When λN,A gets larger, the consumer is more likely
to transition from Normal to Alerted, so the retailer is more conservative and
decreases the threshold for offering an LP coupon. When λN,A ≥ κ, the retailer
uses κ as the threshold for offering an HP coupon. With increasing λA,A, the
threshold τ decreases. On the other hand, for fixed CHN and CHA, Fig. 3b shows
that the threshold τ increases as the cost of offering an LP coupon increases, mak-
ing it more desirable to take a risk and offer an HP coupon. Figure 4 shows the
relationship between the discount factor β and the threshold τ as functions of
transition probabilities. Figure 4a shows that τ increases as β increases. When β
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is small, the retailer values the present rewards more than future rewards so it is
conservative in offering HP coupons to avoid low costs. Figure 4b shows that the
threshold is high when λA,A is large or λN,A is small. A high λA,A value indicates
that a consumer is more likely to remain in Alerted state. The retailer is willing
to play aggressively since once the consumer is in alerted state, it can take a
very long time to transition back to Normal state. A low λN,A value implies that
the consumer is not very privacy sensitive. Thus, the retailer tends to offer HP
coupons to reduce cost. One can also observe in Fig. 4b that the threshold τ
equals to κ after λN,A exceeds the ratio κ. This is consistent with results shown
in Fig. 3.

4 Consumer with Multi-level Alerted States

We extend our model to multiple Alerted states: suppose the consumer state
at time t is Gt ∈ {Normal,Alerted1, . . .AlertedK}, where a consumer in Alertedk
state is even more cautious about targeted coupons than one in Alertedk−1 state.
Define the transition matrix

Λ =

⎛

⎜⎜⎜⎝

λN,N λN,A1 . . . λN,AK

λA1,N λA1,A1 . . . λA1,AK

...
...

. . .
...

λAK ,N λAK ,A1 . . . λAK ,AK

⎞

⎟⎟⎟⎠
. (20)

We denote ēi to be the ith row of the transition matrix (20). At each time t, the
retailer can offer either an HP or an LP coupon. We define CHN , CHA1 , . . . , CHAK

to be the costs of the retailer when an HP coupon is offered while the state of
the consumer is Normal, Alerted1, . . . ,AlertedK , respectively. If an LP coupon is
offered, no matter in which state, the retailer gets a cost of CL. We assume
that CHAK ≥ · · · ≥ CHA1 ≥ CL ≥ CHN . The belief of the consumer being in
Normal, Alerted1, . . . ,AlertedK state at time t is defined by pN,t, pA1,t, . . . , pAK ,t,
respectively. The expected cost at time t has the following expression:

C(p̄t, ut) =
{
CL if ut = LP
p̄T
t C̄ if ut = HP

, (21)

where p̄t = (pN,t, pA1,t, . . . , pAK ,t)T and C̄ = (CHN , CHA1 , . . . , CHAK )T . Assume
that the retailer has perfect information about the belief of the consumer state,
the cost function evolves as follows: by using an LP coupon at time t,

V t
β,LP(p̄t) = βtCL + V t+1

β (p̄t+1) = βtCL + V t+1
β (T (p̄t)), (22)

where T (p̄t) = p̄T
t Λ is the one step Markov transition function. By using an HP

coupon at time t,

V t
β,HP(p̄t) = βtp̄T

t C̄+ p̄T
t

⎛

⎜⎜⎜⎝

V t+1
β (ē1)

V t+1
β (ē2)

...
V t+1

β (ēK+1)

⎞

⎟⎟⎟⎠
. (23)
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Fig. 5. Optimal policy region for three-state consumer.

Therefore, the minimum cost function is given by (10). In this problem, since
the instantaneous costs are nondecreasing with states when the action is fixed
and the evolution of belief state is the same for both LP and HP, the existence
of an optimal stationary policy with threshold property for finite many states is
guaranteed by Proposition 2 in [18]. The optimal stationary policy for a three-
state consumer model is illustrated in Fig. 5. For fixed costs, the plot shows
the partition of the belief space based on the optimal actions and reveals that
offering an HP coupon is optimal when pN,t is high.

5 Consumers with Coupon-Dependent Transition

Generally, consumers’ reactions to HP and LP coupons are different. To be more
specific, a consumer is likely to feel less comfortable when being offered a coupon
on medication (HP) than food (LP). Thus, we assume that the Markov transition
probabilities are dependent on the coupon offered. If an LP\HP coupon is offered,
the state transition follows the Markov chain

ΛLP =
(
1 − λN,A λN,A

1 − λA,A λA,A

)
, ΛHP =

(
1 − λ′

N,A λ′
N,A

1 − λ′
A,A λ′

A,A

)
, (24)

respectively. According to the model in Sect. 2, λA,A > λN,A,λ′
A,A > λ′

N,A.
Moreover, we assume that offering an HP coupon will increase the probability
of transition to or staying at Alerted state. Therefore, λ′

A,A > λA,A and λ′
N,A >

λN,A. The minimum cost function evolves as follows:

V t
β,HP(pt) = βtC(pt,HP) + (1 − pt)V t+1

β (λ′
N,A) + ptV

t+1
β (λ′

A,A)

V t
β,LP(pt) = βtCL + V t+1

β (pt+1) = βtCL + V t+1
β (T (pt)),

where T (pt) = λN,A(1−pt)+λA,Apt is the one step transition defined in Sect. 2.

Theorem 2. Given action dependent transition matrices ΛLP and ΛHP, the
optimal stationary policy has threshold structure.

A full proof of Theorem2 is in the extended version of this paper [17]. Figure 6
shows the effect of costs on the threshold τ . The threshold for offering an HP
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Fig. 6. Optimal τ with/without coupon dependent transition probabilities.

coupon to a consumer with coupon dependent transition probabilities is lower
than our original model without coupon-dependent transition probabilities. The
retailer can only offer an LP coupon with certain combination of costs; we call
this the LP-only region. It can be seen that the LP-only region for the coupon-
independent transition case is smaller than that for the coupon-dependent tran-
sition case since for the latter, the likelihood of being in an Alerted state is higher
for the same costs.

6 Conclusion

We proposed a POMDP model to capture the interactions between a retailer and
a privacy-sensitive consumer in the context of personalized shopping. The retailer
seeks to minimize the expected discounted cost of violating the consumer’s pri-
vacy. We showed that the optimal coupon-offering policy is a stationary policy
that takes the form of an explicit threshold that depends on the model parame-
ters. In summary, the retailer offers an HP coupon when the Normal to Alerted
transition probability is low or the probability of staying in Alerted state is
high. Furthermore, the threshold optimal policy also holds for consumers whose
privacy sensitivity can be captured via multiple alerted states as well as for the
case in which consumers exhibit coupon-dependent transition. Our work suggests
several interesting directions for future work: cases where retailer has additional
uncertainty about the state, for example due to randomness in the received costs,
game theoretic models to study the interaction between the retailer and strate-
gic consumers, and more generally, understanding the tension between acquiring
information about the consumers and maximizing revenue.
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