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Designing Incentive Schemes for
Privacy-Sensitive Users

Chong Huang∗, Lalitha Sankar†, and Anand D. Sarwate‡

Abstract. Businesses (retailers) often wish to offer personalized advertisements
(coupons) to individuals (consumers), but run the risk of strong reactions from con-
sumers who want a customized shopping experience but feel their privacy has been
violated. Existing models for privacy such as differential privacy or information
theory try to quantify privacy risk but do not capture the subjective experience
and heterogeneous expression of privacy-sensitivity. We propose a Markov deci-
sion process (MDP) model to capture (i) different consumer privacy sensitivities
via a time-varying state; (ii) different coupon types (action set) for the retailer;
and (iii) the action-and-state-dependent cost for perceived privacy violations. For
the simple case with two states (“Normal” and “Alerted”), two coupons (targeted
and untargeted) model, and consumer behavior statistics known to the retailer,
we show that a stationary threshold-based policy is the optimal coupon-offering
strategy for a retailer that wishes to minimize its expected discounted cost. The
threshold is a function of all model parameters; the retailer offers a targeted coupon
if their belief that the consumer is in the ”Alerted” state is below the threshold.
We extend this two-state model to consumers with multiple privacy-sensitivity
states as well as coupon-dependent state transition probabilities. Furthermore, we
study the case with imperfect (noisy) cost feedback from consumers and uncertain
initial belief state.

Keywords-Privacy, Markov decision processes, retailer-consumer interaction,
optimal policies.

1 Introduction

Programs such as retailer “loyalty cards” allow companies to automatically track a cus-
tomer’s financial transactions, purchasing behavior, and preferences. They can then use
this information to offer customized incentives, such as discounts on related goods. Con-
sumers may benefit from retailer’s knowledge by using more of these targeted discounts
or coupons while shopping. However, in some cases the coupon offer implies that the
retailer has learned something sensitive or private about the consumer. For example,
as noted by Hill (2012), a retailer could infer a consumer’s pregnancy. Such violations
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may make consumers skittish about purchasing from such retailers.

However, modeling the privacy-sensitivity of a consumer is not always straightfor-
ward: widely-studied models for quantifying privacy risk using differential privacy or
information theory do not capture the subjective experience and heterogeneous ex-
pression of consumer privacy. The goal of this paper is to introduce a framework to
model the consumer-retailer interaction problem and better understand how retailers
can develop coupon-offering policies that balance their revenue objectives while being
sensitive to consumer privacy concerns. The main challenge for the retailer is that the
consumer’s responses to coupons are not known a priori; furthermore, consumers do not
“add noise” to their purchasing behavior as a mechanism to stay private. Rather, the
offer of a coupon may provoke a reaction from the consumer, ranging from “unaffected”
to “ambiguous” or “partially concerned” to “creeped out.” This reaction is mediated
by the consumer’s sensitivity level to privacy violations, and it is these levels that we
seek to model via a Markov decision process. These privacy-sensitivity states of the
consumers are often revealed to the retailer through their purchasing patterns. In the
simplest case, they may accept or reject a targeted coupon. We capture these aspects
in our model and summarize our main contributions below.

1.1 Main Contributions

We propose a partially-observed Markov decision process (POMDP) model for this
problem in which the consumer’s state encodes their privacy sensitivity, and the retailer
can offer different levels of privacy-violating coupons. The simplest instance of our
model is one with two states for the consumer, denoted as “Normal” and “Alerted,”
and two types of coupons: untargeted low privacy (LP) or targeted high privacy (HP).
At each time, the retailer may offer a coupon and the consumer transitions from one
state to another according to a Markov chain that is independent of the offered coupon.
The retailer suffers a cost that depends both on the type of coupon offered and the
state of the consumer. The costs reflect the advantage of offering targeted HP coupons
relative to untargeted LP ones while simultaneously capturing the risk of doing so when
the consumer is already “Alerted.”

Under the assumption that the retailer (via surveys or prior knowledge) knows the
statistics of the consumer Markov process, i.e., the likelihoods of becoming “Alerted”
and staying “Alerted,” and a belief about the initial consumer state, we study the
problem of determining the optimal coupon-offering policy that the retailer should adopt
to minimize the long-term discounted costs of offering coupons. We extend the simple
model above to multiple states and coupon-dependent transitions. We model the latter
via two Markov processes for the consumer, one for each type (HP or LP) of coupon
such that a persnickety consumer who is easily “Alerted” will be more likely to do so
when offered an HP (relative to LP) coupon. Furthermore, for noisy costs, we propose
a heuristic method to compute the decision policy. Moreover, if the initial belief state
is unknown to the retailer, we use a Bayesian model to estimate the belief state. Our
main results can be summarized as follows:
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1. There exists an optimal, stationary, threshold-based policy for offering coupons
such that a HP coupon is offered only if the belief of being in the “Alerted” state
at each interaction time is below a certain threshold; this threshold is a function
of all the model parameters. This structural result holds for multiple states and
coupon-dependent transitions.

2. The threshold for offering a targeted HP coupon increases in the following cases:

(a) once “Alerted,” the consumer remains so for a while – the retailer is more
willing to take risks since the the consumer takes a while to transition to
“Normal”;

(b) the consumer is very unlikely to get “Alerted”;

(c) the cost of offering an untargeted LP coupon is high and close to the cost of
offering a targeted HP coupon to an “Alerted” consumer; and

(d) when the retailer does not discount the future heavily (future rewards nearly
as important as present), the retailer stands to benefit by offering HP coupons
for a larger set of beliefs about the consumer’s state. Conversely, when the
retailer discounts the future heavily, it values the present rewards more than
future rewards. Thus, the retailer tends to play conservatively so that it will
not “creep out” the consumer in the present.

3. For the coupon-dependent Markov model for the consumer, the threshold is smaller
than for the non-coupon dependent case which encapsulates the fact that highly
sensitive consumers will force the retailers to behave more conservatively.

4. By adopting a heuristic threshold policy computed by the mean value of costs,
the retailer can minimize the discounted cost effectively even if costs are noisy.
Moreover, the Bayesian approach helps the retailer to estimate the consumer state
when the initial belief state is unknown.

Our results use many fundamental tools and techniques from the theory of MDPs
through appropriate and meaningful problem modeling. We briefly review the related
literature in consumer privacy studies as well as MDPs.

1.2 Related Work

Several economic studies have examined consumers’ attitudes towards privacy via sur-
veys and data analysis including studies on the benefits and costs of using private data
(e.g., Aquisti, 2010). However, to date, no formal model has been proposed that cap-
tures consumers’ privacy sensitivity. Most computational and theoretical frameworks
for addressing privacy-utility tradeoffs with economic actors involve users trying to con-
trol the amount of private information disclosed. For example, differential privacy (see
Dwork, 2011) has been used for modeling the value of private data for market design
(see Ghosh et al., 2013) and partitioning goods with private valuation functions (e.g.,
Hsu et al., 2013). Information-theoretic measures of privacy leakage have been used to
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study competition among data holders in a model for utility companies (see Sankar et
al., 2011). However, the private-information disclosure model neither captures interac-
tions between consumers and retailers nor temporal dynamics of consumers’ (subjective)
privacy sensitivities.

In our model, consumers express their privacy sensitivity through behavior, as op-
posed to explicitly controlling privacy leakage through disclosure of private information.
We model interactions between a retailer and a consumer via a discrete-time system. At
each time, the consumer has a discrete-valued state and the retailer may offer different
types of coupons. The consumer responds by imposing a cost on the retailer that de-
pends on the coupon offered and its own state. This model captures different consumer
privacy sensitivities and external retailer action via a time-varying state and different
coupon types (action set), respectively. Moreover, the subjective experience and hetero-
geneous expression of privacy sensitivity is captured via the action-and-state-dependent
cost for perceived privacy violations.

Markov decision processes (MDPs) are common discrete time mathematical models
for decision making when observable outputs are partially dependent on internal states
and exterior inputs. It has been widely used for decades across many fields (see Fein-
berg et al., 2002 and Puterman, 2005); in particular, our model is related to problems
in control with communication constraints (e.g., Lipsa et al., 2011 and Nayyar, et al.,
2013) where state estimation has a cost. Our costs are action and state dependent and
we consider a different optimization problem. Classical target-search problems (e.g.,
Macphee et al., 1995) also have optimal policies that are thresholds, but in our model
the retailer goal is not to estimate the consumer state but to minimize cost. The model
we use is most similar to Ross’s model of product quality control with deterioration (see
Ross, 1971), which was more recently used by Laourine and Tong (2010) to study the
Gilbert-Elliot channel in wireless communications, in which the channel has two states
and the transmitter has two actions (transmit or not). We cannot apply their results
directly due to our different cost structure, but use ideas from their proofs. Further-
more, we go beyond these works to study privacy-utility tradeoffs in consumer-retailer
interactions with more than two states and action-dependent transition probabilities.
We apply more general MDP analysis tools to address our formal behavioral model
for privacy-sensitive consumers. In the context of privacy, MDPs have been used by
Venkitasubramaniam (2013) to study privacy and utility trade-off in control systems
with time-varying state by quantifying privacy via the information-theoretic equivoca-
tion function. However, in his paper, the state is really the state of a control system
rather than the state of privacy sensitivity of a consumer. In our work we do not quan-
tify privacy loss directly; instead we model privacy-sensitivity states and resulting user
behavior via MDPs to determine interaction policies that can benefit both consumers
and retailers. To the best of our knowledge, a formal model for consumer-retailer inter-
actions and the related privacy issues have not been studied before; in particular, our
work focuses on explicitly considering the consequence to the retailer of the consumers’
awareness of privacy violations.

While the MDP model used in this paper is simple, its application to the problem
of revenue maximization with privacy-sensitive consumers is novel. We show that the
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optimal stationary policy exists and it is a threshold on the probability of the consumer
being alerted. We extend the model to cases of consumers with multiple states and
consumers with coupon-dependent transition probabilities. Our basic model assumes
the probability of the consumer being alerted can be inferred from the received costs.
When costs are stochastic, we use a Bayesian estimator to track this probability and
propose a heuristic coupon offering policy for this setting. In the conclusion we describe
several other interesting avenues for future work.

The paper is organized as follows: Section 2 introduces the system model and its
extensions. The main result for known consumer statistics is presented in Section 3.
Section 4 and 5 discuss optimal stationary policy results for consumers with coupon
dependent response and noisy costs with unknown initial belief, respectively. Finally,
some concluding remarks and future work are provided in Section 6.

2 System Model

We model interactions between a retailer and a consumer via a discrete-time system
(Figure 1). At each time t, the consumer has a discrete-valued state and the retailer
may offer one of two coupons: high privacy risk (HP) or low privacy risk (LP). We
assume a sophisticated consumer who can distinguish whether a coupon is HP or LP
and responds to the personalized coupon by imposing a cost on the retailer that depends
on the coupon offered and its own state. For example, a consumer who is “Alerted”
(privacy-aware) may respond to an HP coupon by imposing a high cost to the retailer,
such as reducing purchases at the retailer. The retailer’s goal is to decide which type of
coupon to offer at each time t to minimize its cost.

2.1 Two-State Consumer with Coupon Independent Transitions.

Consumer Model

Model Assumption 1. (Consumer’s state) We model the consumer’s response to
coupons by assuming them to be in one of several states. Each state corresponds to a
type of consumer behavior in terms of purchasing (Privacy sensitivity).

For this paper, we first focus on the two-state case; the consumer may be Normal or
Alerted. Later we will extend this model to multiple consumer states, consumer with
coupon dependent response, and unknown initial consumer state cases. The consumer
state at time t is denoted by Gt ∈ {Normal,Alerted}. If a consumer is in Normal state,
the consumer is less sensitive to coupons from the retailer in terms of privacy. However,
in the Alerted state, the consumer is likely to be more sensitive to coupons offered by
the retailer, since it is more cautious about revealing information to the retailer. The
evolution of the consumer state is modeled as an infinite-horizon discrete time Markov
chain (Figure 1). The consumer starts out in a random initial state unknown to the
retailer and the transition of the consumer state is independent of the action of the
retailer. A belief state is a probability distribution over possible states in which the
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consumer could be. The belief of the consumer being in Alerted state at time t is
denoted by pt. We define λN,A = Pr[Gt = Alerted|Gt−1 = Normal] to be the transition
probability from Normal state to Alerted state and λA,A = Pr[Gt = Alerted|Gt−1 =
Alerted] to be the probability of staying in Alerted state when the previous state is also
Alerted. The transition matrix Λ of the Markov chain can be written as

Λ =

(
1− λN,A λN,A
1− λA,A λA,A

)
. (1)

We assume the transition probabilities are known to the retailer; this may come from
statistical analysis such as a survey of consumer attitudes. The one step transition
function, defined by

T (pt) = (1− pt)λN,A + ptλA,A, (2)

represents the belief that the consumer is in Alerted state at time t + 1 given pt, the
Alerted state belief at time t.

Model Assumption 2. (State transitions) Consumers have an inertia in that they
tend to stay in the same state. Moreover, once consumers feel their privacy is violated,
it will take some time for them to come back to Normal state.

The above assumption implies λA,A ≥ 1 − λA,A, 1 − λN,A ≥ λN,A, and λN,A ≥
1− λA,A. Thus, by combining the above three inequalities, we have λA,A ≥ λN,A.

Retailer Model

At each time t, the retailer can take an action by offering a coupon to the consumer.
We define the action at time t to be ut ∈ {HP, LP}, where HP denotes offering a high
privacy risk coupon (e.g., a targeted coupon) and LP denotes offering a low privacy risk
coupon (e.g., a generic coupon). The retailer’s utility is modeled by a cost (negative
revenue) which depends on the consumer’s state and the type of coupon being offered.
If the retailer offers an LP coupon, it suffers a cost CL independent of the consumer’s
state: offering LP coupons does not reveal anything about the state. However, if the
retailer offers an HP coupon, then the cost is CHN or CHA depending on whether the
consumer’s state is Normal or Alerted. Offering an HP (high privacy risk, targeted)
coupon to a Normal consumer should incur a low cost (high reward), but offering an HP
coupon to an Alerted consumer should incur a high cost (low reward) since an Alerted
consumer is privacy-sensitive. Thus, we assume CHN ≤ CL ≤ CHA.

Under these conditions, the retailer’s objective is to choose ut at each time t to
minimize the total cost inccured over the entire time horizon. The HP coupon reveals
information about the state through the cost, but is risky if the consumer is alerted,
creating a tension between cost minimization and acquiring state information.
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Figure 1: Table of costs to the retailer for offering LP and HP coupons in each privacy
sensitive state of the consumer between which the state transitions under a Markov
model

Minimum Cost Function

We define C(pt, ut) to be the expected cost acquired from an individual consumer at
time t where pt is the probability that the consumer is in Alerted state and ut is the
retailer’s action:

C(pt, ut) =

{
CL if ut = LP
(1− pt)CHN + ptCHA if ut = HP

. (3)

Since the retailer knows the consumer state from the incurred cost only when an HP
coupon is offered, the state of the consumer may not be directly observable to the
retailer. Therefore, the problem is actually a Partially Observable Markov Decision
Process (POMDP).

We model the cost of violating a consumer’s privacy as a short term effect. Thus, we
adopt a discounted cost model with discount factor β ∈ (0, 1). We define P = {[0, 1]}
and U = {LP,HP} to be the belief space and the action space, respectively. At each time
t, the retailer has to choose which action ut to take in order to minimize the expected
discounted cost over infinite horizon. A policy π for the retailer is a rule that selects
a coupon to offer at each time, i.e., π : P → U . Thus, given that the belief of the
consumer being in Alerted state at time t is pt and the policy is π, the infinite-horizon
discounted cost starting from t is

V π,tβ (pt) = Eπ

[ ∞∑
i=t

βiC(pi, ui)|pt

]
, (4)

where Eπ indicates the expectation over the policy π. The objective of the retailer is
equivalent to minimizing the discounted cost over all possible policies. Thus, we define
the minimum cost function starting from time t over all policies to be

V tβ (pt) = min
π
V π,tβ (pt) for all pt ∈ [0, 1]. (5)

We define V tβ,ut(pt) to be the infinite-horizon discounted cost starting from t with
initial action ut and pt+1 to be the belief of the consumer being in Alerted state at time
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t+ 1. The minimum cost function V tβ (pt) satisfies the Bellman equation (see Bertsekas,
1995):

V tβ (pt) = min
ut∈{HP,LP}

{V tβ,ut(pt)}, (6)

V tβ,ut(pt) = βtC(pt, ut) + V t+1
β (pt+1|pt, ut). (7)

An optimal policy is stationary if it is a deterministic function of states, i.e., the
optimal action at a particular state is the optimal action in this state at all times. In the
context of our model, the optimal stationary policy is a deterministic and time invariant
function mapping P into U . Since the problem is an infinite-horizon, finite state and
finite action POMDP with discounted cost, finding an optimal strategy to this problem
is equivalent to solving an associated MDP problem in belief space (see Bonet, 2002),
which is an infinite-horizon discounted MDP with finite action space and uncountably
infinite state space. By Theorem 6.3 and its generalization in Ross (1992), there exists
an optimal stationary policy π∗ in the belief space such that starting from time t,

V tβ (pt) = V π
∗,t

β (pt). (8)

Thus, only the optimal stationary policy is considered because it is tractable and
achieves the same minimum cost as any optimal non-stationary policy.

By (6) and (7), the minimum cost function evolves as follows. If an HP coupon
is offered at time t, the retailer can perfectly infer the consumer state based on the
incurred cost. Therefore,

V tβ,HP(pt) = βtC(pt,HP) + (1− pt)V t+1
β (λN,A) + ptV

t+1
β (λA,A). (9)

If an LP coupon is offered at time t, the retailer cannot infer the consumer state from
the cost since both Normal and Alerted consumer impose the same cost CL. Hence, the
discounted cost function can be written as

V tβ,LP(pt) = βtC(pt, LP) + V t+1
β (pt+1)

= βtCL + V t+1
β (T (pt)). (10)

Correspondingly, the minimum cost function is given by

V tβ (pt) = min{V tβ,LP(pt), V
t
β,HP(pt)}. (11)

In the sequel, we also consider the following value functions in addition to those defined
above. For notational clarity, we define them all here.

• V t∼kβ (p): the minimum cost when the decision horizon starts from t and only
spans k stages with initial belief p at time t.

• V t∼kβ,ut
(p): the minimum cost when the decision horizon starts from t and only

spans k stages with initial belief p and initial action ut.

• Vβ(p): the minimum cost function starting from t = 0.

We now describe some simple extensions of this basic model.
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2.2 Consumer with Multi-Level Alerted States

In this section, the case that the consumer has multiple Alerted states is studied. With-
out loss of generality, we define Gt ∈ {Normal,Alerted1, . . .AlertedK} to be the con-
sumer state at time t. If the consumer is in Alertedk state, it is even more cautious
about coupons than in Alertedk−1 state. Beliefs of the consumer being in Normal,
Alerted1, . . . ,AlertedK state at time t are defined by p̄t = (pN,t, pA1,t, . . . , pAK ,t)

T .
At each time t, the retailer can offer either an HP or an LP coupon. Costs of the
retailer when an HP coupon is offered while the state of the consumer is Normal,
Alerted1, . . . ,AlertedK are defined by C̄ = (CHN , CHA1

, . . . , CHAK )T . If an LP coupon
is offered, no matter in which state, the retailer gets a cost of CL. We assume that
CHAK ≥ · · · ≥ CHA1

≥ CL ≥ CHN . The minimum cost function evolves as follows:

V tβ (p̄t) = min{V tβ,LP(p̄t), V
t
β,HP(p̄t)}, (12)

where V tβ,LP(p̄t) = βtCL+V t+1
β (p̄t+1) and V tβ,HP(p̄t) = βtp̄Tt C̄+V t+1

β (p̄t+1) represents
the cost of offering an LP and an HP coupon, respectively. This model can be generalized
to consumer with finitely many states.

2.3 Consumer with Coupon Dependent Transitions

In the previous formulations, we assume that the consumer’s state transition is inde-
pendent of the retailer’s action. A natural extension is the case where the action of the
retailer can affect the dynamics of the consumer state evolution (Figure 2). Generally,
a consumer’s reactions to HP and LP coupons are different. For example, a consumer
is likely to feel less comfortable when being offered a coupon on medication (HP) than
food (LP). Thus, in Section 4, we assume that the Markov transition probabilities are
dependent on the coupon offered with transition matrix given by ΛLP(ΛHP), where ΛLP

and ΛHP are defined as:

ΛLP =

(
1− λN,A λN,A
1− λA,A λA,A

)
,ΛHP =

(
1− λ′N,A λ′N,A
1− λ′A,A λ′A,A

)
. (13)

Thus, the minimum cost function is given by (11), where V tβ,LP(pt) = βtC(pt, LP) +

V t+1
β (T (pt)) and V tβ,HP(pt) = βtC(pt,HP) + (1− pt)V t+1

β (λ′N,A) + ptV
t+1
β (λ′A,A) denotes

the cost function of using an LP coupon and an HP coupon, respectively. T (pt) is the
one step transition given by T (pt) = λN,A(1− pt) + λA,Apt.

2.4 Policies under Noisy Cost Feedback and Uncertain Initial Belief

Consider a setting in which the feedback regarding the cost may be noisy, e.g., the
cost incurred by the consumer’s response to the coupon is not deterministic. For each
individual consumer, the state transition is independent of the action of the retailer.
For given state Gt and action ut, define the distribution of observing a cost Ct = c to
be f(c|Gt, ut). In this case, the threshold policy computed using costs might not be
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Figure 2: Coupon type (HP or LP) dependent Markov state transition model for the
consumer.

optimal. Moreover, if the initial belief is unknown to the retailer, it has to estimate the
consumer state before making decision. Thus, we propose some alternative approaches
to decide which coupon to offer when those costs are random. A heuristic approach to
deal with the randomized cost is to use the threshold τ computed by the mean value
of costs. Furthermore, the estimation of consumer belief state pt or the actual state
Gt is updated by the maximum a posteriori rule (see Gelman et al., 2014). After the
estimation process, the retailer decides which coupon to offer based on the threshold
policy given in Section 3.

2.5 Summary of Main Results

For the problems described in Subsection 2.1, 2.2, and 2.3, given all system parameters,
we show the following:

• there exists an optimal stationary solution which has a single threshold property
and

• the threshold only depends on the system parameters, i.e., transition probabilities
and instantaneous cost associated with each type of coupon.

This means by adopting the optimal policy, the retailer will offer an HP coupon if pt is
less than some threshold and offer an LP if pt is above the threshold.

For the model described in Subsection 2.3, we assume that cost feedbacks are noisy
and consumer belief state is unknown to the retailer. For this model:

• we design a heuristic threshold policy when the received costs are noisy.

• a Bayesian estimation approach is proposed to estimate the actual state or the
belief state of the consumer when the initial state is unknown to the retailer.
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3 Optimal Policies with Known Consumer Statistics

In this section, we consider the basic formulation as well as the first three extensions.
First, we assume that there is only one retailer and one consumer in the system and the
state transition of the consumer is independent of the coupon offered. The evolution of
the minimum cost function is given in (9), (10), and (11).

3.1 Properties of Minimum Cost Function

Lemma 1. Notice that V t∼kβ (p) is the minimum cost when the decision horizon starts
from t and only spans k stages with initial belief p at time t, given a time invariant
action set ui ∈ U = {LP,HP}, for any i = 0, 1, . . . , V t∼kβ (p) = βV t−1∼kβ (p).

Proof. By (5) and ui ∈ {LP,HP} for any i = 0, 1, . . ..

V t∼kβ (p) = min
π

Eπ

[
t+k−1∑
i=t

βiC(pi, ui)|pt = p

]

= βmin
π

Eπ

[
t+k−2∑
i=t−1

βiC(pi, ui)|pt−1 = p

]
= βV t−1∼kβ (p).

(14)

By using induction on t, we can easily prove V t∼kβ (p) = βV t−1∼kβ (p) = · · · = βtV 0∼k
β (p).

Lemma 2. The minimum cost function V tβ (p) is a concave and non-decreasing function
of p.

Proof. We prove these properties by induction. Remember that V t∼kβ,ut
(p) is the minimum

cost when the decision horizon starts from t and only spans k stages with initial belief
p and initial action ut. For k = 1,

V t∼kβ (p) = min{CL, (1− p)CHN + pCHA}, (15)

which is a concave function of p. For k = n − 1, assume that V t∼kβ (p) is a con-

cave function. Then, for k = n, since V t∼n−1β (p) is concave and V t∼kβ,LP(p) = βtCL +

V t+1∼n−1
β (T (p)), by the definition of concavity and Lemma 1, we can conclude that

V t∼kβ,LP(p) is concave. Furthermore, V t∼kβ,HP(p) is an affine function of p, so V t∼kβ (p) =

min{V t∼kβ,LP(p), V t∼kβ,HP(p)} is a concave function of p. Taking k → ∞, V t∼kβ (p) → V tβ (p),

which implies V tβ (p) is a concave function.

Next, we prove the non-decreasing property of the minimum cost function. For
k = 1, as shown in Equation (15), it is a non-decreasing function of p. Assume that
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V t∼kβ (p) is a non-decreasing function for k = n− 1. For k = n, Let p1 ≥ p2,

V t∼kβ,LP(p1)− V t∼kβ,LP(p2) (16)

= β(V t∼n−1β (T (p1))− V t∼n−1β (T (p2))) (17)

= β(V t∼n−1β ((λA,A − λN,A)p1 + λN,A)

− V t∼n−1β ((λA,A − λN,A)p2 + λN,A))) (18)

≥ 0. (19)

By using the same technique, we can prove that given p2 − p1 ≤ 0, CHN − CHA ≤
0 and V t∼k−1β (λN,A)− V t∼k−1β (λA,A) ≤ 0,

V t∼kβ,HP(p1)− V t∼kβ,HP(p2) ≥ 0. (20)

Since V t∼kβ (pt) = min{V t∼kβ,LP(p), V t∼kβ,HP(p)}, it is the minimum of two non-decreasing

functions. Therefore, V t∼kβ (p) is non-decreasing. By taking k → ∞, V t∼kβ (p) → V tβ (p).

Thus, V tβ (p) is a non-decreasing function.

Lemma 3. Let ΦHP be the set of values of pt for which offering an HP coupon is the
optimal action at time t. Then, ΦHP is a convex set.

Proof. Since ΦHP = {p ∈ [0, 1], V tβ (p) = V tβ,HP(p)}, assume that pt = apt,1 + (1− a)pt,2
in which pt,1, pt,2 ∈ ΦHP and a ∈ [0, 1], V tβ (pt) can be written as:

V tβ (pt) = V tβ (apt,1 + (1− a)pt,2) (21)

≥ aV tβ (pt,1) + (1− a)V tβ (pt,2) (22)

= aV tβ,HP(pt,1) + (1− a)V tβ,HP(pt,2) (23)

= a[(1− pt,1)[βtCHN + βV tβ (λN,A)] + pt,1[βtCHA + βV tβ (λA,A)]]

+ (1− a)[(1− pt,2)[βtCHN + βV tβ (λN,A)] + pt,2[βtCHA + βV tβ (λA,A)]]

(24)

= V tβ,HP(apt,1 + (1− a)pt,2). (25)

Thus, we have shown that:

V tβ (pt) ≥ V tβ,HP(apt,1 + (1− a)pt,1) = V tβ,HP(pt). (26)

By the definition of V tβ (pt) in (11), V tβ (pt) ≤ V tβ,HP(pt). Therefore, V tβ,HP(pt) = V tβ (pt),
which implies ΦHP is convex.

3.2 Optimal Stationary Policy Structure

Theorem 1. There exists a threshold τ ∈ [0, 1] such that the following policy is optimal:

π∗(pt) =

{
LP if τ ≤ pt ≤ 1

HP if 0 ≤ pt ≤ τ.
(27)
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More precisely, let δ , CHA − CHN + β(Vβ(λA,A)− Vβ(λN,A)),

τ =

{
CL−(1−β)(CHN+βVβ(λN,A))

(1−β)δ T (τ) ≥ τ
CL+βλN,A(CHA+βVβ(λA,A))

(1−(λA,A−λN,A)β)δ − (1−β(1−λN,A))(CHN+βVβ(λN,A))
(1−(λA,A−λN,A)β)δ T (τ) < τ

(28)

where for λN,A ≥ τ ,

Vβ(λN,A) = Vβ(λA,A) = CL/(1− β) (29)

and for λN,A < τ ,

Vβ(λN,A) = (1− λN,A)[CHN + V 1
β (λN,A)]

+ λN,A[CHA + V 1
β (λA,A)], (30)

Vβ(λA,A) = min
n≥0
{G(n)}, (31)

where

G(n) =
CL

1−βn
1−β + βn[T̄n(λA,A)(CHN + C(λN,A)) + Tn(λA,A)CHA]

1− βn+1[T̄n(λA,A)
λN,Aβ

1−(1−λN,A)β + Tn(λA,A)]
(32)

Tn(λA,A) =
(λA,A − λN,A)n+1(1− λA,A) + λN,A

1− (λA,A − λN,A)
(33)

T̄n(λA,A) = 1− Tn(λA,A) (34)

C(λN,A) = β
(1− λN,A)CHN + λN,ACHA

1− (1− λN,A)β
. (35)

The proof of Theorem 1 is provided in the Appendix 1. An immediate consequence of
this result is an upper bound on pt for offering an HP coupon.

We define κ to be the ratio between the gain from offering an HP coupon to a Normal
consumer and the loss from offering an HP coupon to a consumer whom the retailer
thinks is Normal but is actually Alerted. Thus,

κ =
CL − CHN
CHA − CHN

. (36)

For fixed costs, the threshold can be bounded by the following two Corollaries.

Corollary 1. If pt ≤ κ, then it is optimal for the retailer to offer an HP coupon.

Corollary 2. Fix coupon offering costs and λA,A, let λ1 = CL−CHN
CHA−CHN and λ2 be the

solution of λ2

1−(λA,A−λ2)
= β(CL−CHA)λ2+CL−CHN

(1−β)CHA−CHN+βCL
. When λN,A ≥ λ2, the threshold τ in

the optimal stationary policy can be written as a closed form expression with respect to
λN,A: if λN,A > λ1,

τ = κ; (37)



112

if λ2 < λN,A < λ1,

τ =
β(CL − CHA)λN,A + CL − CHN

(1− β)CHA − CHN + βCL
. (38)

Moreover, if λN,A < λ2, τ can be upperbounded by

τ̄ =
λ2

1− (λA,A − λ2)
. (39)
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Figure 3: Discounted cost resulted by using different decision policies.

A detailed proof of Corollary 1 and 2 are presented in Appendix 2 and 3, respec-
tively. To illustrate the performance of the proposed threshold policy, we compare the
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Figure 4: Threshold τ vs. β for different values of λA,A and λN,A

discounted cost resulted from the threshold policy with the greedy policy which min-
imizes the instantaneous cost at each decision epoch as well as with a lazy policy in
which a retailer only offers LP coupons. We plot the discounted cost averaged over
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1000 independent MDPs w.r.t. time t for different decision policies in Figure 3. The
illustration demonstrates that the proposed threshold policy performs better than the
greedy policy and the lazy policy.

Figure 4a shows the optimal threshold policy with respect to λN,A for three fixed
choices of λA,A. It can be seen that the threshold is increasing when λN,A is small;
this is because for a small λN,A the consumeris less likely to transition from Normal to
Alerted. Therefore, the retailer tends to offer an HP coupon to the consumer. When
λN,A gets larger, the consumer is more likely to transition from Normal to Alerted. Thus,
the retailer tends to play conservatively by decreasing the threshold for offering an LP
coupon. When λN,A is greater than κ, the retailer will just use κ to be the threshold for
offering an HP coupon. One can also observe that with increasing λA,A, the threshold
τ decreases. On the other hand, for fixed CHN and CHA, Figure 4b shows that the
threshold τ increases as the cost of offering an LP coupon increases, making it more
desirable to take a risk and offer an HP coupon.
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Figure 5: Threshold τ vs. β for different values of λA,A and λN,A.

The relationship between the discount factor β and the threshold τ as functions
of transition probabilities is shown in Figure 5. It can be seen in Figure 5a that the
threshold increases as β increases. This is because when β is small, the retailer values
the present rewards more than future rewards. Therefore, the retailer tends to play
conservatively so that it will not “creep out” the consumer in the present. Figure 5b
shows that the threshold is high when λA,A is large or λN,A is small. A high λA,A
value indicates that a consumer is more likely to remain in Alerted state. The retailer
is willing to play aggressively since once the consumer is in alerted state, it can take a
very long time to transition back to Normal state. A low λN,A value implies that the
consumer is not very privacy sensitive. Thus, the retailer tends to offer HP coupons to
reduce cost. One can also observe in Figure 5b that the threshold τ equals to κ after
λN,A exceeds the ratio κ. This is consistent with results shown in Figure 4.

The effect of an LP coupon cost on the threshold for different discount factors is
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plotted in Figure 6. It can be seen that a higher CL will increase the threshold because
the retailer is more likely to offer an HP coupon when the cost of offering an LP coupon
is high.

3.3 Consumer with Multi-Level Alerted States

In this section, we study the case that the consumer has multiple Alerted states. Without
loss of generality, we define the transition matrix to be

Λ =


λN,N λN,A1

. . . λN,AK
λA1,N λA1,A1 . . . λA1,AK

...
...

. . .
...

λAK ,N λAK ,A1 . . . λAK ,AK

 (40)

and ēi to be the ith row of Λ. The expected cost at time t, given belief p̄t and action
ut, has the following expression:

C(p̄t, ut) =

{
CL if ut = LP
p̄Tt C̄ if ut = HP

. (41)

Assuming that the retailer has perfect information about the belief states, the cost
function evolves as follows. By using an LP coupon at time t,

V tβ,LP(p̄t) = βtCL + V t+1
β (p̄t+1) = βtCL + V t+1

β (T (p̄t)), (42)

where T (p̄t) = p̄Tt Λ is the Markov transition operator generalizing (2). By using an
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Figure 7: Example of the optimal policy region for three-state consumer. (Parameters:
λN,N = 0.7, λN,A1 = 0.2, λN,A2 = 0.1;λA1,N = 0.2, λA1,A1 = 0.5, λA1,A2 = 0.3;λA2,N =
0.1, λA2,A1 = 0.2, λA2,A2 = 0.7;β = 0.9, CL = 7, CHN = 1, CHA1 = 10, CHA2 = 20).

HP coupon at time t,

V tβ,HP(p̄t) = βtp̄Tt C̄ + V t+1
β (p̄t+1) = βtp̄Tt C̄ + p̄Tt


V t+1
β (ē1)

V t+1
β (ē2)

...
V t+1
β (ēK+1)

 . (43)

Therefore, by (11), we have V tβ (p̄t) = min{V tβ,LP(p̄t), V
t
β,HP(p̄t)}.

In this problem, since the instantaneous costs are nondecreasing with the state when
the action is fixed and the evolution of belief state is the same for both LP and HP,
the existence of an optimal stationary policy with threshold property is guaranteed
by Proposition 2 in Lovejoy (1987). The optimal stationary policy for a three-state
consumer model is illustrated in Figure 7. For fixed costs, the plot shows the partition
of the belief space based on the optimal actions and reveals that offering an HP coupon
is optimal when pN,t, the belief of the consumer being in Normal state, is high.

4 Consumers with Coupon Dependent Transitions

Generally, consumers’ reaction to HP and LP coupons are different. To be more specific,
a consumer is likely to feel less comfortable when being offered a coupon on medication
(HP) than food (LP). Thus, we assume that the Markov transition probabilities are
dependent on the coupon offered. Let pt denote the belief of a consumer being in the
Alerted state at time t.

As shown in Figure 2, by offering an LP coupon, the state transition follows the
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Markov chain

ΛLP =

(
1− λN,A λN,A
1− λA,A λA,A

)
. (44)

Otherwise, the state transition follows

ΛHP =

(
1− λ′N,A λ′N,A
1− λ′A,A λ′A,A

)
. (45)

According to the model in Section 2, λA,A > λN,A, λ
′
A,A > λ′N,A. Moreover, we assume

that offering an HP coupon will increase the probability of transition to or staying at
Alerted state. Therefore, λ′A,A > λA,A and λ′N,A > λN,A. The minimum cost function
evolves as follows: for an HP coupon offered at time t, we have

V tβ,HP(pt) = βtC(pt,HP) + (1− pt)V t+1
β (λ′N,A) + ptV

t+1
β (λ′A,A).

Otherwise,

V tβ,LP(pt) = βtCL + V t+1
β (pt+1) = βtCL + V t+1

β (T (pt)),

where T (pt) = λN,A(1− pt) + λA,Apt is the one step transition defined in Section 2. In
this case, the transition probability is just a deterministic function of the retailer action.
Thus, finding an optimal strategy to this problem is equivalent to solving an associated
MDP problem in belief space. Furthermore, Theorem 6.3 and its generalization in Ross
(1992) still hold since the transition probability is a function of the action. Therefore,
there exists an optimal stationary policy π∗ in the belief space which minimizes the
infinite horizon discounted cost.

Theorem 2. Given action dependent transition matrices ΛLP and ΛHP, the optimal
stationary policy has threshold structure.

The proof of Theorem 2 is provided in Appendix 4.

Figure 8 shows the effect of costs on the threshold τ . We can see that for a fixed CL
and CHA pair, the threshold for LP coupons for consumers in this model is lower than
our original model without coupon-dependent transition probabilities. The retailer can
only offer an LP coupon with certain combination of costs; we call this the LP-only
region. One can also see that the LP-only region for the coupon-independent transition
case is smaller than that for the coupon-dependent transition case since for the latter,
the likelihood of being in an Alerted state is higher for the same costs.
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0.9).

5 Policies under Noisy Cost Feedback and Uncertain
Initial Belief

In this section, we study the case in which the received costs are random. In the previous
sections, if the retailer offered an HP coupon at time t, then it could learn the state of
the consumer at time t based on whether the received cost was CHN or CHA. If the
cost feedback is random, then the retailer may not be able to infer the consumer’s state
exactly. We describe policy heuristics for this setting that perform Bayesian estimation
of the quantity pt used in the threshold policy earlier. This approach is also useful when
the initial value p0 is not known to the retailer.

We model the noisy cost feedback by assuming the received cost Ct is random.
The distribution of Ct is given by a conditional probability density f(c|Gt, ut) on a
bounded subset of R, where Gt is the state of the consumer and ut is the action taken
by the retailer at time t. To match the previous model, we further take f(c|Gt =
Alerted, ut = LP) = f(c|Gt = Normal, ut = LP) to indicate that the received cost
conveys no information about the state under an LP coupon. Let f(c|ut = LP) =
f(c|Gt = Alerted, ut = LP). For a given value pt = p, define the likelihood of observing
a cost Ct = c under the two coupons:

`(c|LP, p) = f(c|Alerted, LP) (46)

`(c|HP, p) = f(c|Normal,HP)(1− p) + f(c|Alerted,HP)p. (47)

These likelihoods will be useful in defining the two estimators.
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In both approaches in this section the retailer computes an estimate p̂t of the prob-
ability pt that Gt = Alerted. It then uses (27) to decide which coupon to offer at
time t by comparing p̂t to a version of the threshold in (28). Define CL, CHN , and
CHA to be the feasible cost sets {c : f(c|LP) > 0}, {c : f(c|Alerted,HP) > 0}, and
{c : f(c|Normal,HP) > 0}, respectively. Since τ involves costs CL, CHN and CHA, there
are several ways to compute an approximate threshold under the cost uncertainty.

Firstly, we can set CL, CHN and CHA to be the expected costs:

CL =

∫
R
cf(c|LP)dc (48)

CHN =

∫
R
cf(c|Normal,HP)dc (49)

CHA =

∫
R
cf(c|Alerted,HP)dc. (50)

Plugging these into (28) gives the mean threshold τavg. Since τ is monotonically increas-
ing in CL and CHA and monotonically decreasing in CHN , we can compute and upper
bound on τ by setting CL = max{c : c ∈ CL}, CHA = max{c : c ∈ CHA}, and CHN =
max{c : c ∈ CHN }. These values give the upper bound threshold τmax. Similarly, by set-
ting CL and CHA to the lower bounds on the support and CHN to the upper bound, we
obtain a lower bound threshold τmin. Finally, we computed a robust version of threshold
τR as τR = {τ : max

CL,CHN ,CHA
{min
π(pt)

V tβ (pt)}}, where (CL, CHN , CHA) ∈ CL × CHN × CHA,

is the This threshold policy is the largest (cost case) threshold over all possible combi-
nation of costs. Thus, it gives the max−min value of the total discounted cost. We can
see that the total discounted cost induced by this robust version of threshold is close to
that induced by using the upper bound of costs.

5.1 Estimation of the Consumer State

In the previous model, if ut = HP the retailer could infer Gt based on Ct, so pt+1 is
given by the state transitions of the Markov chain. With noisy costs this exact inference
is no longer possible. A simple heuristic for the retailer is to try to infer Gt based on
the random cost Ct, compute an estimate of pt, and then use the previous strategy.

At time t = 1, given an initial p0 we estimate p̂1 = T (p0). The retailer then applies
the threshold policy (27) with input p̂1 to offer a coupon. For times t = 2, 3, . . . the
retailer treats the estimate p̂t−1 as an estimate of the probability that Gt−1 = Alerted.
If ut−1 = LP, then the retailer sets p̂t = T (p̂t−1). If ut−1 = HP then the retailer uses
a maximum a posteriori probability (MAP) detection rule to estimate the state Gt−1
based on the received cost Ct−1. That is, it sets Ĝt−1 = Normal if

f(Ct−1|Normal,HP)(1− p̂t−1)

f(Ct−1|Alerted,HP)p̂t−1
> 1 (51)

and Ĝt−1 = Alerted otherwise, where Ct−1 is the received cost at time t − 1. It then
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Figure 9: Temporal discounted costs for different heuristics on computing thresholds.
(Parameters: λN,A = 0.2, λA,A = 0.8, p0 = 0.2,β = 0.95, f(c|LP) = Unif[6, 10],
f(c|Normal,HP) = Unif[0.2, 5.8], and f(c|Alerted,HP) = Unif[12, 20]). The discounted
cost is averaged over 1000 independent runs.

uses the following estimate pt at time t:

p̂t =

{
λN,A if Ĝt = Normal

λA,A if Ĝt = Alerted.
(52)

Essentially, the retailer uses MAP estimation to infer Gt−1 after receiving the cost
Ct−1 from the action ut−1 = HP. If the densities f(c|Normal,HP) and f(c|Alerted,HP)
have disjoint supports, then the inference of Gt−1 is error free, so Ĝt−1 = Gt−1 and
the estimate p̂t is correct. Figure 9 shows the discounted cost as a function of time for
some different variants of the threshold in (28). In this example the cost distributions
are uniformly distributed in disjoint intervals. The plot shows that the mean threshold
yields a total discounted cost that is slightly less than the upper and lower bound
thresholds.

5.2 Bayesian Estimation of State Probabilities

In the previous approach, the retailer estimates the underlying state and then uses this
to form an estimate of the probability pt that Gt = Alerted. A different approach is to
form a Bayes estimate of pt: the retailer computes a probability distribution on [0, 1]
representing its uncertainty about pt. To choose an action ut it can use a point estimate
of pt to use in (27) with one of the thresholds described before.

In this formulation, the estimator of pt is a probability distribution. Let qt−1(p) be
the estimator of pt−1. The retailer treats this as a prior distribution. Upon receiving
the cost Ct−1 it computes a posterior estimate on pt−1 using Bayes rule. If ut−1 = HP,
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it sets

qt−1(p|Ct−1) =
`(Ct−1|HP, p)qt−1(p)∫ 1

0
`(Ct−1|HP, p′)qt−1(p′)dp′

. (53)

If ut−1 = LP then from (46) we can see that `(Ct−1|LP, p) does not depend on p, so the
posterior qt−1(p|Ct−1) = qt−1(p) in this case. Given the posterior estimate qt−1(p|Ct−1)
the retailer then evolves the state distribution through the Markov chain governing the
state to form the prior distribution qt(p) for estimating pt at time t. That is, if Pt−1
is a random variable with distribution qt−1(p|Ct−1), then qt(p) is the distribution of
T (Pt−1). Let Qt−1(p|Ct−1) =

∫ p
0
qt−1(p′|Ct−1) be the cumulative distribution function

of Pt−1. Then

P (T (Pt−1) ≤ p) = P
(
Pt−1 ≤

p− λN,A
λA,A − λN,A

)
= Qt−1

(
p− λN,A

λA,A − λN,A
∣∣Ct−1) (54)

so

qt(p) =
1

λA,A − λN,A
qt−1

(
p− λN,A

λA,A − λN,A
∣∣Ct−1) . (55)

The retailer then uses qt(p) to form a point estimate p̂t of pt suitable for applying
the threshold policy in (27) and (28). We consider two such point estimates which we
call the mean and max estimators, respectively:

p̂t,mean =

∫ 1

0

pqt(p)dp (56)

p̂t,MAP = argmax
p∈[0,1]

qt(p). (57)

Figure 10 shows the discounted cost versus time for uniformly distributed costs
with overlapping support. The decision is made by following the optimal stationary
policy computed by the mean threshold in Section 5. We illustrate the result for four
algorithms: the solid curve and the dash-dot curve are the MAP and mean strategy
described above, respectively; the dashed curve is a policy in which costs are random
but the algorithm is given side information about Gt after choosing ut = HP (perfect
state information); finally, the curve with cross is the MAP estimate of actual state
Gt described in Section 5.1. In this example, as one can expect, decision making with
perfect state information has the minimum discounted cost. MAP estimation of Gt
results in an 0.82% increase in total discounted cost compared to the case in which
the retailer receives perfect information about consumer state. However, the MAP and
mean policy to estimate belief state pt only have 2.9% and 4.29% increases, respectively.
Thus, the MAP for estimating belief perfoms slightly better than the Mean policy.
Effectively, the lack of initial belief knowledge does not affect the discouted cost very
much on average. This is because offering an HP coupon allows the retailer to learn the
actual state from the cost feedback, and thus, reset the belief state.
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Figure 10: Temporal discounted costs for different estimation mechanisms. (Parameters:
λN,A = 0.2,λA,A = 0.8, p0 = 0.2,β = 0.9, f(c|LP) = Unif[3, 9], f(c|Normal,HP) =
Unif[0.25, 7.75], f(c|Alerted,HP) = Unif[6, 18]). The discounted cost is averaged over
1000 independent runs.

6 Conclusions

We proposed a POMDP model to capture the interactions between a retailer and a
privacy-sensitive consumer in the context of personalized shopping. The retailer seeks to
minimize the expected discounted cost of violating the consumer’s privacy. We showed
that the optimal coupon-offering policy is a stationary policy that takes the form of
an explicit threshold that depends on the model parameters. In summary, the retailer
offers an HP coupon when the Normal to Alerted transition probability is low or the
probability of staying in Alerted state is high. Furthermore, the threshold optimal policy
also holds for consumers whose privacy sensitivity can be captured via multiple alerted
states as well as for the case in which consumers exhibit coupon-dependent transition.
For the case in which cost feedbacks from the consumer are noisy, we have introduced
a heuristic method using the mean value of costs to compute the decision threshold.
Furthermore, under noisy cost feedbacks scenario, we have introduced a Bayesian data
analysis approach for decision making which includes estimating consumer belief state
when the initial belief state is unknown to the retailer.

To the best of our knowledge, our proposed model is the first model to capture the
subjective experience and heterogeneous expression of privacy sensitivity in designing
incentive schemes for privacy-sensitive consumers. This is just a first step, and our
model has several important limitations. First of all, we only consider the problem from
the retailer’s perspective. In reality, a consumer may be strategic and either accept or
refuse to use the coupon in order to maximize its reward. Secondly, our model has a
significant number of parameters that must be estimated by a retailer. In particular,
the transition probabilities must be estimated through population surveys or prior data.
Finally, we consider a single consumer and single retailer in this work, which can only
capture a limited section of the rich space of possible interactions between populations.
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Our work suggests several interesting future directions: one straightfoward extension
of our work is to model uncertainties in the statistical model for the consumer transition
probabilities. Extending our framework to competitive settings with strategic users
and multiple retailers could lead to interesting insights into the potential benefits of
respecting consumer privacy. This might involve developing game theoretic models.
Finally, it would be interesting to develop experimental paradigms to test our model
and derive new modifications.

1 Proof of Theorem 1

Proof. Let pF be the stationary distribution of the Markov transition. Then pF =
λA,ApF + (1 − pF )λN,A, which implies pF =

λN,A
1−λA,A+λN,A

. If V tβ,LP(pt) > V tβ,HP(pt)

Remember that the threshold is the solution to V tβ,LP(pt) = V tβ,HP(pt). Let τ be the
threshold value, we have:

βtCL + V t+1
β (T (τ))

= (1− τ)[βtCHN + V t+1
β (λN,A)] + τ [βtCHA + V t+1

β (λA,A)].
(58)

By the definition of V tβ (pt), we know that V tβ (pt) = βtVβ(pt). Thus V tβ (λN,A) =

βtVβ(λN,A) and V tβ (λA,A) = βtVβ(λA,A).

If T (τ) ≥ τ , which is equivalent to pF ≥ τ , then V t+1
β (T (τ)) = V t+1

β,LP(T (τ)). There-

fore, V tβ,LP(τ) = lim
n→∞

{βt 1−β
n

1−β CL + βnV t+1
β (Tn(τ))} where Tn(τ) = T (Tn−1(τ)) =

pF (1− (λA,A−λN,A)n) + (λA,A−λN,A)nτ . Taking n→∞, we have V tβ,LP(τ) = βt C
1−β .

Substitute this into (58) yields:

CL
1− β

= (1− τ)CHN + τCHA + β(τVβ(λA,A) + (1− τ)Vβ(λN,A)). (59)

By rearranging terms in the above expression, we have

τ =

CL
1−β − CHN − βVβ(λN,A)

(CHA − CHN ) + β(Vβ(λA,A)− Vβ(λN,A))
. (60)

If pF ≤ τ , then T (τ) ≤ τ . Therefore V t+1
β (T (τ)) = V t+1

β,HP(T (τ)), which implies

V tβ,LP(τ) = βtCL + V t+1
β (T (τ)) = βtCL + V t+1

β,HP(T (τ)) = V tβ,HP(τ). (61)

In this case,

CL + βVβ,HP(T (τ)) = Vβ,HP(τ). (62)

Substitute (1) and (9) into (62), we have

τ =
CL − (1− β(1− λN,A))(CHN + βVβ(λN,A))

(1− (λA,A − λN,A)β)(CHA − CHN + β(Vβ(λA,A)− V (λN,A)))

+
βλN,A(CHA + βVβ(λA,A))

(1− (λA,A − λN,A)β)(CHA − CHN + β(Vβ(λA,A)− V (λN,A)))
.

(63)
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Next, we present how to compute Vβ(λN,A) and Vβ(λA,A).

Case 1: If λN,A ≥ τ , then by Model Assumption 2, λA,A ≥ λN,A ≥ τ and pF ≥
λN,A ≥ τ . Thus, both λA,A and λN,A are in ΦLP, therefore,

Vβ(λN,A) = Vβ(λA,A) =
CL

1− β
. (64)

Case 2: If λN,A ≤ τ , we have Vβ(λN,A) = Vβ,HP(λN,A). Therefore,

Vβ(λN,A) = (1− λN,A)[CHN + V 1
β (λN,A)] + λN,A[CHA + V 1

β (λA,A)]. (65)

Vβ(λA,A) = min
ut∈{HP,LP}

Vβ,ut(λA,A) (66)

= min{CL + V 1
β (T (λA,A)), VHP(λA,A)} (67)

= min{CL
1− βN

1− β
, min
0≤n≤N−1

{CL
1− βn

1− β
+ V nβ,HP(Tn(λA,A))}}. (68)

Since N →∞ and 0 ≤ β ≤ 1,

Vβ(λA,A) = min
n>0
{CL

1− βn

1− β
+ βnVβ,HP(Tn(λA,A))}. (69)

we have:

Vβ(λA,A) = min
n≥0
{
CL

1−βn
1−β + βn[T̄n(λA,A)(CHN + C(λN,A)) + Tn(λA,A)CHA]

1− βn+1[T̄n(λA,A)
λN,Aβ

1−(1−λN,A)β + Tn(λA,A)]
}. (70)

where

Tn(λA,A) = T (Tn−1(λA,A)) =
(λA,A − λN,A)n+1(1− λA,A) + λN,A

1− (λA,A − λN,A)
, (71)

T̄n(λA,A) = 1− Tn(λA,A) (72)

C(λN,A) = β
(1− λN,A)CHN + λN,ACHA

1− (1− λN,A)β
. (73)

Next, we prove the uniqueness of τ . Noticing that V tβ,LP(p) is a concave and non-

decreasing function of p and V tβ,HP(p) is an affine and non-decreasing function of p

(see Lemma 2). Thus, both V tβ,LP(p) and V tβ,HP(p) are continuous functions (every
concave/affine function is continuous). Furthermore, if p = 0, the optimal action will be
offering HP since the retailer is sure that the state of consumer is Normal and CHN < CL.
This implies

V tβ,LP(p = 0) > V tβ,HP(p = 0). (74)
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Likewise, when p = 1, the optimal action will be offering LP since the retailer is sure
that the state of consumer is Alerted and CL < CHA. Thus, we have

V tβ,LP(p = 1) < V tβ,HP(p = 1). (75)

Thus, no action is uniformly better than the other in this model. Therefore, by (74),(75)
and continuity and concavity of V tβ,LP(p) and V tβ,HP(p), there is a unique solution to

V tβ,LP(p) = V tβ,HP(p) for p ∈ [0, 1].

2 Proof of Corollary 1

Proof. By setting VLP(pt) ≤ VHP(pt), we have

βtCL + βV tβ (T (pt)) ≤ (1− pt)[βtCHN + βV tβ (λN,A)] + pt[β
tCHA + βV tβ (λA,A)]. (76)

By Lemma 2, V tβ (pt) is a concave function. Thus,

V tβ (T (pt)) = V tβ (λN,A(1− pt) + λA,Apt)

≥ (1− pt)V tβ (λN,A) + ptV
t
β (λA,A).

(77)

By substituting (77) into (76), we can simplify inequality (76) to (1−pt)CHN+ptCHA ≥
CL, which implies pt ≥ CL−CHN

CHA−CHN = κ when V tLP(pt) ≤ V tHP(pt). Thus, pt < κ implies
VLP(pt) > VHP(pt).

3 Proof of Corollary 2

Proof. Assume that λN,A ≥ τ , we have λA,A > pF =
λN,A

1−(λA,A−λN,A) > λN,A ≥ τ . In

this case, By (60) and (64), we have

τ =
CL − CHN
CHA − CHN

= κ. (78)

Thus, τ = κ if λN,A > κ. Assume that λN,A < τ , then there are two cases for pF :
Case 1: pF > τ , then λA,A > pF > τ , which implies

Vβ(λA,A) = Vβ,LP(λA,A) =
CL

1− β
. (79)

By (60), (65), and (79), we have

τ =
β(CL − CHA)λN,A + CL − CHN

(1− β)CHA − CHN + βCL
. (80)

Therefore, τ =
β(CL−CHA)λN,A+CL−CHN

(1−β)CHA−CHN+βCL
if pF =

λN,A
1−(λA,A−λN,A) ≥ τ =

β(CL−CHA)λN,A+CL−CHN
(1−β)CHA−CHN+βCL

and λN,A <
β(CL−CHA)λN,A+CL−CHN

(1−β)CHA−CHN+βCL
.
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Case 2: pF < τ , τ can be computed by (63), (65), and (70). Moreover, for fixed

λA,A, (63) is a non-decreasing function w.r.t. λN,A. Thus, let τ+ =
λN,A

1−(λA,A−λN,A) =
β(CL−CHA)λN,A+CL−CHN

(1−β)CHA−CHN+βCL
, τ ≤ τ+ in Case 2. Therefore, τ+ is an upperbound for the

optimal action in Case 2.

Since (63) is non-decreasing, (80) is decreasing and intersects with (78) at λN,A =
CL−CHN
CHA−CHN , we have proved Corollary 2.

4 Proof of Theorem 2

Proof. Assume that τ is the threshold of offering either HP or LP coupons, then we have
V tβ,LP(τ) = V tβ,HP(τ). Noticing that the state of the consumer is revealed to the retailer
through cost when an HP coupon is offered, we have

V tβ,LP(τ)− V tβ,HP(τ)

= βt(CL − (1− τ)CHN − τCHA) + [V t+1
β (T (τ))− (1− τ)V t+1

β (λ′N,A)− τV t+1
β (λ′A,A)]

= 0.

(81)

The above equation is similar to (58) with V t+1
β (λN,A) and V t+1

β (λA,A) replaced by

V t+1
β (λ′N,A) and V t+1

β (λ′A,A), respectively. Thus, Lemmas 1-3 still hold. Therefore, the
proof follows the same argument for proving Theorem 1; we omit it for brevity.
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