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Abstract—In many signal processing and machine learning
applications, datasets containing private information are held
at different locations, requiring the development of distributed
privacy-preserving algorithms. Tensor and matrix factoriza-
tions are key components of many processing pipelines. In
the distributed setting, differentially private algorithms suffer
because they introduce noise to guarantee privacy. This paper
designs new and improved distributed and differentially private
algorithms for two popular matrix and tensor factorization
methods: principal component analysis (PCA) and orthogonal
tensor decomposition (OTD). The new algorithms employ a
correlated noise design scheme to alleviate the effects of noise
and can achieve the same noise level as the centralized scenario.
Experiments on synthetic and real data illustrate the regimes
in which the correlated noise allows performance matching
with the centralized setting, outperforming previous methods
and demonstrating that meaningful utility is possible while
guaranteeing differential privacy.

Index Terms—Differential privacy, distributed orthogonal ten-
sor decomposition, latent variable model, distributed principal
component analysis

I. INTRODUCTION

ANY signal processing and machine learning algo-

rithms involve analyzing private or sensitive data. The
outcomes of such algorithms may leak information about indi-
viduals present in the dataset. A strong and cryptographically-
motivated framework for protection against such information
leaks is differential privacy [1]]. Differential privacy measures
privacy risk in terms of the probability of identifying individ-
ual data points in a dataset from the results of computations
(algorithms) performed on that data.

In several modern applications the data is distributed over
different locations or sites, with each site holding a smaller
number of samples. For example, consider neuro-imaging
analyses for mental health disorders, in which there are many
individual research groups, each with a modest number of sub-
jects. Learning meaningful population properties or efficient
feature representations from high-dimensional functional mag-
netic resonance imaging (fMRI) data requires a large sample
size. Pooling the data at a central location may enable efficient
feature learning, but privacy concerns and high communication
overhead often prevent such sharing. Therefore, it is desirable
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to have efficient distributed privacy-preserving algorithms that
provide utility close to centralized case [2].

This paper focuses on the Singular Value Decomposition

(SVD), or Principal Component Analysis (PCA), and or-
thogonal tensor decompositions. Despite some limitations,
PCA/SVD is one of the most widely-used preprocessing stages
in any machine learning algorithm: it projects data onto a
lower dimensional subspace spanned by the singular vectors of
the sample second-moment matrix. Tensor decomposition is a
powerful tool for inference algorithms because it can be used
to infer complex dependencies (higher order moments) beyond
second-moment methods such as PCA. This is particularly
useful in latent variable models [3] such as mixtures of
Gaussians and topic modeling.
Related Works. For a complete introduction to the history
of tensor decompositions, see the comprehensive survey of
Kolda and Bader [4]. The CANDECOMP/PARAFAC, or CP
decomposition [5]], [6] and Tucker decomposition [7] are
generalizations of the matrix SVD to multi-way arrays. While
finding the decomposition of arbitrary tensors is compu-
tationally intractable, specially structured tensors appear in
some latent variable models. Such tensors can be decomposed
efficiently [3]], [4] using a variety of approaches such as
generalizations of the power iteration [8]]. Exploiting such
structures in higher-order moments to estimate the parameters
of latent variable models has been studied extensively using
the so-called orthogonal tensor decomposition (OTD) [3]], [9]-
[11]. To our knowledge, these decompositions have not been
studied in the setting of distributed data.

Several distributed PCA algorithms [12]-[17] have been
proposed. Liang et al. [|12]] proposed a distributed PCA scheme
where it is necessary to send both the left and right sin-
gular vectors along with corresponding singular values from
each site to the aggregator. Feldman et al. [18] proposed
an improvement upon this, where each site sends a D x R
matrix to the aggregator. Balcan et al. [|13] proposed a further
improved version using fast sparse subspace embedding [|19]]
and randomized SVD [20]].

This paper proposes new privacy-preserving algorithms for
distributed PCA and OTD and builds upon our earlier work on
distributed differentially private eigenvector calculations [|17]]
and centralized differentially private OTD [21]]. It improves on
our preliminary works on distributed private PCA [17], [22]]
in terms of efficiency and fault-tolerance. Wang and Anand-
kumar [23] recently proposed an algorithm for differentially
private tensor decomposition using a noisy version of the
tensor power iteration [3]], [8]. Their algorithm adds noise
at each step of the iteration and the noise variance grows
with the predetermined number of iterations. They also make



IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. XX, NO. XX, XXXX 2018 2

o A
—

]

s ; | §
w
g N

W 4

Conventional

W ) 4
CAPE

) Central aggregator () Local site * Noise generator

Fig. 1. The structure of the network: left — conventional, right - CAPE

the restrictive assumption that the input to their algorithm
is orthogonally decomposable. Our centralized OTD algo-
rithms [21] avoid these assumptions and achieve better em-
pirical performance (although without theoretical guarantees).
To our knowledge, this paper proposes the first differentially
private OTD algorithm for distributed settings.

Our Contribution. In this paper, we propose two new (e, d)-
differentially private algorithms, capePCA and capeAGN, for
distributed differentially private PCA and OTD, respectively.
The algorithms are inspired by the recently proposed correla-
tion assisted private estimation (CAPE) protocol [24] and input
perturbation methods for differentially-private PCA [25]], [26].
The CAPE protocol improves upon conventional approaches,
which suffer from excessive noise, at the expense of requiring
a trusted “helper” node that can generate correlated noise
samples for privacy. We extend the CAPE framework to
handle site-dependent sample sizes and privacy requirements.
In capePCA, the sites share noisy second-moment matrix
estimates to a central aggregator, whereas in capeAGN the sites
use a distributed protocol to compute a projection subspace
used to enable efficient private OTD. This paper is about
algorithms with provable privacy guarantees and experimental
validation. While asymptotic sample complexity guarantees
are of theoretical interest, proving performance bounds for
distributed subspace estimation is quite challenging. To val-
idate our approach we show that our new methods outperform
previously proposed approaches, even under strong privacy
constraints. For weaker privacy requirements they can achieve
the same performance as a pooled-data scenario.

II. PROBLEMS USING DISTRIBUTED PRIVATE DATA

Notation. We denote tensors with calligraphic scripts (X),
vectors with bold lower case letters (x), and matrices with
bold upper case letters (X). Scalars are denoted with regular
letters (M ). Indices are denoted with lower case letters and
they typically run from 1 to their upper-case versions (m =
1,2,...,M). We sometimes denote the set {1,2,..., M} as
[M]. The n-th column of the matrix X is denoted as x,,. ||+ ||2,
||| 7 and tr(-) denote the Euclidean (or £2) norm of a vector
and the spectral norm of a matrix, the Frobenius norm and the
trace operation, respectively.

Distributed Data Model. We assume that the data is dis-
tributed in S sites, where each site s € [S] has a data

matrix X, € RP*Ns_ The data samples in the local sites are
assumed to be disjoint. There is a central node that acts as
an aggregator (see Figure . We denote N = Zle Ny as
the total number of samples over all sites. The data matrix
Xs = [Xs1 ... X5 n,.]atsite sis considered to contain the D-
dimensional features of Ny individuals. Without loss of gen-
erality, we assume that ||x, |2 <1 Vs € [S] and Vn € [N].
If we had all the data in the aggregator (pooled data scenario),
then the data matrix would be X = [X; ... Xg] € RPXV,
Our goal is to approximate the performance of the pooled data
scenario using distributed differentially private algorithms.
Matrix and Tensor Factorizations. We first formulate the
problem of distributed PCA. For simplicity, we assume that
the observed samples are mean-centered. The D x D sample
second-moment matrix at site s is A, = N%XSX;F. In the
pooled data scenario, the D x D positive semi-definite second-
moment matrix is A = %XXT. According to the Schmidt
approximation theorem [27]], the rank- K’ matrix A g that min-
imizes the difference ||A — A k|| can be found by taking the
SVD of A as A = VAV, where without loss of generality
we assume A is a diagonal matrix with entries {\;(A)} and
A(A) > ... > Ap(A) > 0. Additionally, V is a matrix
of eigenvectors corresponding to the eigenvalues. The top-
K PCA subspace of A is the matrix Vg (A) = [vy...vk].
Given Vi (A) and the eigenvalue matrix A, we can form an
approximation A = Vi (A)AgV(A)T to A, where Ax
contains the K largest eigenvalues in A. For a D x K matrix \Y%
with orthonormal columns, the quality of V in approximating
Vi (A) can be measured by the captured energy of A as
¢(V) = tr(VTAV). The V, which maximizes ¢(V) is the
subspace V ik (A). We are interested in approximating V x (A)
in a distributed setting while guaranteeing differential privacy.

Next, we consider the problem of OTD. We refer the reader
to the survey by Kolda and Bader [4]] for related basic defini-
tions. As mentioned before, we consider the decomposition of
symmetric tensors that appear in several latent variable models.
Such tensors can be orthogonally decomposed efficiently.
Two examples of OTD from Anandkumar et al. [3|], namely
the single topic model (STM) and the mixture of Gaussian
(MOG), are presented in Appendix

Let X be an M-way D dimensional symmetric tensor.
Given real valued vectors vj, € RP, Comon et al. [28] showed
that there exists a decomposition of the form

K
X= NV ®Vvi @ ® v,
k=1

where ® denotes the outer product. Without loss of generality,
we can assume that ||vi]2 = 1 Vk. If we can find a matrix
V = [vi...vk] € RPXK with orthogonal columns, then we
say that X has an orthogonal symmetric tensor decomposi-
tion [11]. Such tensors are generated in several applications
involving latent variable models. Recall that if M € RP*P
is a symmetric rank- K matrix then we know that the SVD of
M is given by

K K
M=VAV" =3 " \viv) =D Nevi @ v,
k=1 k=1
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where A = diag{\;, \2,..., Ak} and vy is the k-th col-
umn of the orthogonal matrix V. As mentioned before, the
orthogonal decomposition of a 3-rd order symmetric tensor
X € RPXDxD 5 a collection of orthonormal vectors {vy}
together with corresponding positive scalars {\;} such that
X = Zkl,(zl AV ® Vi ® v Now, in a setting where the data
samples are distributed over different sites, we may have local
approximates X;. We intend to use these local approximates
from all sites to find better and more accurate estimates of the
{vk}, while preserving privacy.

Differential Privacy. An algorithm A(D) taking values in a
set T provides (e, §)-differential privacy if

Pr[A(D) € S] < exp(e) PrlA(D) €S| +6, (1)

for all measurable S C T and all data sets D and D’ differing
in a single entry (neighboring datasets). This definition essen-
tially states that the probability of the output of an algorithm
is not changed significantly if the corresponding database
input is changed by just one entry. Here, € and § are privacy
parameters, where lower € and § ensure more privacy. Note
that the parameter § can be interpreted as the probability that
the algorithm fails. For more details, see recent surveys [29]
or the monograph of Dwork and Roth [30].
To illustrate, consider estimating the mean f(x)

1 N

% 2oneq®n of N scalars x = [z1,...,2N-1, ZN]
with each x; € [0,1]. A neighboring data vector x' =
[1,...,2Nn_1, 2] differs in a single element. The sensitiv-
ity 1] maxy | f(x) — f(x)| of the function f(x) is 3-. There-
fore, for (¢,0) differentially-private estimate of the average
a = f(x), we can follow the Gaussian mechanism []1]] to re-
lease G = a+e, where e ~ N (0,7%) and 7 = 5 4/2log 122,
Distributed Privacy-preserving Computation. In our dis-
tributed setting, we assume that the sites are “honest but
curious.” That is, the aggregator is not trusted and the sites
can collude to get a hold of some site’s data/function output.
Existing approaches to distributed differentially private algo-
rithms can introduce a significant amount of noise to guarantee
privacy. Returning to the example of mean estimation, suppose
now there are S sites and each site s holds a disjoint dataset
x5 of N, samples for s € [S]. A central aggregator wishes
to estimate and publish the mean of all the samples. The
sites can send estimates to the aggregator but may collude
to learn the data of other sites based on the aggregator
output. Without privacy, the sites can send as = f(xs)
to the aggregator and the average computed by aggregator
(aag = % +—1 0s) is exactly equal to the average we would
get if all the data samples were available in the aggregator
node. For preserving privacy, a standard differentially private
approach is for each site to send as = f(xs) + es, where

125 The aggregator

= |l

es ~ N(0,72) and 7, = ﬁ 2log

5 .
computes gy = & > ._; @s. We observe

IS, 1 1<
aagZEZ;aS:g;aerg;es.

Note that this estimate is still noisy due to the privacy con-
2 2

Ts a
Ts _Ts & 2

straint. The variance of the estimator a,g is S == g ag-

However, if we had all the data samples in the central
aggregator, then we could compute the differentially-private
average as a, = %25:1 Tn + ec, where e. ~ N(0,72)

1

and 7. = e 2log %. If we assume that each site has

equal number of samples then N = SN, and we have

T, .
T = SN#SeW/Zlog 1'5& = gs We observe the ratio

2 T2/8% 1
2, T2/8 8

showing that the conventional differentially-private distributed

averaging scheme is always worse than the differentially-

private pooled data case.

III. CORRELATED NOISE SCHEME

Algorithm 1 Correlation Assisted Private Estimation (CAPE)

Require: Data samples {x;}; privacy parameters e, .

1: Compute 74 < 1\% 2log I‘T%

2: At the random noise generator, generate e, ~ N(0,72),

where 72 = (1 — £)72 and S e =0
3: At the central aggregator, generate fs ~ AN (0, ’T%) where
TJ% =(1- %)TSQ '
for s=1, ..., Sdo

Get es from the random noise generator

Get fs from the central aggregator

Generate g, ~ N'(0,77), where 72 =
Compute and send G, < f(xs) +es + fs + gs

end for

10: At the central aggregator, compute aggp — % Zle as —

1 S

S Zs:l fs

. mp
11: return a;,

R T A
Wl

The recently proposed Correlation Assisted Private Estima-
tion (CAPE) [24] scheme exploits the network structure and
uses a correlated noise design to achieve the same performance
of the pooled data case (i.e., T, = 7.) in the decentralized
setting. We assume there is a trusted noise generator in
addition to the central aggregator (see Figure [I). The local
sites and the central aggregator can also generate noise. The
noise generator and the aggregator can send noise to the
sites through secure (encrypted) channels. The noise addition
procedure is carefully designed to ensure the privacy of the
algorithm output from each site and to achieve the noise
level of the pooled data scenario in the final output from the
central aggregator. Considering the same distributed averaging
problem as in Section the noise generator and central
aggregator send e, and fs, respectively, to each site s. Site s
generates noise gs and releases/sends a5 = f(xs)+es+ fs+9s.
The noise generator generates e, such that > 7 ;e = 0.
The term e, is needed to protect f(x) from the aggregator,
since the aggregator knows fs; and g5 is not large enough
to protect f(xs). The noise generator need not necessarily
be a separate entity and can be considered as a common
randomness, or a shared coin only possessed by the sites [24]].
For example, each site could generate é; and, perhaps using
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standard secure multiparty computation protocol [31], [32],
compute ZSS 1e5 collaboratively. Each site could then use
es — és— 5 LS5 e, to achieve 2% e, = 0. As shown
in [24], the noise terms {es, gs, fs} are distributed according

to es ~ N(0,72), fs ~N(0,77), and g5 ~ N(0,7;), where
1 2
762 =7} (l — S) 732, and T 5; 2)

For a given pair of privacy parameters (e, J), we can calculate a
noise variance 72 such that adding Gaussian noise of variance
72 will guarantee (e, §)-differential privacy. Since there are
many (e, ) pairs that yield the same 72, it is convenient to
parameterize our method using 72.

The noise variances of {es, gs, fs} were derived to ensure
that the variance of the noise f; + g, guarantees (e,0)-
differential privacy to the output from site s, since the noise
terms e are correlated. Additionally, the noise variances
ensure that the variance of e;+ g, is sufficient to provide (¢, ¢)-
differential privacy to the output from site s — as a safeguard
against the central aggregator, which knows f;. The aggregator
computes

almpP —

ag SZ fS 7Nzxﬂ SZgS?

where we used ) _ e, = 0 and the fact that the aggregator
knows the fg, so it can subtract all of those from as. The

2
variance of the estimator aifgp is S - 52 = gz = T , which is
the same as if all the data were present at the aggregator. This

claim is formalized in Lemma [1]

Lemma 1. Let the variances of the noise terms eg, fs and
gs (Step [§] of Algorithm [I)) be given by @). If we denote the
variance of the additive noise (for preserving privacy) in the
pooled data_scenario by T2 and the variance of the estimator

lmp (Step |10] of Algorlthm by T, ‘mp2 then Algorithm

2 1mp
achleves Te = Tag? -

Proof. We recall that in the pooled data scenario, the sensi-
tivity of the function f(x) is 4, where x = [xi,...,Xg].
Therefore, to approximate f(x) satisfying (e, d) differential
privacy, we need to have additive Gaussian noise standard de-
+-1/2log 122 Next, consider the (e, )
differentially-private release of the function f(xs). The sensi-
tivity of this function is N . Therefore, the (e, ) differentially-
private approximate of the functlon f(x5) requires a standard
deviation at least 7, = 2log 125, Note that, if we
assume equal number of samples in each site, then we have

g - T. = ?
We will now show that the CAPE algorithm will yield the same
noise variance of the estimator at the aggregator. Recall that

viation at least 7, =

Ts
Te = 2

S .
at the aggregator we compute amP = § LY (as— fs) =
W2n=1 T + 5 Zq 1g2S The variance of the estimator

mp2
;glp £ ;Z = TS%’ <%, which is exactly the same as the

pooled data scenario. Therefore, the CAPE algorithm allows us
to achieve the same additive noise variance as the pooled data

scenario, while satisfying at least (e, d) differential privacy at
the sites and (e, §) differential privacy for the final output from
the aggregator. [

We show the complete algorithm in Algorithm [I] Privacy
follows from previous work [24]], and if S > 2 and number
of trusted sites (the sites that would not collude with any
adversary) Sy, > 2, the aggregator does not need to generate
fs. Note that the CAPE protocol exploits the Gaussianity
of the noise terms. Therefore, other mechanisms, e.g. the
staircase mechanism (SM) [33]], cannot be used in the current
framework to take advantage of the correlated noise scheme.
We investigated the performance of SM empirically in the
conventional distributed setting and observed that the CAPE
protocol always outperforms SM. We believe a very interesting
future work would be to incorporate SM in the correlated noise
scheme.

Proposition 1. (Performance gain [124)]) Conszder the gain

N2 S

function G(n) = T,;; = G701 = with n =
[N1,...,Nsl. Then: ’
o the minimum G(n) is S and is achieved when n =
(50 5]
o the maximum G(n) is 52 (m +S5— l), which
occurs when n = [1,. - S+1]

Proof. The proof is a consequence of Schur convexity and is
given in [24]. O

The proposition suggests that the CAPE achieves a gain
of at least S even when we do not know N, of different
sites. Moreover, in case of site drop-out, the performance of
capePCA (Algorithm 2) and capeAGN (Algorithm [3) would
fall back to that of the conventional scheme [24]]. That is,
the output from each site remains (¢, ) differentially private
irrespective of the number of dropped-out sites.

A. Extension of CAPE to Unequal Privacy Requirements

We now propose a generalization of the CAPE scheme,
which applies to scenarios where different sites have different
privacy requirements and/or sample sizes. Additionally, sites
may have different “quality notions”, i.e., while combining
the site outputs at the aggregator, the aggregator can decide
to use different weights to different sites (possibly according
to the quality of the output from a site). Let us assume
that site s requires (eg, d5)-differential privacy for its output.
According to the Gaussian mechanism []1], the noise to be

added to the (non-private) output of site s should have standard
1.25

deviation given by 7, = 2log 55>
s = f(xs)+es+ fs+gs. Here gs ~ N( , Tos) is generated
locally; e; ~ N(0,72) and fs ~ N(O, Tfs) are generated
from the noise generator and the aggregator, respectively. As

explained before, we need to satisfy

Site s outputs

and 72

2 2 2 2 2 2 2
7—‘fergs - 7—fs + Tgs > Ts» es+gs = Tes + 7—gs > Ts -

The aggregator computes a weighted average with weights se-
lected according to the quality measure of the site’s data/output
(e.g., if the aggregator knows that a particular site is suffering
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from more noisy observations than other sites, it can choose
to give the output from that site less weight while combining
the site results). Let us denote the weights by {u} such that
Zle s = 1 and ps > 0. Note that, our proposed generalized
CAPE reduces to the existing [24] CAPE for us = IJV\,
aggregator computes

s s s
o = Yoo £ = Yt e+
s=1 s=1 s=1

As our goal is to achieve the same level of noise as the pooled
data scenario, we need

var [Zﬂsgs‘| *T2 = Z’u" Tgs = Te-

Additionally, we need Zszl wses = 0. With these constraints,
we can formulate a feasibility problem to solve for the

unknown noise variances {72, 7o, 77, } as
minimize 0
. 2 | 2 2
subject to Tfé + 7' > T2 A+ Tgs = T s

S
Z:u’s Tgs Tg’zuseszoa
s=1

for all s € [S], where {us}, 7. and {75} are known to the
aggregator. For this problem, multiple solutions are possible.
We present one solution here that solves the problem with
equality.

Solution. We start with ZS 1 uses = 0. The noise generator
generates e, for s € [S—1] independently with e, ~ N(0,72)
and then sets eg = —F%S Zlel pses. As es for s € [S—1] are
independent Gaussians, they are also uncorrelated. Therefore,
we have

1 S—1
= 9 Z MgTeQS
Ms 3

2_2 2_2
= Z HsTes — HsTes = 0.

Additionally, we have Z 1 ,ub 2+ 2 ST s = 72. Combining
these, we observe 77g — eS = u% T2 725—1 it q)
S

Moreover, for the S-th 51te 72 o5+ 72 o = TS Therefore, we
can solve for 72 55 and T, T2 as

2
e _Ts
TgS_2+2MS< Z'u >
2
2 _Ts 1
h=G g (2 )

Additionally, we set Tfs from 7' gs T Tf = TS as

2 73

Now, we focus on setting the noise variances for s € [S —1].
From the relation ZS | 122 = p%72g, one solution is to set

-1 E)

R

Using this and 7, = 77 — 72, we have
S-1
1 12 1

2 _ 2 s2 1 o 2 2

QS_TS ‘UJ(S*I) lzTS 2<Tc ;MSTS>]'
Finally, we solve for 77, = 77 — 72, as

S-1
1 12 1
2 _ s 2 2 2

Therefore, we can solve the feasibility problem with equality
using the following noise variance expressions. For the S-th
site:

For other sites s € [S — 1]:

S—1
72272:71 MSQ ZMT
es fs qu(sil) 2 Ts — yanrt s
2 _ 2_# Ms 2
EH R PR Z’”

It is evident from the expressions that the noise variances for
each site depend on the target noise variance (72) as well as
the local noise variances {72} and the quality metric {1} for
all sites. This is expected as we are trying to achieve the target
noise variance collectively while satisfying a different privacy
requirement at each site. If all the sites had the same quality
metric and the same privacy requirement, the noise variances
would be uncoupled, as depicted in (2).

IV. IMPROVED DISTRIBUTED DIFFERENTIALLY-PRIVATE
PRINCIPAL COMPONENT ANALYSIS

In this section, we propose an improved distributed
differentially-private PCA algorithm that takes advantage of
the CAPE protocol. Recall that in our distributed PCA prob-
lem, we are interested in approximating Vg (A) in a dis-
tributed setting while guaranteeing differential privacy. One
naive approach (non-private) would be to send the data matri-
ces from the sites to the aggregator. When D and/or N, are
large, this entails a huge communication overhead. In many
scenarios the local data are also private or sensitive. As the
aggregator is not trusted, sending the data to the aggregator
can result in a significant privacy violation. Our goals are
therefore to reduce the communication cost, ensure differential
privacy, and provide a close approximation to the true PCA
subspace Vi (A). We previously proposed a differentially-
private distributed PCA scheme [|17]], but the performance of
the scheme is limited by the larger variance of the additive
noise at the local sites due to the smaller sample sizes. We
intend to alleviate this problem using the correlated noise
scheme [24]]. The improved distributed differentially-private
PCA algorithm (capePCA) we propose here achieves the same
utility as the pooled data scenario.
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Algorithm 2 Improved Distributed Differentially-private PCA
(capePCA)

Require: Data matrix X, € RP*Ns for s € [S]; privacy
parameters ¢, §; reduced dimension K
1: At random noise generator: generate E, € RP*P | as
in the text; send to sites

2: At aggregator: generate F, € RP*P | as in the
text; send to sites

3 for s=1,2,...,5 do
4: Compute A — N X X!

> at the local sites

5: Generate D x D symmetrlc matrix Gy, as |described|
in the text

6: Compute A, « A, + E, + F, + G, send A, to
aggregator

7: end for

s: Compute A « L7 (AS
9: Perform SVD: A = VAV T

10: Release / send to sites: Vg
11: return Vg

— FS) > at the aggregator

We consider the same network structure as in Section
there is a random noise generator that can generate and send
noise to the sites through encrypted/secure channels. The
aggregator can also generate noise and send those to the sites
over encrypted/secure channels. Recall that in the pooled data
scenario, we have the data matrix X and the sample second-
moment matrix A = %XXT. We refer to the top-K PCA
subspace of this sample second-moment matrix as the true
(or optimal) subspace Vi (A). At each site, we compute the
sample second-moment matrix as A; = 1 X X The Lo
sensitivity [[1]] of the function f(Xy) = Aj is A§ = N [126].
In order to approximate A satisfying (¢, ) differential pri-
vacy, we can employ the AG algorithm [26] to compute
As = A + G, where the symmetric matrix G is generated

with entries iid. ~ AN(0,72) and 7, = ,/21 125,

Note that, in the pooled data scenario, the Lg sen51t1v1ty
of the function f(X) = A is AR — +. Therefore,

the required additive noise standard deviation should satisfy
pool
125 _ 7o

\/2log =5 = %, assuming equal number of

samples in the sites. As We want the same utility as the pooled
data scenario, we compute the following at each site s:

Tpool =

A,=A,+E,+F,+G,.

Here, the noise generator generates the D >< D matrix E;
with [E;);; drawn iid. ~ N(0,72) and ZS 1E; = 0. We
set the variance 72 according to (@) as 72 = (1— %) T2,
Additionally, the aggregator generates the D x D matrix Fy
with [Fy];; drawn iid. ~ N(0, T 7). The variance 77 is set
according to (2)) as Tf = (1 — 5) 75 . Finally, the sites generate
their own symmetric D x D matrlx G, where [Gg);; are
drawn iid. ~ NV(0,77) and 77 = £72 according to (2). Note
that, these variance assignments can be readily modified to
fit the unequal privacy/sample size scenario (Section [[II-A).
However, for simplicity, we are considering the equal sample
size scenario. Now, the sites send their A to the aggregator

and the aggregator computes
A R 13
= -3 (A, - F) - - (A, +G
5 ; ( S ; (st

where we used the relation Zle E; = 0. The detailed calcu-
lation is shown in Appendix [A-A] Note that at the aggregator,
we achieve an estimator with noise variance exactly the same
as that of the pooled data scenario (by Lemma [I). Next, we
perform SVD on A and release the top-K eigenvector matrix
Vi, which is the (e,d) differentially private approximate to
the true subspace Vi (A). To achieve the same utility level as
the pooled data case, we send the full matrix As from the sites
to the aggregator instead of the partial square root of it [17].
This increases the communication cost by SD(D — R), where
R is the intermediate dimension of the partial square root. We
consider this as the cost of performance gain.

Theorem 1 (Privacy of capePCA Algorithm). Algorithm 2]
computes an (e, 0) differentially private approximation to the
optimal subspace V i (A).

Proof. The proof of Theorem [I] follows from using the Gaus-
sian mechanism [1f], the AG algorithm [26], the bound on
||[As — A’;||2 and recalling that the data samples in each site
are disjoint. We start by showing that

2
1 1.25
T€2 Tj_TQQ Tf_TSQ_(NG 210g 5 >

Therefore, the computation of A at each site is at least (¢,0)
differentially-private. As differential privacy is post-processing
invariant, we can combine the noisy second-moment matrices
A, at the aggregator while subtracting F, for each site. By the
correlated noise generation at the random noise generator, the
noise E; cancels out. We perform the SVD on A and release
V k. The released subspace V g is thus the (¢, 0) differentially
private approximate to the true subspace Vi (A). O

Performance Gain with Correlated Noise. The distributed
differentially-private PCA algorithm of [17] essentially em-
ploys the conventional averaging (when each site sends the
full A, to the aggregator). Therefore, the gain in performance
of the proposed capePCA algorithm over the one in [17] is
the same as shown in Proposition [T}

Theoretical Performance Guarantee. Due to the application
of the correlated noise protocol, we achieve the same level of
noise at the aggregator in the distributed setting as we would
have in the pooled data scenario. In essence, the proposed
capePCA algorithm can achieve the same performance as the
AG algorithm [26] modified to account for all the samples
across all the sites. Here, we present three guarantees for the
captured energy, closeness to the true subspace and low-rank
approximation. The guarantees are adopted from Dwork et
al. [26] and modified to fit our setup and notation. Let us
assume that the (e, ) differentially-private subspace output
from Algorithm and the true subspace are denoted by Vi
and V g, respectively. We denote the singular values of X with
o1 > ... > op and the un-normalized second-moment matrix
with A = XXT. Let Ax and Ak be the true and the (e, )
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Algorithm OTD
(capeAGN)
Require: Sample second-order moment matrices M3 &
RP*P and third-order moment tensors M35 € RPXDPxD
Vs € [S], privacy parameters €1, €3, 91, da, reduced
dimension K
1: At random noise generator: generate E§ € RP*P and
&5 e RDPXDXD g in the text; send to sites
2: At aggregator: generate F3 € RP*P and F§ € RP*DxD,
as in the text; send to sites

3: for s =1, , S do > at the local sites

Generate G5 € RP*D | as in the text

5: Compute M; +— M5 + E5 + F5 + G3; send M§ to

3 Distributed Differentially-private

aggregator
6: end for
7: Compute M < £ Y75, (M2 - Fg) and then SVD(K)
of My as M, = UDU > at the aggregator
8: Compute and send to sites: W <— UD 2
9: for s =1, , S do > at the local sites

10:  Generate symmetric G5 € RP*DxD from the entries
of b € RPs=, where [b]g ~ N(0,73,) and 735, = éT§2

1 Compute M3 M5 + &5+ F5 + G5 and M5
M5 (W, W, W); send M3 to aggregator

12: end for

13 Compute My § 20, (M3 — F3 (W, W, W)) & at
the aggregator

14: return The differentially private orthogonally decompos-
able tensor M3, projection subspace W

differentially-private rank-K approximates to A, respectively.
If we assume that the gap 0% — 0% = W(TpoolVD), then
the following holds

o tr (VEAVK) > tr (VEAVK) = 0100 KVD)
VKV[T( _VKV H _ O( Tpool\/i )

! UK_UK+1

o |A—Agl2 < [[A—Agklz + O(Tpoa VD).
The detailed proofs can be found in Dwork et al. [[26].
Communication Cost. We quantify the total communication
cost associated with the proposed capePCA algorithm. Recall
that capePCA is an one-shot algorithm. Each of the random
noise generator and the aggregator send one D X D matrix to
the sites. Each site uses these to compute the noisy estimate
of the local second-moment matrix (D x D) and sends that
back to the aggregator. Therefore, the total communication
cost is proportional to 3SD? or O(D?). This is expected as
we are computing the global D x D second-moment matrix
in a distributed setting before computing the PCA subspace.

V. DISTRIBUTED DIFFERENTIALLY-PRIVATE ORTHOGONAL
TENSOR DECOMPOSITION

In this section, we propose an algorithm (capeAGN) for
distributed differentially-private OTD. The proposed algorithm
takes advantage of the correlated noise design scheme (Algo-
rithm [24]. To our knowledge, this is the first work on
distributed differentially-private OTD. The definition of the
differentially-private OTD is presented in Appendix [C] We

refer the reader to our previous work [21]] for two centralized
differentially-private OTD algorithms: AGN and AVN.

We start with recalling that the orthogonal decomposition of
a 3-rd order symmetric tensor X € RP*P*D ig a collection of
orthonormal vectors {v}, } together with corresponding positive
scalars {\;} such that X' = Eszl AVE ® Vi ® V. A unit
vector u € RP is an eigenvector of X' with corresponding
eigenvalue ) if X' (I, u,u) = Au, where I is the D x D identity
matrix [3]]. To see this, one can observe

X(I,u,u) = Z M (ITve) @ (u'vy) @ (u'vy)

=
Il
—

)\k (IITV]C)2 Vi.

I
M=

e
Il
-

By the orthogonality of the vy, it is clear that X' (I, vy, vy) =
AV VE. Now, the orthogonal tensor decomposition proposed
in [3] is based on the mapping
. X (I, u,u) 3)
12 (T, w2’
which can be considered as the tensor equivalent of the
well-known matrix power method. Obviously, all tensors are
not orthogonally decomposable. As the tensor power method
requires the eigenvectors {vy} to be orthonormal, we need to
perform whitening - that is, projecting the tensor on a subspace
such that the eigenvectors become orthogonal to each other.
We note that the proposed algorithm applies to both of
the STM and MOG problems. However, as the correlated
noise scheme only works with Gaussian noise, the proposed
capeAGN employs the AGN algorithm [21]] at its core. In-
line with our setup in Section we assume that there is a
random noise generator that can generate and send noise to
the sites through an encrypted/secure channel. The un-trusted
aggregator can also generate noise and send those to the sites
over encrypted/secure channels. At site s, the sample second-
order moment matrix and the third-order moment tensor are
denoted as M§ € RP*P and M§ € RP*P*D | respectively.
The noise standard deviation required for computing the
(e1, 61) differentially-private approximate to M3 is given by

Aj 1.25
ﬁz;%4&), @)

where the sensitivity Aj$ is inversely proportional to the sample
size Ns. To be more spemﬁc we can write Aj ¢ = f for
STM and A3 ,, = 7~ for MOG. The detailed derlvatlon of
the sensitivity of M2 for both STM and MOG are [shown
in Appendix [C] Additionally, at site s, the noise standard
deviation required for computing the (eo,d2) differentially-
private approximate to M3 is given by

. Aj 1.25
S =—4/2log [ — ). 5
75 o 0g< 5 ) )
Agam we can write A3 g = N‘[ for STM and A3 ,, = N +

6D * for MOG. Appendix |C| contains the detailed algebra for
calculatlng the sensitivity of M3 for both STM and MOG. We
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note that, as in the case of M3, the sensitivity depends only
on the sample size Ns. Now, in the pooled-data scenario, the
noise standard deviations would be given by:

Abee! 1.25
pool
= 21o
T2 e g( o )

AR 1.2
ool — 72’2 2log (625>’

where AD°%' = %3 and AR = AS , assuming equal number
of samples in the sites. Now, we need to compute the D x K
whitening matrix W and the D x D x D tensor Ms in a
distributed way while satisfying differential privacy. Although
we could employ our previous differentially-private distributed
PCA algorithm [17] to compute W, to achieve the same
level of accuracy as the pooled data scenario we compute the

following matrix at site s:
M5 =M;5 + E5 + F5 + G3,

where Ej3 e RP*D s generated at the noise generator
satisfying ZS 1 E3 = 0 and the entries [E3];; drawn i.i.d.
~ N(0,72,). Here we set the noise variance accordlng to (2):
T2, = (1 - 7) 2. Additionally, F§ € RP*P is generated at
the aggregator with the entries [F3];; drawn i.i.d. ~ N(0, 73 f)
We set the noise variance according to 2)): 7'22f = (1 - %) 52,
Finally, G5 € RP*P is a symmetric matrix generated at site s
where {[G3],; : i € [D],j < i} are drawn iid. ~ N(0,75)),
(G3]i; = [G3]ji and 75, = 1757, The aggregator computes

S s
M, = ¢ 30 (N - F3) = ¢ > (M3 + Gy,

s=1 s=1
where we used the relation Zle E5 = 0. Note that the
variance of the additive noise in My is exactly the same
as the pooled data scenario, as described in Lemma [I] . At
the aggregator, we can then compute the SVD(K) of M2 as
M, = UDUT. We compute the matrix W = UD™ z and
send it to the sites.

Next, we focus on computing M3 in the distributed setting.
For this purpose, we can follow the same steps as comput-
ing 1\712. However, Mg is a D x D x D tensor, and for
large enough D, this will entail a very large communication
overhead. We alleviate this in the following way: each site
receives F5 € RP*P*D and W from the aggregator and
& € RPXDPXD from the noise generator. Here, [F3);jx are
drawn i.i.d. ~ N'(0,73;). Additionally, [£5];x are drawn i.i.d.
~ N(0,73.) and Zle &5 = 0 is satisfied. We set the two
variance terms according to (2): 7'32f =75 = (1- é) 52,
Finally, each site generates their own G5 € RP*P>D in the
following way: site s draws a vector b € RP»m with Dy, =
(P+?) and entries i.i.d. ~ N'(0,73,), where 73, = £75°. The
tensor G5 is generated with the entries from b such that gs is
symmetric. Again, for both MS and M3, we are considering
the equal sample size scenario for simplicity. Our framework
requires only a small modification to incorporate the unequal
privacy/sample size (Section [[II-A). Now, site s computes

M§:M§+5§+}‘§+g§ and /\;l?, :M§ (W, W, W).

We note that M§ is a K X K x K dimensional tensor. Each site
sends this to the aggregator. This saves a lot of communication
overhead as typically K < D. To see how this results in the
same estimate of Mg as the pooled data scenario, we observe

Mg = Mg (W, W, W) = M3 (W, W, W)+
E (W, W, W)+ F; (W,W, W) +G; (W, W, W).

Additionally, at the aggregator, we compute
- 1, - -
Ms=3> (M- F)
s=1
18
= <S > oMs +g§> (W, W, W),

where F§ = F5 (W, W, W). We used the assomatmty of
the multi-linear operation [3] and the relation Zg 1E5=0.
The detailed calculation is in Appendix [A-B] Note that
the M5 we achieve in this scheme is exactly the same Ms
we would have achieved if all the data samples were present
in the aggregator. Moreover, this is also the quantity that the
aggregator would get if the sites send the full ./\>l§ to the
aggregator instead of M§ The complete capeAGN algorithm
is shown in Algorithm

Theorem 2 (Privacy of capeAGN Algorithm). Algorithm
computes an (€1 + €2,01 + 02) differentially private orthogo-
nally decomposable tensor Ms. Additionally, the computation
of the projection subspace W is (e1,01) differentially private.

Proof. The proof of Theorem [2| follows from using the
Gaussian mechanism [1]], the sensitivities of M3 and M3
and recalling that the data samples in each site are disjoint.
First, we show that the computation of W satisfies (€1, 1)
differential privacy. Due to the correlated noise, we have

2
A3 1.25
s2
7-264_7—29 T2g+72f_7-2 (612 2log <61 )) )

where Aj is the sensitivity of M$. Therefore, the release of
M; from each site s is at least (e1,d;) differentially-private.
As differential privacy is closed under post-processing and the
samples in each site are disjoint, the computation of W at the
aggregator also satisfies (€1, 0;) differential privacy. Next, we
show that the computation of M3 satisfies (€1 + €9,01 + d2)
differential privacy. We recall that

2
AS 1.25
s2
Toe+ Tay =Tay +Tap =75 = (623 2log (52 )) ,

where Aj is the sensitivity of M35. The computation of
A5 at each site is at least (es,ds) differentially-private.
Further, by the composition theorem [1f], the computation
M5 = M5 (W, W, W) at each site is (e; + €,01 + )
differentially-private. By the post-processing invariability, the
computation of M at the aggregator is (€1 + €9,01 + 02)
differentially-private. O

Performance Gain with Correlated Noise. As we mentioned
before, this is the first work that proposes an algorithm for dis-
tributed differentially-private OTD. As we employ the CAPE
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scheme for our computations, the gain in the performance
over a conventional distributed differentially-private OTD is
therefore the same as in the case of distributed differentially-
private averaging, as described in Proposition [T}

Theoretical Performance Guarantee. Although our proposed
capeAGN algorithm can reach the performance of the pooled
data scenario (that is, the AGN algorithm [21] with all data
samples from all sites stored in the aggregator), it is hard to
characterize how the estimated {4} and {u@;} would deviate
from the true {a;} and {wy}, respectively. We note that
although we are adding symmetric noise to the third-order
moment tensor, an orthogonal decomposition need not exist
for the perturbed tensor, even though the perturbed tensor is
symmetric [3[], [11]. Anandkumar et al. [3] provided a bound
on the error of the recovered decomposition in terms of the
operator norm of the tensor perturbation. For our proposed
algorithm, the perturbation includes the effect of estimating
the third-order moment tensor from the samples as well as the
noise added for differential-privacy. Even without accounting
for the error in estimating the moments from observable
samples, the operator norm of the effective noise at the
aggregator: ||Gllop =
and requires new measure concentration results to analyze.
Relating these bounds to the error in estimating recovering
the {a;} and {wy} is nontrivial. However, very recently
Esmaeili and Huang [34] proposed differentially private OTD-
based Latent Dirichlet Allocation (LDA) for topic modeling.
The authors consider the sensitivities of different functions
at different points in the flow of the LDA algorithm and
propose to employ Gaussian mechanism [1] to the point with
the smallest sensitivity, conditioned on some constraints. This
enables the DP-LDA algorithm to achieve better utility bounds.
The extension of the techniques introduced in [34] to STM and
MOG is nontrivial and we defer that for future work.
Communication Cost. We note that capeAGN is a two-step
algorithm: it computes the projection subspace W € RP*K
and then orthogonally decomposable tensor M. The random
noise generator sends E§ € RP*P and & € RP*P*D o
each site s. Each site s sends M3 € RP*P and M3 ¢
REXEXK and to the aggregator. The aggregator sends F3 €
RP*XP W ¢ RP*K and Fy € RPXPXD to each site s.
Therefore, the total communication cost is proportional to
35D%*+2SD3+ SDK + SK? or O(D?). This is expected as
we are computing the global D x D x D third-order moment
tensor in a distributed setting.

s . .
% H > g Q§H , 1S a random quantity,
op

VI. EXPERIMENTAL RESULTS

In this section, we empirically show the effectiveness of
the proposed distributed differentially-private matrix and ten-
sor factorization algorithms. We focus on investigating the
privacy-utility trade-off: how the performance varies as a
function of the privacy parameters and the number of samples.
We start with the proposed capePCA algorithm followed
by the capeAGN algorithm. In each case, we compare the
proposed algorithms with existing (if any) and non-private
algorithms and a conventional approach (no correlated noise).

A. Improved Distributed Differentially-private PCA

We empirically compared the proposed capePCA, the ex-
isting DPdisPCA [17]] and non-private PCA on pooled data
(non — dp pool). We also included the performance of differ-
entially private PCA [26] on local data (local) (i.e. data of a
single site) and the conventional approach (conv) (i.e. without
correlated noise). We designed the experiments according to
Imtiaz and Sarwate [17] using three datasets: a synthetic
dataset (D = 200, K = 50) generated with zero mean
and a pre-determined covariance matrix, the MNIST dataset
(D =784, K = 50) [35] (MNIST) and the Covertype dataset
(D =54, K =10) [36] (COVTYPE). The MNIST consists of
handwritten digits and has a training set of 60000 samples,
each of size 28 x 28 pixels. The COVTYPE contains the
forest cover types for 30 x 30 m? cells obtained from US
Forest Service (USFS) Region 2 Resource Information System
(RIS) data. We collected the dataset from the UC Irvine
KDD archive [36]. For our experiments, we randomly selected
60000 samples from the COVTYPE. We preprocessed the
data by subtracting the mean (centering) and normalizing the
samples with the maximum L5 norm in each dataset to enforce
the condition ||x,|2 <1 ¥n. We note that this preprocessing
step is not differentially private, although it can be modified
to satisfy differential-privacy at the cost of some utility. In
all cases we show the average performance over 10 runs of
the algorithms. As a performance measure of the produced
subspace from the algorithm, we choose the captured energy:
¢°F = tr(VTAV), where V is the subspace estimated by
an algorithm and A is the true second-moment matrix of the
data. Note that, we can approximate the the captured energy
in the true subspace as tr(Vx(A)TAV(A)), where A is
achieved from the pooled-data sample second-moment matrix
and Vi (A) is achieved from the non-private PCA.

Dependence on privacy parameter e. First, we explore the
trade-off between privacy and utility; i.e., between e and ¢©F.
We note that the standard deviation of the added noise is
inversely proportional to € — bigger e means higher privacy risk
but less noise and thus, better utility. In Figure Eka)—(c), we
show the variation of ¢“F of different algorithms for different
values of e. For this experiment, we kept the parameters §, N
and S fixed. For all the datasets, we observe that as € increases
(higher privacy risk), the captured energy increases. The
proposed capeP CA reaches the optimal utility (non — dp pool)
for some parameter choices and clearly outperforms the exist-
ing DPdisPCA, the conv, and the local algorithms. One of the
reasons that capePCA outperforms conv is the smaller noise
variance at the aggregator, as described Moreover,
capePCA outperforms DPdisPCA because DPdisPCA suffers
from a larger variance at the aggregator due to computation
of the partial square root of As [[17]]. However, DPdisPCA of-
fers a much smaller communication overhead than capePCA.
Achieving better performance than local is intuitive because
including the information from multiple sites should always
result in better estimates of population parameters than using
the data from a single site only. An interesting observation is
that for datasets with lower dimensional samples, we can use
smaller € (i.e., lower privacy risk) for the same utility.
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Fig. 2. Variation of performance in distributed PCA for synthetic and real data: (a) - (c) with privacy parameter €; (d) - (f) with sample size N5 and (g) -

(i) with privacy parameter &

Dependence on number of samples V. Next, we investigate
the variation in performance with sample size IV,. Intuitively, it
should be easier to guarantee smaller privacy risk € and higher
utility ¢©F, when the number of samples is large. Figures d)-
(f) show how ¢CF increases as a function of N,. The variation
with N reinforces the results seen earlier with variation of e.
For a fixed € and 4, the utility increases as we increase [N.
For sufficiently large V,, the captured energy will reach that
of non — dp pool. Again, we observe a sharper increase in
utility for lower-dimensional dataset.

Dependence on privacy parameter §. Finally, we explore the
variation of performance with the other privacy parameter §.
Recall that § can be considered as the probability that the al-
gorithm releases the private information without guaranteeing
privacy. We, therefore, want this to be as small as possible.
However, lower § results in larger noise variance. In Figure
g)-(i), we show how ¢F vary with varying §. We observe
that if J is not too small, the proposed algorithm can achieve
very good utility, easily outperforming the other algorithms.

B. Distributed Differentially-private OTD

For the proposed capeAGN algorithm, we focus on measur-
ing how well the output of the proposed algorithm approximate
the true components {ay} and {wy}. Let the recovered com-
ponent vectors be {a;}. We use the same error metric as our
previous work [21]], ¢°°™P, to capture the disparity between

{ar} and {a;}:

= min ||€1k—ak/||2.
k'€[K]

min

K
1
¢ = > EDE,,, and ED},
k=1

For comparison, we show the error resulting from the aj’s
achieved from the proposed capeAGN algorithm, a conven-
tional (but never proposed anywhere to the best of our
knowledge) distributed differentially-private OTD algorithm
that does not employ correlated noise (conv), a differentially-
private OTD [21] on local data (local) and the non-private
tensor power method [3] on pooled data (Non — priv.). We
also show the error considering random vectors as ai’s
(Rand. vect.). The reason [21] to show (Rand. vect.) is the
following: this error corresponds to the worst possible results,
as we are not taking any information from data into account to
estimate a;’s. As recovering the component vectors is closely
related with recovering the selection probabilities {wy}, we
only show the error of recovering the component vectors. We
studied the dependence of ¢°°™P on the privacy parameters e,
0 and the sample size N;. In all cases we show the average
performance over 10 runs of each algorithm. We note that
the capeAGN algorithm adds noise in two stages for ensuring
differential-privacy: one for estimating W and another for
estimating M3. We equally divided € and § to set €1, €3 and d1,
09 for the two stages. Optimal allocation of € and § in multi-
stage differentially-private algorithms is still an open question.

Performance variation in the MOG setup. First, we present
the performance of the aforementioned algorithms in the
setting of the mixture of Gaussians. We use two synthetic
data sets of different feature dimensions (D = 10, K = 5
and D = 50, K = 10), where the common covariance is
0% = 0.05 and the components {ay} satisfy |lag|/2 < 1.

We first explore the privacy-utility tradeoff between e and
q°°™P. For the capeAGN algorithm, the variance of the noise
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is inversely proportional to €2 — smaller ¢ means more noise
(lower utility) and lower privacy risk. In the top-row of
Figure [3] we show the variation of ¢®™P with e for a fixed
6 = 0.01 and S = 5 for two different feature dimensions,
each with two different samples sizes. For both of the feature
dimensions, we observe that as e increases (higher privacy
risk), the errors decrease and the proposed capeAGN algorithm
outperforms the conv and local methods. capeAGN matches
the performance of Non — priv. method for larger € values. For
a particular feature dimension, we notice that if we increase
N, the performance of capeAGN gets even better. This is
expected as the variance of the noise for capeAGN is inversely
proportional to square of the sample size.

Next, we consider the performance variation with Ng.
Intuitively, it should be easier to guarantee a smaller privacy
risk for the same e and a higher utility (lower error) when

the number of samples is large. In the bottom row of Figure
we show how the errors vary as a function of N for
the MOG model for two different feature dimensions, while
keeping § = 0.01 and S = 5 fixed. The variation with the
sample size reinforces the results seen earlier with variation
in e: the proposed capeAGN outperforms the other algorithms
under investigation for both D = 10 and D = 50. In general,
capeAGN approaches the performance of Non — priv. as the
sample size increases. When ¢ is large enough, the capeAGN
algorithm achieves as much utility as Non — priv. method.
Finally, we show the variation of performance with the other
privacy parameter d. Recall that § can be interpreted as the
probability that the privacy-preserving algorithm releases the
private information “out in the wild” without any additive
noise. Therefore, we want to ensure that § is small. However,
the smaller the ¢ is the larger the noise variance becomes.
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Fig. 5. Variation of performance with privacy parameter : top-row — in MOG setup; bottom-row — in STM setup

Thus smaller § dictates loss in utility. We observe this in
our experiments as well. In the top-row of Figure 5 we
show the variation of ¢°°™P with § for two different feature
dimensions and two different sample sizes. We kept S = 5
fixed. We observe that when € is small, we need larger
to achieve meaningful performance. This can be explained
in the following way: for Gaussian mechanism, we need to
ensure that the standard deviation of the noise o satisfies
o > % 2log 122, where A is the Ly sensitivity of the
function under consideration. This inequality can be satisfied
with infinitely many (e, d) pairs and one can keep the noise
level the same for a smaller € with a larger 5. We observe from
the figure that when both € and N, are larger, the proposed
capeAGN can achieve very close performance to the non-
private one even for very small § values.

Performance variation in the STM setup. We performed
experiments on two synthetic datasets of different feature
dimensions (D = 10, K = 5 and D = 50, K = 10) generated
with pre-determined w and {ay}. It should be noted here that
the recovery of {a;} is difficult [21], because the recovered
word probabilities from the tensor decomposition, whether
private or non-private, may not always be valid probability
vectors (i.e., no negative entries and sum to 1). Therefore,
prior to computing the ¢°°™P, we ran a post-processing step
(0-out negative entries and then normalize by summation) to
ensure that the recovered vectors are valid probability vectors.
This process is non-linear and potentially makes the recovery
error worse. However, for practical STM, D is not likely to be
10 or 50, rather it may be of the order of thousands, simulating
which is a huge computational burden. In general, if we want
the same privacy level for higher dimensional data, we need to
increase the sample size. We refer the reader to some efficient
(but non-privacy-preserving) implementations [37|] for tensor
factorization.

As in the case of the MOG model, we first explore the
privacy-utility tradeoff between e and ¢“°™P. In the top-

row of Figure @ we show the variation of ¢®™P with ¢
for a fixed § = 0.01 and S = 5 for two different feature
dimensions. For both of the feature dimensions, we observe
that as € increases (higher privacy risk), the errors decrease.
The proposed capeAGN outperforms conv and local methods
in all settings; and match the performance of Non — priv. for
large enough e. Increasing N, makes the proposed algorithm
perform even better.

Next, in the bottom-row of Figure @ we show how the errors
vary as a function of Ny for two different feature dimensions,
while keeping § = 0.01 and S = 5 fixed. The variation with
N reiterates the results seen earlier. The proposed capeAGN
outperforms all other algorithms (except the Non — priv.) for
both D = 10 and D = 50. For larger Ny, it achieves almost
the same utility as the Non — priv. algorithm. Even for smaller
e with a proper sample size, the error is very low. For the
D = 10 case, the capeAGN always performs very closely
with the Non — priv. algorithm.

Lastly, we show the variation of ¢°°™P with § in the bottom-
row of Figure [5] We observe similar performance trend as in
the MOG setting. For smaller ¢ and sample size, we need to
compensate with larger J to achieve a performance closer to
Non — priv. one. However, when sample size is larger, we can
get away with a smaller € and 4. This is intuitive as hiding one
individual among a large group is easier — the additive noise
variance need not be very large and hence the performance
does not take a large hit.

VII. CONCLUSION

In this paper, we proposed new algorithms for distributed
differentially-private principal component analysis and orthog-
onal tensor decomposition. Our proposed algorithms achieve
the same level of additive noise variance as the pooled
data scenario for ensuring differential-privacy. Therefore, we
attain the same utility as the differentially-private pooled data
scenario in a distributed setting. This is achieved through the
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employment of the correlated noise design protocol, under
the assumption of availability of some reasonable resources.
We empirically compared the performance of the proposed
algorithms with those of existing (if any) and conventional
distributed algorithms on synthetic and real data sets. We
varied privacy parameters and relevant dataset parameters. The
proposed algorithms outperformed the existing and conven-
tional algorithms comfortably and matched the performance
of corresponding non-private algorithms for proper parameter
choices. In general, the proposed algorithms offered very good
utility even for strong privacy guarantees, which indicates that
meaningful privacy can be attained even without loosing much
utility.
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APPENDIX A
ALGEBRA FOR VARIOUS CALCULATIONS

A. Calculation of A in Section @

We show the calculation of A here in detail. that
the sites send their A to the aggregator and the aggregator
computes

S
1
:§Z(AS+ES+FS+GS—FS)
1< 1<
:§Z(AS+GS)+§ZES
s=1

1 S
:§Z(A5+Gé),

where we used the relation Y7 | E, = 0.

B. Calculation of Ms in Section M

We show the calculation of M3 here in detail. We M
that M3 = M35 (W, W, W). At the aggregator, we compute

Ms =

1~ -
> (M- 7)),
s=1

9]

where F§ = F5 (W, W, W).

Then we have

S
-1
My = §Z<M§ (W, W, W) + & (W, W, W)+

s=1

F+ G5 (W, W, W) - 75)

- % 3 (M5 (W, W, W) + G5 (W, W, W) +
s=1
(; :1 5;) (W, W, W)
1

S

M«

(M3 (W, W, W) + G5 (W, W, W))
1

S

S
- (;me;) (W, W, W),

s=1

where we used the associativity of the multi-linear opera-
tion [3|] and the relation Zle E5=0.

APPENDIX B
APPLICATIONS OF ORTHOGONAL TENSOR
DECOMPOSITION

We review two examples from Anandkumar et al. [3]], which
involve estimation of latent variables from observed samples.
The lower-order moments obtained from the samples can be
written as low-rank symmetric tensors.

A. Single Topic Model (STM)

Let us consider an exchangeable bag-of-words model [3]
for documents. Such exchangeable models can be viewed as
mixture models in which there is a latent variable h such that
the L words in the document tq,to,...,t; are conditionally
ii.d. given h. Additionally, the conditional distributions are
identical at all the nodes [3]. Let us assume that h is the only
topic of a given document, and it can take only K distinct
values. Let D be the number of distinct words in the vocab-
ulary, and L > 3 be the number of words in each document.
The generative process for a document is as follows: the doc-
ument’s topic is drawn according to the discrete distribution
specified by the probability vector w = [wy, wa, ..., wK]T
This is modeled as a discrete random variable h such that
Prh=k] = wy, for k € [K]. Given the topic h, the
document’s L words are drawn independently according to
the discrete distribution specified by the probability vector
a, € RP. We represent the L words in the document by
D-dimensional random vectors t; € RP. Specifically, if the I-
th word is d, we set t; = eq4 for [ € [L], where e, ea,...,ep
are the standard coordinate basis vectors for RP. We observe
that for any topic k

E[ty ®tolh=k] =) Prlty =ity =jlh=kle;@e;
,J
=E[ti|h = k] @ E[ta|h = k]

= a; ® ag.
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Now, we can define two moments in terms of the outer
products of the probability vectors a; and the distribution of
the topics h as

K K
M, = Zwkak ® ap, Mz = Zwkak ®a, ®@ag. (6)
k=1 k=1
The method proposed in [3]] to recover w and {aj } proceeds as
follows: we observe N documents. Each of the documents has
number of words L > 3. The way we record what we observe
is: we form an D x D x D tensor whose (d1, ds, ds)-th entry
is the proportion of times we see a document with first word
dy, second word do and third word ds. In this setting, we can
estimate the moments My and M3, defined in (6), from the
observed data as: My = E[t; ®tso] and M3 = E[t; ®t2®1t3].
We then need to perform orthogonal tensor decomposition on
M3 to recover w and {ay,}.

B. Mixture of Gaussians (MOG)

A similar example as the single topic model is the spherical
mixture of Gaussians [3]]. Let us assume that there are K
components and the component mean vectors are given by
the set {aj,ay,...,ax} C RP. The probability of choosing
component k is wy. We assume that the common covariance
matrix is 021 . However, the model can be extended to incor-
porate different covariance matrices for different component
as well [3], [9]. The n-th observation of the model can be
written as t,, = a;, + 2z, where h is a discrete random variable
with Pr[h = k] = wy and z is an D-dimensional random
vector, independent from h, drawn according to A (0,0%Ip).
Let us denote the total number of observations by /N. Without
loss of generality, we assume that |ag|ls < 1. Now, for
D > K, it has been shown [9] that if we have estimates
of the second and third order moments from the observations
t, as My = E[t ® t] — 0?Ip and

Mz =Et®t®t]—

QZ

then these moments are decomposable as: My =
K K
Zk:l wrag ® ag and Mz = Zk:l wrag @ ag @ ag.

®ed®ed+ed®E[ ]®ed+ed®ed®]}3[t}),

C. Orthogonal Decomposition of M3

For both the STM and the MOG models, in order to
decompose M3 using the tensor power method (3), we need
the a;’s to be orthogonal to each other. But, in general, they
are not. To employ the orthogonal tensor decomposition, we
can project the tensor onto some subspace W € RP*K (o
ensure W Tay’s are orthogonal to each other. We note that,
according to the multi-linear notation, we have

MS(V17V27V3) =

K
Z W (VIak) &
k=1

In order to find W, we can compute the SVD(K) on the
second-order moment My, € RP*P as My, = UDUT,

(V;ak) ® (V;ak) .

where U € RP*K and D € REXE, We define W =
UD 2 € RP*K and then compute the projection M3z =
M3(W, W, W). We note that My e RE*XExK jg now
orthogonally decomposable. We use the tensor power iteration
on M3 to recover the weights {w;} and the component
vectors {ay}. The detail of the tensor power method can be
found in Anandkumar et al. [3]].

APPENDIX C
DIFFERENTIALLY-PRIVATE OTD

We note that the key step in the orthogonal tensor decom-
position algorithm is the mapping given by (3). In order to
ensure differential privacy for the orthogonal decomposition,
we may either add noise at each iteration step scaled to the
Lo sensitivity [26] of the operation given by or we can
add noise to the tensor X itself just once. Adding noise
in each iteration step might result in a poor utility/accuracy
of the recovered eigenvectors and eigenvalues. We intend to
add noise to the tensor itself prior to employing the tensor
power method. In the following, we are showing the sensitivity
calculations for the pooled data scenario. Extension to the
distributed case is straightforward (replacing N with Ny).

First, we focus on the exchangeable single topic model
setup that we described in Appendix [B-Al We observe and
record N documents. Let us consider two sets of documents,
which differ in only one sample (e.g., the last one). Let the
empirical second-order moment matrices be My and MY, and
the third-order moment tensors be M3 and M}, respectively,
for these two sets. We consider the two tensors, M3 and Mg,
as neighboring. We observe that

iZtlntm

2

23

1
tints, + —

N
Z ty ’ﬂt2n

T
t1,Nt:2$N7

2| =
Zﬁ

tht2N7

where t;, denotes the [-th word of the n-th document.
Similarly, we observe

D
1
Ms= 53 tin@tan @tsn
d=1
1 N-—1 1
= N n®@to, @ts, + Ntl’N R to N ®t3 N,
n=1
N-—1
, 1 1, / ’
M's = N ti, @ty @ts, + NtLN Rty vy Dtz N

\ |
—

As mentioned before, we perform the SVD on M, first to
compute W. We intend to use the AG algorithm [26] to make
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this operation differentially private. We look at the quantity:

1 T
My — M5l = NHtLNt;N —t'1 Nty vl

1 T
=5 s {uT (tLNtQT,N — t’l,Nt’M) v}
lall2,][v]l2=1
V2
< — =Asg5,
SN 2,9
because of the encoding t;, = eg. For the mixture of

Gaussians model, we note that we assumed ||ag||s < 1 for
all k € {1,2,...,K}. To find a bound on ||[Ms — M/'s||2,
we consider the following: for identifiability of the {aj},
we have to assume that the a;’s are linearly independent. In
other words, we are interested in finding the directions of the
components specified by {a}. In that sense, while obtaining
the samples, we can divide the samples by a constant ¢ such
that |[t,||2 < 1 is satisfied. From the resulting second- and
third-order moments, we will be able to recover {ay} up to a
scale factor. It is easy to show using the definition of largest
eigenvalue of a symmetric matrix [38]] that

1
My — M52 = N H S\Tp 1 {u—r (tNt—Ar[ — t'Nt’;) u}
u||2=
1 2 2
¥, srpl{ [uTen]” — JuTe'n[* }
ulj2=
1
< N - A2,M7

where the inequality follows from the relation ||t |2 < 1. We
note that the largest singular value of a matrix is the square
root of the largest eigenvalue of that matrix. For the distributed
case, as before, the sensitivity of M3 depends
only on the local sample size. We can therefore use the
AG algorithm [26] (i.e., adding Gaussian noise with variance
scaled to Ay g or Ay p to My) to make the computation of
W (€1, 61 )-differentially private. Next, we focus on the tensor
M3s. We need to project M3 on W before using the tensor
power method. We can choose between making the projection
operation differentially private, or we can make the M
itself differentially private before projection. We found that
making the projection operation differentially private involves
addition of a large amount of noise and more importantly, the
variance of the noise to be added depends on the alphabet
size (or feature dimension) D and the singular values of M.
Therefore, we choose to make the tensor itself differentially
private. We are interested to find the sensitivity of the tensor
valued function f(Ms3) = Ms, which is simply the identity
map. That is, we need to find the maximum quantity that this
function can change if we replace the argument M3 with a
neighboring M’3. For our exchangeable single topic model
setup, we have

1
[Ms — M3 = Hﬁtl,N Rty Rtz N—

1 V2
Nt/l,N Rty N ® tIB,NH < N - As g,

because only one entry in the D x D x D tensor t1 y ®t2 x ®
t3 n is non-zero (in fact, the only non-zero entry is 1). Now,
for the mixture of Gaussians model, we define

T:
D
0?> (Eft] ® eq @ eq + eq @ E[t] ® eq + eq ® eq @ E[t])
d=1

Therefore, we have

T-T =
0'2 D
NZ((tN—tQ\,)Q?ed@edJr
d=1

ed@(tN—tﬁv)®ed+ed®ed®(tN—t§v))

— 1T = 71 < 2% ey byl < B
where the last inequality follows from |[t,||2 < 1. We have
My — M| = || <t @ by @ v
%t’N®t’N®t’N+T—T’
< %-&- 611)\702 = A3,
because ||ty ® ty ® ty| = 1 in our setup. [Again] we

note that in the distributed setting, the sensitivity of the local
M3 depends only on the local sample size. We refer the
reader to our previous work [21] where we proposed two
algorithms for centralized differentially private OTD. The first
one uses a symmetric tensor made with i.i.d. entries from a
Gaussian distribution, while the second proposed method uses
a symmetric tensor made with entries taken from a sample
vector drawn from an appropriate distribution. Both of the
algorithms guarantee (e, §)-differential privacy.
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