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Social Learning and Distributed Hypothesis Testing
Anusha Lalitha, Tara Javidi, Senior Member, IEEE, and Anand Sarwate, Member, IEEE

Abstract—This paper considers a problem of distributed
hypothesis testing over a network. Individual nodes in a network
receive noisy local (private) observations whose distribution
is parameterized by a discrete parameter (hypothesis). The
marginals of the joint observation distribution conditioned on
each hypothesis are known locally at the nodes, but the true
parameter/hypothesis is not known. An update rule is analyzed
in which nodes first perform a Bayesian update of their belief
(distribution estimate) of each hypothesis based on their local
observations, communicate these updates to their neighbors,
and then perform a “non-Bayesian” linear consensus using the
log-beliefs of their neighbors. Under mild assumptions, we show
that the belief of any node on a wrong hypothesis converges to
zero exponentially fast. We characterize the exponential rate
of learning, which we call the network divergence, in terms of
the nodes’ influence of the network and the divergences between
the observations’ distributions. For a broad class of observation
statistics which includes distributions with unbounded support
such as Gaussian mixtures, we show that rate of rejection of
wrong hypothesis satisfies a large deviation principle i.e., the
probability of sample paths on which the rate of rejection
of wrong hypothesis deviates from the mean rate vanishes
exponentially fast and we characterize the rate function in terms
of the nodes’ influence of the network and the local observation
models.

I. INTRODUCTION

Learning in distributed settings is more than a phenomenon
of social networks; it is also an engineering challenge for
networked system designers. For instance, in today’s data
networks, many applications need estimates of certain pa-
rameters: file-sharing systems need to know the distribution
of (unique) documents shared by their users, internet-scale
information retrieval systems need to deduce the criticality
of various data items, and monitoring networks need to com-
pute aggregates in a duplicate-insensitive manner. Finding
scalable, efficient, and accurate methods for computing such
metrics (e.g. number of documents in the network, sizes of
database relations, distributions of data values) is of critical
value in a wide array of network applications.

We consider a network of nodes that sample local obser-
vations (over time) governed by an unknown true hypothesis
θ∗ taking values in a finite discrete set Θ. We model the i-th
node’s distribution (or local channel, or likelihood function)
of the observations conditioned on the true hypothesis by
fi (·; θ∗) from a collection {fi (·; θ) : θ ∈ Θ}. Nodes
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Fig. 1. Example of a parameter space in which no node can identify the
true parameter. There are 4 parameters, {θ1, θ2, θ3, θ4}, and 2 nodes. The
node 1 has f1 (·; θ1) = f1 (·; θ3) and f1 (·; θ2) = f1 (·; θ4), and the node
2 has f2 (·; θ1) = f2 (·; θ2) and f2 (·; θ3) = f2 (·; θ4).

neither have access to each others’ observations nor the joint
distribution of observations across all nodes in the network.
Every node in the network aims to learn the unknown true
hypothesis θ∗. A simple two-node example is illustrated in
Figure 1 – one node can only learn the column in which the
true hypothesis lies, and the other can only learn the row. In
this example, the local observations of a given node are not
sufficient to recover the underlying hypothesis in isolation. In
this paper we study a learning rule that enables the nodes to
learn the unknown true hypothesis based on message passing
between one hop neighbors (local communication) in the
network. In particular, each node performs a local Bayesian
update and send its belief vectors (message) to its neighbors.
After receiving the messages from the neighbors each node
performs a consensus averaging on a reweighting of the log
beliefs. Our result shows that under our learning rule each
node can reject the wrong hypothesis exponentially fast.

We show that the rate of rejection of wrong hypothesis
is the weighted sum of Kullback-Leibler (KL) divergences
between likelihood function of the true parameter and the
likelihood function of the wrong hypothesis, where the sum is
over the nodes in the network and the weights are the nodes’
influences as dictated by the learning rule. Furthermore, we
show that the probability of sample paths on which the rate of
rejection deviates from the mean rate vanishes exponentially
fast. For any strongly connected network and bounded ratios
of log-likelihood functions, we obtain a lower bound on this
exponential rate. Furthermore, for any aperiodic network we
characterize the exact exponent with which probability of
sample paths on which the rate of rejection deviates from the
mean rate vanishes (i.e., obtain a large deviation principle) for
a broader class of observation statistics which includes distri-
butions with unbounded support such as Gaussian mixtures
and Gamma distribution. The large deviation rate function is
shown to be a function of observation model and the nodes’
influences on the network as dictated by the learning rule.
Outline of the Paper. The rest of the paper is organized as
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follows. We provide the model in Section II which defines
the nodes’ observation model and network. This section also
contains the learning rule and assumptions on model. We
then provide results on rate of convergence and their proofs in
Section III. We apply our learning rule to various examples in
Section IV and discuss some practical issues in Section IV-C.
We conclude with a summary in Section V.

A. Related Work

The literature on distributed learning, estimation and de-
tection can divided into two broad sets. One set deals with
the fusion of information observed by a group nodes at
a fusion center where the communication links (between
the nodes and fusion center) are either rate limited [4]–
[12] or subject to channel imperfections such as fading and
packet drops [13]–[15]. Our work belongs to the second set,
which models the communication network as a directed graph
whose vertices/nodes are agents and an edge from node i
to j indicates that i may send a message to j with perfect
fidelity (the link is a noiseless channel of infinite capacity).
These “protocol” models study how message passing in a
network can be used to achieve a pre-specified computational
task such as distributed learning [16], [17], general function
evaluation [18],or stochastic approximations [19]. Message
passing protocols may be synchronous or asynchronous (such
as the “gossip” model [20]–[24]). This graphical model of
the communication, instead of assuming a detailed physical-
layer formalization, implicitly assumes a PHY/MAC-layer
abstraction where sufficiently high data rates are available
to send the belief vectors with desired precision when nodes
are within each others’ communication range. A missing edge
indicates the corresponding link has zero capacity.

Due to the large body of work in distributed detection,
estimation and merging of opinions, we provide a long yet
detailed summary of all the related works and their relation
to our setup. Readers familiar with these works can skip to
Section II without loss of continuity.

Several works [25]–[29] consider an update rule which
uses local Bayesian updating combined with a linear con-
sensus strategy on the beliefs [30] that enables all nodes in
the network identify the true hypothesis. Jadbabaie et al. [25]
characterize the “learning rate” of the algorithm in terms of
the total variational error across the network and provide an
almost sure upper bound on this quantity in terms of the KL-
divergences and influence vector of agents. In Corollary 2
we analytically show that the proposed learning rule in this
paper provides a strict improvement over linear consensus
strategies [25]. Simultaneous and independent works by
Shahrampour et al. [31] and Nedić et al. [32] consider a
similar learning rule (with a change of order in the update
steps). They obtain similar convergence and concentration
results under the assumption of bounded ratios of likelihood
functions. Nedić et al. [32] analyze the learning rule for
time-varying graphs. Theorem 3 strengthens these results for
static networks by providing a large deviation analysis for a

broader class of likelihood functions which includes Gaussian
mixtures.

Rad and Tahbaz-Salehi [28] study distributed parame-
ter estimation using a Bayesian update rule and average
consensus on the log-likelihoods similar to (2)–(3). They
show that the maximum of each node’s belief distribution
converges in probability to the true parameter under certain
analytic assumptions (such as log-concavity) on the likeli-
hood functions of the observations. Our results show almost
sure convergence and concentration of the nodes’ beliefs
when the parameter space is discrete and the log-likelihood
function is concave. Kar et al. in [33] consider the problem of
distributed estimation of an unknown underlying parameter
where the nodes make noisy observations that are non-linear
functions of an unknown global parameter. They form local
estimates using a quantized message-passing scheme over
randomly-failing communication links, and show the local
estimators are consistent and asymptotically normal. Note
that for any general likelihood model and static strongly
connected network, our Theorem 1 strengthens the results
of distributed estimation (where the error vanishes inversely
with the square root of total number of observations) by
showing exponentially fast convergence of the beliefs. Fur-
thermore, Theorem 2 and 3 strengthen this by characterizing
the rate of convergence.

Similar non-Bayesian update rules have been in the context
of one-shot merging of opinions [29] and beliefs in [34]
and [35]. Olfati-Saber et al. [29] studied an algorithm for
distributed one-shot hypothesis testing using belief propaga-
tion (BP), where nodes perform average consensus on the
log-likelihoods under a single observation per node. The
nodes can achieve a consensus on the product of their local
likelihoods. A benefit of our approach is that nodes do not
need to know each other’s likelihood functions or indeed even
the space from which their observations are drawn. Saligrama
et al. [34] and Alanyali et al. [35], consider a similar setup
of belief propagation (after observing single event) for the
problem of distributed identification of the MAP estimate
(which coincides with the true hypothesis for sufficiently
large number of observations) for certain balanced graphs.
Each node passes messages which are composed by taking
a product of the recent messages then taking a weighted
average over all hypotheses. Alanyali et al. [35] propose mod-
ified BP algorithms that achieve MAP consensus for arbitrary
graphs. Though the structure of the message composition of
the BP algorithm based message passing is similar to our pro-
posed learning rule, we consider a dynamic setting in which
observations are made infinitely often. Our rule incorporates
new observation every time a node updates its belief to
learn the true hypothesis. Other works study collective MAP
estimation when nodes communicate discrete decisions based
on Bayesian updates [36], [37] Harel et el. in [36] study a
two-node model where agents exchange decisions rather than
beliefs and show that unidirectional transmission increases
the speed of convergence over bidirectional exchange of local
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decisions. Mueller-Frank [37] generalized this result to a
setting in which nodes similarly exchange local strategies
and local actions to make inferences.

Several recently-proposed models study distributed se-
quential binary hypothesis testing detecting between different
means with Gaussian [38] and non-Gaussian observation
models [39]. Jakovetic et al. [39] consider a distributed hy-
pothesis test for i.i.d observations over time and across nodes
where nodes exchange weighted sum of a local estimate from
previous time instant and ratio of likelihood functions of the
latest local observation with the neighbors. When the network
is densely connected (for instance, a doubly stochastic weight
matrix), after sufficiently long time nodes gather all the
observations throughout network. By appropriately choosing
a local threshold for local Neyman-Pearson test, they show
that the performance of centralized Neyman-Pearson test can
be achieved locally. In contrast, our M -ary learning rule
applies for observations that are correlated across nodes and
exchanges more compact messages i.e., the beliefs (two finite
precision real values for binary hypothesis test) as opposed
to messages composed of the raw observations (in the case
of Rd Gaussian observations with d � 2, d finite precision
real values for binary hypothesis test). Sahu and Kar [38]
consider a variant of this test for the special case of Gaussians
with shifted mean and show that it minimizes the expected
stopping times under each hypothesis for given detection
errors.

II. THE MODEL

Notation: We use boldface for vectors and denote the i-th
element of vector v by vi. We let [n] denote {1, 2, . . . , n},
P(A) the set of all probability distributions on a set A,
|A| denotes the number of elements in set A, Ber(p) the
Bernoulli distribution with parameter p, and D(PZ ||P ′Z) the
Kullback–Leibler (KL) divergence between two probability
distributions PZ , P ′Z ∈ P(Z). Time is discrete and denoted
by t ∈ {0, 1, 2, . . .}. If a ∈ A, then 1a(.) ∈ P(A) denotes
the probability distribution which assigns probability one to
a and zero probability to the rest of the elements in A. For
vectors x,y ∈ Rd, let x ≤ y denote xi ≤ yi for each i-th
element of vector x and y and let 〈x,y〉 denote

∑d
i=1 xiyi.

Let 1 denote the vector of where each element is 1. For any
subset F ⊂ RM−1, let F o be the interior of F and F̄ the clo-
sure. For ε > 0 let Fε+ = {x + δ1,∀ 0 < δ ≤ ε and x ∈ F},
Fε− = {x− δ1,∀ 0 < δ ≤ ε and x ∈ F}.

A. Nodes’ Observation Model

Consider a group of n individual nodes. Let Θ =
{θ1, θ2, . . . , θM} denote a finite set of M parameters which
we call hypotheses: each θi denotes a hypothesis. At each
time instant t, every node i ∈ [n] makes an observation
X

(t)
i ∈ Xi, where Xi denotes the observation space of node

i. The joint observation profile at any time t across the
network, {X(t)

1 , X
(t)
2 , . . . , X

(t)
n }, is denoted by X(t) ∈ X ,

where X = X1×X2×. . .×Xn. The joint likelihood function

for all X ∈ X given θk is the true hypothesis is denoted as
f (X; θk). We assume that the observations are statistically
governed by a fixed global “true hypothesis” θ∗ ∈ Θ which is
unknown to the nodes. Without loss of generality we assume
that θ∗ = θM . Furthermore, we assume that no node in
network knows the joint likelihood functions {f (·; θk)}Mk=1

but every node i ∈ [n] knows the local likelihood functions
{fi (·; θk)}Mk=1, where fi (·; θk) denotes the i-th marginal
of f (·; θk). Each node’s observation sequence (in time) is
conditionally independent and identically distributed (i.i.d)
but the observations might be correlated across the nodes at
any given time.

In this setting, nodes attempt to learn the “true hypothesis”
θM using their knowledge of {fi (·; θk)}Mk=1. In isolation, if
fi (·; θk) 6= fi (·; θM ) for some k ∈ [M − 1], node i can
rule out hypothesis θk in favor of θM exponentially fast with
an exponent which is equal to D (fi (·; θM )‖ fi (·; θk)) [40,
Section 11.7]. Hence, for a given node the KL-divergence
between the distribution of the observations conditioned over
the hypotheses is a useful measure of the distinguishability
of the hypotheses. Now, define

Θ̄i = {k ∈ [M ] : fi (·; θk) = fi (·; θM )}
= {k ∈ [M ] : D (fi (·; θM )‖ fi (·; θk)) 6= 0}.

In other words, let Θ̄i be the set of all hypotheses that are
locally indistinguishable to node i. In this work, we are
interested in the case where |Θ̄i| > 1 for some node i, but
the true hypothesis θM is globally identifiable (see (1)).

Assumption 1. For every pair k 6= j, there is at
least one node i ∈ [n] for which the KL-divergence
D (fi (·; θk)‖ fi (·; θj)) is strictly positive.

In this case, we ask whether nodes can collectively go
beyond the limitations of their local observations and learn
θM . Since

{θM} = Θ̄1 ∩ Θ̄2 ∩ . . . ∩ Θ̄n, (1)

it is straightforward to see that Assumption 1 is a sufficient
condition for the global identifiability of θM when only
marginal distributions are known at the nodes. Also, note
that this assumption does not require the existence of a
single node that can distinguish θM from all other hypotheses
θk, where k ∈ [M − 1]. We only require that for every
pair k 6= j, there is at least one node i ∈ [n] for which
fi (·; θk) 6= fi (·; θj).

Finally, we define a probability triple
(
Ω,F ,PθM

)
, where

Ω = {ω : ω = (X(0),X(1), . . .), ∀X(t) ∈ X , ∀ t}, F is
the σ− algebra generated by the observations and PθM is
the probability measure induced by paths in Ω, i.e., PθM =∏∞
t=0 f (·; θM ). We use EθM [·] to denote the expectation

operator associated with measure PθM . For simplicity we
drop θM to denote PθM by P and denote EθM [·] by E[·].

B. Network
We model the communication network between nodes

via a directed graph with vertex set [n]. We define the
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neighborhood of node i, denoted by N (i), as the set of all
nodes which have an edge starting from themselves to node i.
This means if node j ∈ N (i), it can send the information to
node i along this edge. In other words, the neighborhood of
node i denotes the set of all sources of information available
to it. Moreover, we assume that the nodes have knowledge
of their neighbors N (i) only and they have no knowledge of
the rest of the network [41].

Assumption 2. The underlying graph of the network is
strongly connected, i.e. for every i, j ∈ [n] there exists a
directed path starting from node i and ending at node j.

We consider the case where the nodes are connected to
every other node in the network by at least one multi-hop
path, i.e. a strongly connected graph allows the information
gathered to be disseminated at every node throughout the
network. Such a network enables learning even when some
nodes in the network may not be able to distinguish the true
hypothesis on their own, i.e. the case where |Θ̄i| > 1 for
some nodes.

C. The Learning Rule

In this section we provide a learning rule for the nodes to
learn θM by collaborating with each other through the local
communication alone.

We begin by defining the variables required in order to
define the learning rule. At every time instant t each node i
maintains a private belief vector q

(t)
i ∈ P(Θ) and a public

belief vector b
(t)
i ∈ P(Θ), which are probability distributions

on Θ. The social interaction of the nodes is characterized by a
stochastic matrix W . More specifically, weight Wij ∈ [0, 1]
is assigned to the edge from node j to node i such that
Wij > 0 if and only if j ∈ N (i) and Wii = 1−

∑n
j=1Wij .

The weight Wij denotes the (relative) confidence node i has
on the information it receives from node j.

The steps of learning are given below. Suppose each node
i starts with an initial private belief vector q

(0)
i . At each time

t = 1, 2, . . . the following events happen:

1) Each node i draws a conditionally i.i.d observation
X

(t)
i ∼ fi (·; θM ).

2) Each node i performs a local Bayesian update on
q

(t−1)
i to form b

(t)
i using the following rule. For each

k ∈ [M ],

b
(t)
i (θk) =

fi

(
X

(t)
i ; θk

)
q

(t−1)
i (θk)∑

a∈[M ] fi

(
X

(t)
i ; θa

)
q

(t−1)
i (θa)

. (2)

3) Each node i sends the message Y
(t)
i = b

(t)
i to all nodes

j for which i ∈ N (j). Similarly receives messages
from its neighbors N (i).

4) Each node i updates its private belief of every θk, by
averaging the log beliefs it received from its neighbors.
For each k ∈ [M ],

q
(t)
i (θk) =

exp
(∑n

j=1Wij log b
(t)
j (θk)

)
∑
a∈[M ] exp

(∑n
j=1Wij log b

(t)
j (θa)

) .
(3)

Note that the private belief vector q
(t)
i remain locally with

the nodes while their public belief vectors b
(t)
i are exchanged

with the neighbors. The objective of learning rule is to ensure
that the private belief vector q

(t)
i of each node i ∈ [n]

converges to 1M (·).
Given the weight matrix W , the network can be thought

of as a weighted strongly connected network. Assumption 2,
implies that weight matrix W is irreducible. In this context
we recall the following fact.

Fact 1 (Section 2.5 of Hoel et. al. [42]). Let W be the
transition matrix of a Markov chain. If W is irreducible then
the stationary distribution of the Markov chain denoted by
v = [v1, v2, . . . , vn] is the normalized left eigenvector of W
associated with eigenvalue 1 and it is given as

vi =

n∑
j=1

vjWji. (4)

Furthermore, all components of v are strictly positive. If the
Markov chain is aperiodic, then

lim
t→∞

W t(i, j) = vj , i, j ∈ [n]. (5)

If the chain is periodic with period d, then for each pair
of states i, j ∈ [n], there exists an integer r ∈ [d], such that
W t(i, j) = 0 unless t = md+r for some nonnegative integer
m, and

lim
m→∞

Wmd+r(i, j) = vjd. (6)

In the social learning literature, the eigenvector v also
known as the eigenvector centrality; it is a measure of social
influence of a node in the network. In particular we will see
that vi determines the contribution of node i in the collective
network learning rate.

Definition 1 (Network Divergence). For all k ∈ [M − 1],
the network divergence between θM and θk, denoted by
K(θM , θk), is defined as

K(θM , θk)
4
=

n∑
i=1

viD (fi (·; θM )‖ fi (·; θk)) , (7)

where v = [v1, v2, . . . , vn] is the normalized left eigenvector
of W associated with eigenvalue 1.

Fact 1 together with Assumption 1 guarantees that K(θM , θk)
is strictly positive for every k ∈ [M − 1].

Due to the form of our learning rule, if the initial belief
of any θk, k ∈ [M ], for some node is zero then beliefs of
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that θk remain zero in subsequent time intervals. Hence, we
require the following assumption.

Assumption 3. For all i ∈ [n], the initial private belief
q

(0)
i (θk) > 0 for every k ∈ [M ].

III. MAIN RESULTS

A. The Criteria for Learning

Before we present our main results, we discuss the metrics
we use to evaluate the performance of a learning rule in the
given distributed setup.

Definition 2 (Rate of Rejection of Wrong Hypothesis). For
any node i ∈ [n] and k ∈ [M − 1], define the following

ρ
(t)
i (θk)

4
= −1

t
log q

(t)
i (θk). (8)

The rate of rejection of θk in favor of θM at node i is defined
as

ρi(θk)
4
= liminf

t→∞
ρ

(t)
i (θk). (9)

Now, let

q̃
(t)
i

4
=
[
q

(t)
i (θ1), q

(t)
i (θ2), . . . , q

(t)
i (θM−1)

]T
. (10)

Then

ρ
(t)
i

4
= −1

t
log q̃

(t)
i (11)

and the rate of rejection at node i is defined as

ρi
4
= liminf

t→∞
ρ

(t)
i . (12)

If ρi(θk) > 0 for all k ∈ [M − 1], under a given learning
rule the belief vector of node i not only converges to the
true hypothesis, it converges exponentially fast. Another way
to measure the performance of a learning rule is the rate at
which the belief of true hypothesis converges to one.

Definition 3 (Rate of Convergence to True Hypothesis). For
any i ∈ [n] and k ∈ [M − 1], define the rate of convergence
µi to θM by

µi
4
= liminf

t→∞
−1

t
log(1− q(t)

i (θM )). (13)

Definition 4 (Rate of Social Learning). The total variational
error across the network when the underlying true hypothesis
is θk (where we allow the true hypothesis to vary, i.e. θ∗ =
θk for any k ∈ [M ] instead of assuming that it is fixed at
θ∗ = θM ) is given as

e(t)(k) =
1

2

n∑
i=1

||q(t)
i (·)− 1k(·)|| =

n∑
i=1

∑
j 6=k

q
(t)
i (θj). (14)

This equals the total probability that all nodes in the network
assign to “wrong hypotheses”. Now, define

e(t) 4= max
k∈[M ]

e(t)(k). (15)

The rate of social learning is defined as the rate at which total
variational error, e(t), converges to zero and mathematically
it is defined as

ρL
4
= liminf

t→∞
−1

t
log e(t). (16)

This measure of performance for the learning rule has been
used in the social learning literature [27]. For a given network
and a given observation model for nodes, ρL gives the least
rate of learning guaranteed in the network and therefore
provides a worst case guarantee. It is straightforward to see
that with a characterization for ρi(θk) for all k ∈ [M − 1]
we obtain a lower bound on rate of convergence to true
hypothesis, µi, and on the rate of social learning, ρL, under
a given learning rule.

B. Learning: Convergence to True Hypothesis

Theorem 1 (Rate of Rejecting Wrong Hypotheses, ρi). Let
θM be the true hypothesis. Under the Assumptions 1–3, for
every node in the network, the private belief (and hence the
public belief) under the proposed learning rule converges
to true hypothesis exponentially fast with probability one.
Furthermore, the rate of rejecting hypothesis θk in favor of
θM is given by the network divergence between θM and θk.
Specifically, we have

lim
t→∞

q
(t)
i = 1M P-a.s. (17)

and

ρi = − lim
t→∞

1

t
log q̃

(t)
i = K P-a.s. (18)

where

K = [K(θM , θ1),K(θM , θ2), . . . ,K(θM , θM−1)]
T
. (19)

The proof of Theorem 1 is provided in Appendix A.
Theorem 1 establishes that the beliefs of wrong hypotheses,
θk for k ∈ [M − 1], vanish exponentially fast and it
characterizes the exponent with which a node rejects θk in
favor of θM . The rate of rejection is a function of the node’s
ability to distinguish between the hypotheses, which is given
by the KL-divergences and structure of the weighted network,
weighted by the eigenvector centrality of the nodes. Hence,
every node influences the rate in two ways. Firstly, if the node
has higher eigenvector centrality (i.e. the node is centrality
located), it has larger influence over the beliefs of other nodes
as a result has a greater influence over the rate of exponential
decay as well. Secondly, if the node has high KL-divergence
(i.e highly informative observations that can distinguish be-
tween θk and θM ), then again it increases the rate. If an
influential node has highly informative observations then it
boosts the rate of rejecting θk by improving the rate. We will
illustrate this through numerical examples in Section IV-A.

We obtain lower bound on the rate of convergence to
the true hypothesis and rate of learning as corollaries to
Theorem 1.
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Corollary 1 (Lower Bound on Rate of Convergence to θM ).
Let θM be the true hypothesis. Under the Assumptions 1–
3, for every i ∈ [n], the rate of convergence to θM can be
lower-bounded as

µi ≥ min
k∈[M−1]

K(θM , θk) P-a.s. (20)

Corollary 2 (Lower Bound on Rate of Learning). Let θM
be the true hypothesis. Under the Assumptions 1–3, the rate
of learning ρL across the network is lower-bounded by,

ρL ≥ min
i,j∈[M ]

K(θi, θj) P-a.s.

Remark 1. Jadbabaie et. al. proposed a learning rule in [25],
which differs from the proposed rule at the private belief vec-
tor q

(t)
i formation step. Instead of averaging the log beliefs,

nodes average the beliefs received as messages from their
neighbors. In [27], Jadbabaie et. al. provide an upper bound
on the rate of learning ρL obtained using their algorithm.
They show

ρL ≤ α min
i,j∈[M ]

K(θi, θj) P-a.s. (21)

where α is a constant strictly less than one. Corollary 2
shows that lower bound on ρL using the proposed algorithm
is greater than the upper bound provided in (21).

C. Concentration under Bounded Log-likelihood ratios

Under mild assumptions, Theorem 1 shows that the belief
about a wrong hypothesis θk for k ∈ [M − 1] converges
to zero exponentially fast at rate equal to the network
divergence, K(θM , θk), between θM and θk with probability
one. We strength this result for periodic networks with period
d under the following assumption.

Assumption 4. There exists a positive constant L such that

max
i∈[n]

max
j,k∈[M ]

sup
X∈Xi

∣∣∣∣log
fi (X; θj)

fi (X; θk)

∣∣∣∣ ≤ L. (22)

Theorem 2 (Concentration of Rate of Rejecting Wrong
Hypotheses, ρ(t)

i (θk)). Let θM be the true hypothesis. Under
Assumptions 1–4, for periodic networks with period d, for
every node i ∈ [n], k ∈ [M − 1], and for all ε > 0 we have

lim
t→∞

1

t
logP

(
ρ

(t)
i (θk) ≤ K(θM , θk)− ε

)
≤ − ε2

2L2d
.

(23)
For 0 < ε ≤ L−K(θM , θk), we have

lim
t→∞

1

t
logP

(
ρ

(t)
i (θk) ≥ K(θM , θk) + ε

)
≤ − 1

2L2d
min

{
ε2, min

j∈[M−1]
K(θM , θj)

2

}
. (24)

For ε ≥ L−K(θM , θk) we have

lim
t→∞

1

t
logP

(
ρ

(t)
i (θk) ≥ K(θM , θk) + ε

)
≤ − min

k∈[M−1]

{
K(θM , θk)2

2L2d

}
. (25)

Corollary 3 (Rate of convergence to True Hypothesis). Let
θM be the true hypothesis. Under Assumptions 1–4, for every
i ∈ [n], we have

µi = min
k∈[M−1]

K(θM , θk) P-a.s.

Proofs of Theorem 2 and Corollary 3 are provided in
Appendix B. From Theorem 1 we know that ρ(t)

i (θk) con-
verges to K(θM , θk) almost surely. Theorem 2 strengthens
Theorem 1 by showing that the probability of sample paths
where ρ(t)

i (θk) deviates by some fixed ε from K(θM , θk) van-
ishes exponentially fast. This implies that ρ(t)

i (θk) converges
to K(θM , θk) exponentially fast in probability. Theorem 2
also characterizes a lower bound on the exponent when the
probability of such events vanishes and shows that periodicity
of the network reduces the exponent.

D. Large Deviation Analysis

We require a technical assumption that relaxes the assump-
tion of bounded ratios of the likelihood functions in prior
work [1], [2], [31], [43].

Assumption 5. For every pair θi 6= θj and every node k ∈
[n], the random variable

∣∣∣log fk(Xk;θi)
fk(Xk;θj)

∣∣∣ has finite log moment
generating function under distribution fk (·; θj).

Next, we give examples of families of distributions which
satisfy Assumption 5 but violate Assumption 4.

Remark 2. Distributions f(X; θi) and f(X; θj) for i 6= j
which the following properties for some positive constants
C and β, satisfy Assumption 5

Pi

(
f(X; θj)

f(X; θi)
≥ x

)
≤ C

xβ
, Pi

(
f(X; θi)

f(X; θj)
≥ x

)
≤ C

xβ
.

(26)

Note that (26) is a sufficient condition but not a necessary
condition. Examples 1–2 below do not satisfy (26) yet satisfy
Assumption 5.

Example 1 (Gaussian Mixtures). Let f(X; θ1) = N (µ1, σ)
and f(X; θ2) = N (µ2, σ). Then

g1(x) :=

∣∣∣∣log
f(x; θ1)

f(x; θ2)

∣∣∣∣ ≤ c1|x|+ c2, (27)

where c1 =
∣∣µ1−µ2

σ2

∣∣ and c2 =
∣∣∣µ2

1−µ
2
2

2σ2

∣∣∣. Hence, for i ∈ {1, 2}
and for λ ≥ 0 we have

Ei
[
eλg1(X)

]
≤ ec2λEi

[
ec1λ|X|

]
<∞. (28)

More generally for i ∈ {1, 2}, and p ∈ [0, 1], let

f(x; θi) =
p

σ
√

2π
exp

(
−(x− αi)2

2σ2

)
+

1− p
σ
√

2π
exp

(
−(x− βi)2

2σ2

)
. (29)
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Then the log moment generating function of
∣∣∣log f(X;θ1)

f(X;θ2)

∣∣∣ is
finite for all λ ≥ 0.

Example 2 (Gamma distribution). Let f(X; θ1) =
βα1

Γ(α1)x
α1−1e−βx and f(X; θ2) = βα2

Γ(α2)x
α2−1e−βx, then

g2(x) :=

∣∣∣∣log
f(x; θ1)

f(x; θ2)

∣∣∣∣ ≤ c1| log x|+ c2, (30)

where c1 = |α1 − α2| and c2 =∣∣∣(α1 − α2) log β + log Γ(α2)
Γ(α1)

∣∣∣. Hence, for i ∈ {1, 2}
and for λ ≥ 0 we have

Ei
[
eλg2(X)

]
≤ ec2λEi

[
ec1λ| logX|

]
<∞. (31)

The above examples show that Assumption 5 is satisfied
for distributions which have unbounded support. In order to
analyze the concentration of ρ

(t)
i under Assumption 5 we

replace Assumption 2 with the following assumption.
Assumption 2′. The underlying graph of the network is
strongly connected and aperiodic.

Next we provide few more definitions. Let

Y(t)(θk)
4
= 〈v,L(t)(θk)〉, (32)

where L(t)(θk) is the vector of log likelihood ratios given by

L(t)(θk)

=

log
f1

(
X

(t)
1 ; θk

)
f1

(
X

(t)
1 ; θM

) , . . . , log
fn

(
X

(t)
n ; θk

)
fn

(
X

(t)
n ; θM

)
T . (33)

Definition 5 (Moment Generating Function). For every λk ∈
R, let Λk(λk) denote the log moment generating function of
Y(t)(θk) by

Λk(λk)
4
= logE[eλkY

(t)(θk)] = logE[eλk〈v,L(θk)〉] (34)

For every λ ∈ RM−1, let Λ(λ) denote the log moment
generating function of Y by

Λ(λ)
4
= logE[e〈λ,Y〉]. (35)

Note that each entry of vector Y(t) is a function of joint
observation vector X(t) whose distribution is governed by
f(·; θM ).

Definition 6 (Large Deviation Rate Function). For all x ∈ R,
let Ik(x) denote the Fenchel-Legendre transform of Λk(·)

Ik(x)
4
= sup
λk∈R

{λx− Λk(λk)} . (36)

For all x ∈ RM−1, let I(x) denote the Fenchel-Legendre
transform of Λ(·)

I(x)
4
= sup

λ∈RM−1

{〈λ,x〉 − Λ(λ)} . (37)

Theorem 3 (Large Deviations of ρ
(t)
i ). Let θM be the

true hypothesis. Under Assumptions 1, 2′, 3, 5, the rate of

rejection ρ
(t)
i satisfies an Large Deviation Principle with rate

function J(·), i.e., for any set F ⊂ RM−1 we have

liminf
t→∞

1

t
logP

(
ρ

(t)
i ∈ F

)
≥ − inf

y∈F o
J(y), (38)

and

limsup
t→∞

1

t
logP

(
ρ

(t)
i ∈ F

)
≤ − inf

y∈F̄
J(y), (39)

where large deviation rate function J(·) is defined as

J(y)
4
= inf

x∈RM−1:g(x)=y
I(x), ∀y ∈ RM−1, (40)

where g : RM−1 → RM−1 is a continuous mapping given
by

g(x)
4
= [g1(x), g2(x), . . . , gM−1(x)]

T
, (41)

and

gk(x)
4
= xk −max{0, x1, x2, . . . , xM−1}. (42)

The proof of Theorem 3 is provided in Appendix C.
Theorem 3 characterizes the asymptotic rate of concentration
of ρ(t)

i in any set F ⊂ RM−1. In other words, it characterizes
the rate at which the probability of deviations in each ρ(t)

i (θk)
from the rate of rejection K(θM , θk) for every θk 6= θM
vanish simultaneously. It characterizes the asymptotic rate as
a function of the observation model of each node (not just
the bound L on the ratios of log-likelihood function) and as a
function of eigenvector centrality v. The following corollary
specializes this result to obtain the individual rate of rejecting
a wrong hypothesis at every node. It can be obtained by
repeating the proof of Theorem 3 for each hypothesis alone.

Corollary 4. Let θM be the true hypothesis. Under Assump-
tions 1, 2′, 3, 5, for 0 < ε ≤ K(θM , θk), k ∈ [M − 1], we
have

lim
t→∞

1

t
logP

(
ρ

(t)
i (θk) ≤ K(θM , θk)− ε

)
= −Ik (K(θM , θk)− ε) . (43)

For ε > 0, we have

lim
t→∞

1

t
logP

(
ρ

(t)
i (θk) ≥ K(θM , θk) + ε

)
= −Ik (K(θM , θk) + ε) . (44)

Using Theorem 3 and Hoeffding’s Lemma, we obtain the
following corollary.

Corollary 5. Suppose Assumption 4 is satisfied for some
finite L ∈ R. For ε as specified in Theorem 2, we recover the
exponents of Theorem 2 under aperiodic networks, given by

lim
t→∞

1

t
logP

(
ρ

(t)
i (θk) ≥ K(θM , θk) + ε

)
≤ − ε2

2L2
, (45)

and

lim
t→∞

1

t
logP

(
ρ

(t)
i (θk) ≤ K(θM , θk)− ε

)
≤ − ε2

2L2
. (46)
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Remark 3. Under Assumption 4, Corollary 5 shows that
lower bound on the asymptotic rate of concentration of ρ(t)

i

as characterized by Theorem 2 is loose in comparision to that
obtained from Theorem 3. Nedic et al. [32] and Shahrampour
et al. [31] provide non-asymptotic lower bounds on the rate
of concentration of ρ

(t)
i whose asymptotic form coincides

with the lower bound on rate characterized by Theorem 2
for aperiodic networks. This implies that under Assump-
tion 4 Theorem 3 provides a tighter asymptotic rate than
their results in [31], [32]. Hence, Theorem 3 strengthens
Theorem 2 by extending the large deviation to larger class
of distributions and providing a tighter bound that captures
the complete effect of nodes’ influence in the network and
the local observation statistics.

IV. EXAMPLES

In this section through numerical examples we illustrate
how nodes learn using the proposed learning rule and exam-
ine the factors which affect the rate of rejection of wrong
hypotheses and its rate of concentration.

A. Factors influencing Convergence

Example 3. Consider a group of two nodes as shown in
Figure 1, where the set of hypotheses is Θ = {θ1, θ2, θ3, θ4}
and true hypothesis θ∗ = θ4. Observations at each node
at time t, X(t)

i , take values in R100 and have a Gaussian
distribution. For node 1, f1 (·; θ1) = f1 (·; θ3) = N (µ11,Σ)
and f1 (·; θ2) = f1 (·; θ4) = N (µ12,Σ), and for node
2, f2 (·; θ1) = f2 (·; θ2) = N (µ21,Σ) and f2 (·; θ3) =
f2 (·; θ4) = N (µ22,Σ), where µ11,µ12,µ21,µ22 ∈ R100

and Σ is a positive semi-definite matrix of size 100-by-100.
Here, node 1 can identify the column containing θ4, and node
2 can identify the row. In other words, Θ̄1 = {θ2, θ4} and
Θ̄2 = {θ3, θ4}. Also, θ4 = Θ̄1 ∩ Θ̄2, hence θ4 is globally
identifiable.

1) Strong Connectivity: Nodes are connected to each other
in a network and the weight matrix is given by

W =

(
0.9 0.1
0.4 0.6

)
. (47)

Figure 2 shows the evolution of beliefs with time for node
2 on a single sample path. We see that using the proposed
learning rule, belief of θ4 goes to one while the beliefs of
wrong hypotheses go to zero. This example shows that each
node through collaboration is able to learn θ4. Figure 3 shows
the rate of rejection of wrong hypotheses. We see that the
rate of rejection θk for k ∈ {1, 2, 3} closely follows the
asymptotic rate K(θ4, θk).

Suppose the nodes are connected to each other in a network
whose weight matrix is given by

W =

(
1 0

0.5 0.5

)
. (48)

Since there is no path from node 2 to node 1, the network is
not strongly connected. Node 2 as seen in Figure 4 does not
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Fig. 2. For the set of nodes described in Figure 1, this figure shows the
evolution of beliefs for one instance using the proposed learning rule. Belief
of the true hypothesis θ4 of node 2 converges to 1 and beliefs of all other
hypotheses go to zero.
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Fig. 3. Figure shows the exponential decay of beliefs of θ1, θ2 and θ3 of
node 2 using the learning rule.

converge to θ4. Even though node 1 cannot distinguish the
elements of Θ̄1 from θ4, it rejects the hypotheses in {θ1, θ3}
in favor of θ4. This forces node 2 also to reject the set
{θ1, θ3}. For node 1, θ2 and θ4 are observationally equivalent,
hence their respective beliefs equal half. But node 2 oscillates
between θ2 and θ4 and is unable to learn θ4. Hence, when the
network is not strongly connected both nodes fail to learn.

In this setup we apply the learning rule considered in [25],
where in the consensus step public beliefs are updated by
averaging the beliefs received from the neighbors instead of
averaging the logarithm of the beliefs. As seen in Figure 5,
rate of rejecting learning using the proposed learning rule is
greater than the upper bound on learning rule in [25]. Note
that the precision of the belief vectors in the simulations
is 8 bytes (64 bits) per hypothesis. This implies the nodes
each send 32 bytes per unit time, which is less than the case
when nodes exchange local Gaussian observations which may
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Fig. 4. Figure shows the beliefs of node 2 shown in Figure 1. When the
network is not strongly connected node 2 cannot learn θ4.
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Fig. 5. Figure shows that the rate of rejection of θ2 using the proposed
learning rule (averaging the log beliefs) is greater than the rate of rejection
of θ2 obtained using the learning rule in [25] (averaging the beliefs).

require data rate as high as 800 bytes per observation.
2) Periodicity: Now suppose the nodes are connected to

each other in periodic network with period 2 and the weight
matrix given by

W =

(
0 1
1 0

)
. (49)

From Figure 6, we see that the belief on wrong hypotheses
converges to zero but beliefs oscillate significantly about the
expected value of rate of rejection as compared to the case
of an aperiodic network considered in (47).

Even though nodes do not have a positive self-weight
(Wii), the new information (through observations) entering
at every node reaches its neighbors and gets dispersed
in throughout the network; eventually reaches every node.
Hence, nodes learn even when the network is periodic as
long as it remains strongly connected.

3) Eigenvector Centrality and Extent of distinguishability:
From Theorem 1, we know that a larger weighted sum of the
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Fig. 6. Figure shows the exponential decay of beliefs of θ1, θ2, and θ3 of
node 2 connected to node 1 in a periodic network with period 2.

KL divergences, i.e. a larger network divergence, K(θM , θk),
yields a better rate of rejecting hypothesis θk. We look at a
numerical example to show this.

Example 4. Let Θ = {θ1, θ2, θ3, θ4, θ5} and θ∗ = θ4.
Consider a set of 25 nodes which are arranged in 5×5 array
to form a grid. We obtain a grid network by connecting every
node to its adjacent nodes. We define the weight matrix as,

Wij =

{ 1
|N (i)| , if j ∈ N (i)

0, otherwise
(50)

Consider an extreme scenario where only one node can
distinguish true hypothesis θ1 from the rest and to the remain-
ing nodes in the network all hypotheses are observationally
equivalent i.e. Θ̄i = Θ for 24 nodes and Θ̄i = {θ1} for
only one node. We call that one node which can distinguish
the true hypothesis from other hypotheses as the “informed
node” and the rest of the nodes called the “non-informed
nodes”.

For the weight matrix in (50), the eigenvector centrality of
node i is proportional to N (i), which means in this case,
more number of neighbors implies higher social influence.
This implies that the corner nodes (namely node 1, node 5,
node 20 and node 25 at the four corners of the grid) have least
eigenvector centrality among all nodes. Hence, they are least
influential. The nodes on four edges have a greater influence
than the corner nodes. Most influential nodes are the ones
with four connections, such as node 13 which is located in
third row and third column of the grid. It is also the central
location of the grid.

Figure 7 shows the variation in the rate of rejection of θ2

of node 5 as the location of informed node changes. We see
that if the informed node is at the center of the grid then the
rate of rejection is fastest and the rate is slowest when the
informed node is placed at a corner. In other words, rate of
convergence is highest when the most influential node in the
network has high distinguishability.
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Fig. 7. Figure illustrates the manner in which rate of rejection of θ2 at node
5 is influenced by varying the location of an informed node. As seen here
when the informed node is more central i.e. at node 13, rate of rejection is
fastest and when the informed node is at the corner node 1, rate of rejection
is slowest.

B. Factors influencing Concentration

Now to examine the results from Theorem 2 and Theo-
rem 3, we go back to Example 3, where two nodes are in a
strongly connected aperiodic network given by (47). Obser-
vation model for each node is defined as follows. For node 1,
f1 (·; θ1) = f1 (·; θ3) ∼ Ber( 4

5 ) and f1 (·; θ2) = f1 (·; θ4) ∼
Ber( 1

4 ), and for node 2, f2 (·; θ1) = f2 (·; θ2) ∼ Ber( 1
3 )

and f2 (·; θ3) = f2 (·; θ4) ∼ Ber( 1
4 ). Figure 8 shows the

exponential decay of θ1 for 25 instances. We see that the
number of sample paths that deviate more than ε = 0.1 from
K(θ4, θ1) decrease with number of iterations. Theorem 2
characterizes the asymptotic rate at which the probability
of such sample paths vanishes when the log-likelihoods are
bounded. This asymptotic rate is given as a function of L and
period of the network. From Corollary 5 the rate given by
Theorem 2 is loose for aperiodic networks. A tighter bound
which utilizes the complete observation model is given by
Theorem 3. Figure 9 shows the gap between the rates.

Figure 9 in the context of Example 3 shows the rate at
which the probability of sample paths deviating from rate of
rejection can be thought of as operating in three different
regimes. Here, each regime denotes the hypothesis to which
the learning rule is converging. In order to see this consider
the rate function of θ1, i.e. J1(·) from Corollary 4;

J1(y) = inf
x∈R3:g(x)=y

I(x),∀y ∈ R.

The behavior of the rate function J1(·) depends on the func-
tion g1(x) = x1−max{0, x1, x2, x3}. Whenever g1(x) = x1,
the rate function is I1(·). This shows that whenever there is
a deviation of x − k(θ4, θ1) from the rate of rejection of
θ1, the sample paths that vanish with slowest exponents are
those for which 1

t log
q
(t)
i (θ1)

q
(t)
i (θ4)

< 0 as t→∞. In other words,
small deviations occur when the learning rule is converging
to true hypothesis θ4 and they depend on I1(·) (and hence θ1)
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Fig. 8. Figure shows the decay of belief of θ1 (wrong hypothesis) of node
2 for 25 instances. We see that the number of sample paths on which the
rate of rejecting θ1 deviates more than η = 0.1 reduces as the number of
iterations increase.
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Fig. 9. Figure shows the asymptotic exponent with which the probability
of events where rate of rejecting θ1 deviates by η from K(θ4, θ1); θ4
is the true hypothesis. The black curve shows the asymptotic exponent as
characterized by Theorem 2. The colored curve shows the exact asymptotic
exponent as characterized by Theorem 3, where the exponent depends on the
hypothesis to which the learning rule is converging. This shows that small
deviations from K(θ4, θ1) occur when the learning rule is converging to θ4
and larger deviations occur when the learning rule is converging to a wrong
hypothesis.

alone. Whereas large deviations occur when the learning rule
is mistakenly converging to a wrong hypothesis and hence,
the rate function depends on θ1 and the wrong hypothesis
to which the learning rule is converging. Hence, we have
three different regimes corresponding to the three wrong
hypotheses.

C. Learning with Communication Constraints

Now, we consider a variant of our learning rule where the
communication between the nodes is quantized to belong to a
predefined finite set. Each node i starts with an initial private
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belief vector q
(0)
i and at each time t = 1, 2, . . . the following

events happen:
1) Each node i draws a conditionally i.i.d observation

X
(t)
i ∼ fi (·; θM ).

2) Each node i performs a local Bayesian update on
q

(t−1)
i to form b

(t)
i using the following rule. For each

k ∈ [M ],

b
(t)
i (θk) =

fi

(
X

(t)
i ; θk

)
q

(t−1)
i (θk)∑

a∈[M ] fi

(
X

(t)
i ; θa

)
q

(t−1)
i (θa)

. (51)

3) Each node i sends the message Y
(t)
i (θk) =[

Db
(t)
i (θk)

]
, for all k ∈ [M ], to all nodes j for which

i ∈ N (j), where D ∈ Z+ and

[x] =

{
bxc+ 1, if x > bxc+ 0.5,
bxc, if x ≤ bxc+ 0.5,

(52)

where bxc denotes the largest integer less than x.
4) Each node i normalizes the beliefs received from the

neighbors N (i) as

Ỹ
(t)
i (θk) =

Y
(t)
i (θk)∑

a∈[M ] Y
(t)
i (θa)

(53)

and updates its private belief of θk, for each k ∈ [M ],

q
(t)
i (θk) =

exp
(∑n

j=1Wij log Ỹ
(t)
i (θk)

)
∑
a∈[M ] exp

(∑n
j=1Wij Ỹ

(t)
i (θa)

) . (54)

In the above learning rule, the belief on each hypothesis
belongs to a set of size D+ 1. Hence transmitting the entire
belief vector, i.e., transmitting the entire message requires
M log(D + 1) bits.

Note that all of our simulations so far, we have used
64-bit precision to represent the belief on each hypothesis,
meaning our simulations can be interpreted as limiting the
communication links to support 64 bits, or equivalently 8
bytes, per hypothesis per unit of time. Our previous numerical
results show a close match with the analysis using this
level of quantization. Next we show the impact of a coarser
quantization.

Example 5. Consider a network of radars or ultrasound sen-
sors whose aim is to find the location of a target. Each sensor
can sense the target’s location along one dimension only,
whereas the target location is a point in three-dimensional
space. Consider the configuration in Figure 10: there are two
nodes along each of the three coordinate axes at locations
[±2, 0, 0], [0,±2, 0], and [0, 0,±2]. The communication links
are given by the directed arrows. Nodes located on the x-
axis can sense whether x-coordinate of the target lies in
the interval (−2,−1] or in the interval (−1, 0) or in the
interval [0, 1) or in the interval [1, 2). If a target is located in
the interval (−∞,−2] ∪ [2,∞) on the x-axis then no node
can detect it. Similarly nodes on y-axis and z-axis can each

distinguish between 4 distinct non-intersecting intervals on
the y-axis and the z-axis respectively. Therefore, the total
number of hypotheses is M = 43 = 64.

The sensors receive signals which are three dimensional
Gaussian vectors whose mean is altered in the presence of a
target. In the absence of a target, the ambient signals have
a Gaussian distribution with mean [0, 0, 0]. For the sensor
node along x-axis located at [2, 0, 0], if the target has x-
coordinate θx ∈ (−2, 2), the mean of the sensor’s observation
is [b3 + θxc, 0, 0]. If a target is located in (−∞,−2]∪ [2,∞)
on the x-axis, then the mean of the Gaussian observations is
[0, 0, 0]. Local marginals of the nodes along y-axis and z-axis
are described similarly, i.e., as the target moves away from
the node by one unit the signal mean strength goes by one
unit. For targets located at a distance four units and beyond
the sensor cannot detect the target. In this example, suppose
θ1 is the true hypothesis.

Fig. 10. Figure shows a sensor network where each node is a low cost
radar that can sense along the axis it is placed and not the other. The
directed edges indicate the directed communication between the nodes.
Through cooperative effort the nodes aim to learn location of the target
in 3 dimensions.

Consider D = 212 − 1 which implies that belief on
each hypothesis is of size 12 bits or equivalently 1.5 bytes.
Figure 11 shows evolution of log beliefs of node 3 for
hypotheses for θ2, θ5 and θ6 for 500 instances when the link
rate is limited to 1.5 bytes per hypothesis per unit time. We
see that the learning rule converges to the true hypotheses on
all 500 instances. Similarly, Figure 12 shows the evolution
of beliefs of node 3 for hypotheses θ2, θ5 and θ6 when
the link rate is limited to 1 byte per hypothesis per unit
time, i.e., when D = 28 − 1. We see that the learning
rule converges to a wrong hypothesis θ2. However, on the
same sample path in Figure 13 we see that if the link rate
is 1.5 bytes per hypothesis per unit time, the learning rule
converges to true hypothesis. This happens because on every
sample path our learning rule has an initial transient phase
where beliefs may have large fluctuations during which the
belief on true hypothesis may get close to zero. For low link
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Fig. 11. The solid lines in figure show the evolution of the log beliefs of node
3 with time for hypotheses θ2, θ5 and θ6 when links support a maximum
of 12 bits per hypothesis per unit time. This is compared with the evolution
of the log beliefs with no rate restriction case (dotted lines) which translates
a maximum of 64 bits per hypothesis per unit time. Figure also shows the
confidence intervals (one standard deviation above and below) around log
beliefs over 500 instances of learning rule with 12 bits per hypothesis. We
see the learning rule with link rate 12 bits per hypothesis converges in all
the instances.
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Fig. 12. The solid lines in the figure show the evolution of the log beliefs
of node 3 with time for hypotheses θ2, θ5 and θ6 when links support a
maximum of 8 bits per hypothesis per unit time. This is compared with
the evolution of the log beliefs with no rate restriction case (dotted lines)
which translates a maximum of 64 bits per hypothesis per unit time. For
this sample path, we see that learning rule converges to a wrong hypothesis
θ5 when the communication is restricted to 8 bits per hypothesis.

rates (small D), even when the belief on true hypothesis is
strictly positive but less than 1

2D , it gets quantized to zero.
Recall that for our learning rule, when a belief goes to zero,
propagates the zero belief to all subsequent time instants.
This shows that as we increase link rate (increase value of
D), the quantized learning rule is more robust to the initial
fluctuations. Moreover, we observe that for both Examples 3
and 5, when link rates are greater than or equal to 1.5 bytes
per hypothesis per unit time the learning rule converges for all
instances and its performance coincides with the prediction
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Fig. 13. The solid lines in figure show the evolution of the beliefs of node 3
with time for hypotheses θ2, θ5 and θ6 when links support a maximum of 12
bits per hypothesis per unit time. This is compared with the evolution of the
beliefs with no rate restriction case (dotted lines) which in our simulations
translates to the case when the links support a maximum of 64 bits per
hypothesis per unit time. On the same sample path in Figure 12, we see
that learning rule converges to true hypothesis when the communication is
restricted to 12 bits per hypothesis.

of our the analysis under the assumption of perfect links.

V. DISCUSSION

In this paper we study a learning rule through which
a network of nodes make observations and communicate
in order to collectively learn an unknown fixed global hy-
pothesis that statistically governs the distribution of their
observations. Our learning rule performs local Bayesian
updating followed by averaging log-beliefs. We showed that
our rule guarantees exponentially fast convergence to the true
hypothesis almost surely. We showed the rate of rejection
of any wrong hypothesis has an explicit characterization
in terms of the local divergences and network topology.
Furthermore, under the (mild technical) Assumption 5 on the
tail of the log-likelihood ratios of observations, we provide an
asymptotically tight characterization of rate of concentration
for the rate of rejection of wrong hypotheses. This assump-
tion admits a broad class of distributions with unbounded
support such as Gaussian mixtures. In the next subsections we
address two important aspects of our algorithm construction
and network model.

A. Lack of Knowledge of Joint Observation Distribution

Our algorithm does not require that the the nodes in the
network (a) have knowledge of the full joint distribution
of the observations nor (b) share their raw local obser-
vations. These two properties of our algorithm are highly
desirable in many social network settings due to privacy
considerations. The performance of our algorithm seems to
be overtly pessimistic compared to the performance of a
fully cooperative network with identically distributed and
independent observations across the nodes (where the rate of
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rejecting the wrong hypothesis is n times our rate K(θ∗, θ)).
However interestingly, in the case of fully correlated identical
observations across the network, our algorithm performs as
well as a centralized aggregator would perform. In short, our
work can be viewed as a first step towards addressing these
questions in settings where nodes keep their local observa-
tions and marginal distributions and completely prioritizing
local privacy. Nonetheless, we acknowledge that many non-
trivial questions remain: (i) what is the trade-off between
privacy preservation and learning rate and (ii) what are the
cost/benefits of learning the joint distribution in order to
optimally combine the local observations.

B. Availability of Perfect Communication Links

In this work, we have assumed that communicating public
beliefs among the neighbors can occur with an infinite
precision. Although this is a hard assumption to justify in
resource-constrained settings, we believe that it is a rea-
sonable abstraction for a practical “protocol-level” model of
communication constraints, in which sufficiently high data
rates are available to send messages when nodes are within
each others’ communication range, whereas no communica-
tion is possible for physically distant nodes. In Section IV-C,
we have provided detailed simulations to show that the gap
between the true model and the idealized protocol model is
not of significant practical consequence. In particular, Exam-
ples 3 and 5 show the impact of quantizing the beliefs before
exchanging them is negligible at even low link rates. How-
ever, from a theoretical perspective, a study of distributed
hypothesis testing with constraints on communication is a
major topic of ongoing research [10], [44].

Furthermore, through Example 5, we have also highlighted
the practical gains, in terms of communication, associated
with communicating the beliefs instead of the raw local
observations where the observations are in a high dimensional
space. In other words, the nodes that rely on our learning
rule do not need to keep track of their neighbors’ reported
observations, but only the beliefs.

APPENDIX

A. Proof of Theorem 1

We begin with the following recursion for each node i and
k ∈ [M − 1]:

log
q

(t)
i (θM )

q
(t)
i (θk)

=

n∑
j=1

Wij log
b
(t)
j (θM )

b
(t)
j (θk)

=

n∑
j=1

Wij

log
fj

(
X

(t)
j ; θM

)
fj

(
X

(t)
j ; θk

) + log
q

(t−1)
j (θM )

q
(t−1)
j (θk)

 ,

(55)

where the first and the second equalities follow from (3)
and (2), respectively. Now for each node j we rewrite

log
q
(·)
j (θM )

q
(·)
j (θk)

in terms of node j’s neighbors and their sam-

ples at the previous instants. We can expand in this way
until we express everything in terms of the samples col-
lected and the initial estimates. Noting that W t(i, j) =∑n
it−1=1 . . .

∑n
i1=1Wii1 . . .Wit−1j , it is easy to check that

(55) can be further expanded to obtain the following:

lim
t→∞

1

t
log

q
(t)
i (θM )

q
(t)
i (θk)

= lim
t→∞

1

t

n∑
j=1

t∑
τ=1

W τ (i, j) log
fj

(
X

(t−τ+1)
j ; θM

)
fj

(
X

(t−τ+1)
j ; θk

)
+ lim
t→∞

1

t

n∑
j=1

W t(i, j) log
q

(0)
j (θM )

q
(0)
j (θk)

. (56)

From Assumption 3, the prior q(0)
j (θk) is strictly positive for

every node j and every k ∈ [M ]. Since W t(i, j) ≤ 1, we
have

lim
t→∞

1

t


n∑
j=1

W t(i, j) log
q

(0)
j (θM )

q
(0)
j (θk)

 = 0. (57)

Let W be periodic with period d. If W is aperiodic, then
the same proof still holds by putting d = 1. Now, we fix
node i as a reference node and for every r ∈ [d], define

Ar = {j ∈ [n] : Wmd+r(i, j) > 0 for some m ∈ N}.

In particular, (A1, A2, . . . , Ad) is a partition of [n]; these sets
form cyclic classes of the Markov chain. Fact 1 implies that
for every δ > 0, there exists an integer N which is function
of δ alone, such that for all m ≥ N , for some fixed r ∈ [d],
if j ∈ Ar, then ∣∣Wmd+r(i, j)− vjd

∣∣ ≤ δ (58)

and if j 6∈ Ar
0 ≤Wmd+r(i, j) ≤ δ. (59)

Using this the first term in (56) can be decomposed as follows

lim
t→∞

1

t

n∑
j=1

t∑
τ=1

W τ (i, j) log
fj

(
X

(t−τ+1)
j ; θM

)
fj

(
X

(t−τ+1)
j ; θk

)
= lim
t→∞

1

t

n∑
j=1

Nd−1∑
τ=1

W τ (i, j) log
fj

(
X

(t−τ+1)
j ; θM

)
fj

(
X

(t−τ+1)
j ; θk

)
+ lim
t→∞

1

t

n∑
j=1

t∑
τ=Nd

W τ (i, j) log
fj

(
X

(t−τ+1)
j ; θM

)
fj

(
X

(t−τ+1)
j ; θk

) .
(60)
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Using the triangle inequality and the fact that W τ (i, j) ≤ 1
for every τ ∈ N we have∣∣∣∣∣∣ lim

t→∞

1

t

Nd−1∑
τ=1

W τ (i, j) log
fj

(
X

(t−τ)
j ; θM

)
fj

(
X

(t−τ)
j ; θk

)
∣∣∣∣∣∣

≤ lim
t→∞

1

t

Nd−1∑
τ=1

∣∣∣∣∣∣log
fj

(
X

(t−τ)
j ; θM

)
fj

(
X

(t−τ)
j ; θk

)
∣∣∣∣∣∣ .

For every j ∈ [n], log
fj(Xj ;θM )
fj(Xj ;θk) is integrable, implying∣∣∣log

fj(Xj ;θM )
fj(Xj ;θk)

∣∣∣ is almost surely finite. This implies that

lim
t→∞

1

t

Nd−1∑
τ=1

W τ (i, j) log
fj

(
X

(t−τ)
j ; θM

)
fj

(
X

(t−τ)
j ; θk

) = 0 P-a.s.

(61)

Using (57) and (61), (60) becomes

lim
t→∞

1

t
log

q
(t)
i (θM )

q
(t)
i (θk)

= lim
t→∞

1

t

n∑
j=1

t∑
τ=Nd

W τ (i, j) log
fj

(
X

(t−τ+1)
j ; θM

)
fj

(
X

(t−τ+1)
j ; θk

)
with probability one. It is straightforward to see that the
above equation can be rewritten as

lim
t→∞

1

t
log

q
(t)
i (θM )

q
(t)
i (θk)

= lim
T→∞

1

Td

n∑
j=1

T−1∑
m=N

{
d∑
r=1

Wmd+r(i, j)×

log
fj

(
X

(Td−md−r+1)
j ; θM

)
fj

(
X

(Td−md−r+1)
j ; θk

)


with probability one. For every δ > 0 and N such that for all
m ∈ N equations (58) and (59) hold true, using Lemma 1
we get that

lim
t→∞

1

t
log

q
(t)
i (θM )

q
(t)
i (θk)

with probability one lies in the interval with end points

K(θM , θk)− δ

d

n∑
j=1

E
[∣∣∣∣log

fj (Xj ; θM )

fj (Xj ; θk)

∣∣∣∣]
and

K(θM , θk) +
δ

d

n∑
j=1

E
[∣∣∣∣log

fj (Xj ; θM )

fj (Xj ; θk)

∣∣∣∣] .
Since this holds for any δ > 0, we have

lim
t→∞

1

t
log

q
(t)
i (θM )

q
(t)
i (θk)

= K(θM , θk) P-a.s.

Hence, with probability one, for every ε > 0 there exists a
time T ′ such that ∀t ≥ T ′, ∀k ∈ [M − 1] we have

∣∣∣∣∣1t log
q

(t)
i (θM )

q
(t)
i (θk)

−K(θM , θk)

∣∣∣∣∣ ≤ ε,
which implies

1

1 +
∑

k∈[M−1]

e−K(θM ,θk)t+εt
≤ q(t)

i (θM ) ≤ 1.

Hence we have the assertion of the theorem.

Lemma 1. For a given δ > 0 and for some N ∈ N for
which (58) and (59) hold true for all m ≥ N , the following
expression

lim
T→∞

1

Td

n∑
j=1

T−1∑
m=N

{
d∑
r=1

Wmd+r(i, j)×

log
fj

(
X

(Td−md−r+1)
j ; θM

)
fj

(
X

(Td−md−r+1)
j ; θk

)


with probability one lies in an interval with end points

K(θM , θk)− δ

d

n∑
j=1

E
[∣∣∣∣log

fj (Xj ; θM )

fj (Xj ; θk)

∣∣∣∣] ,
and

K(θM , θk) +
δ

d

n∑
j=1

E
[∣∣∣∣log

fj (Xj ; θM )

fj (Xj ; θk)

∣∣∣∣] .
Proof: To the given expression we add and subtract vjd

from Wmd+r(i, j) for all j ∈ Ar to obtain

lim
T→∞

1

Td

n∑
j=1

T−1∑
m=N

{
d∑
r=1

Wmd+r(i, j)×

log
fj

(
X

(Td−md−r+1)
j ; θM

)
fj

(
X

(Td−md−r+1)
j ; θk

)


=

d∑
r=1

∑
j 6∈Ar

{
lim
T→∞

1

Td

T−1∑
m=N

Wmd+r(i, j) ×

log
fj

(
X

(Td−md−r+1)
j ; θM

)
fj

(
X

(Td−md−r+1)
j ; θk

)
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+

d∑
r=1

∑
j∈Ar

{
lim
T→∞

1

Td

T−1∑
m=N

(
Wmd+r(i, j)− vjd

)
×

log
fj

(
X

(Td−md−r+1)
j ; θM

)
fj

(
X

(Td−md−r+1)
j ; θk

)


+

d∑
r=1

∑
j∈Ar

{
lim
T→∞

1

Td

T−1∑
m=N

vjd ×

log
fj

(
X

(Td−md−r+1)
j ; θM

)
fj

(
X

(Td−md−r+1)
j ; θk

)
 .

(62)

For each r and some j ∈ Ar, using (58) and the strong law
of large numbers we have

∣∣∣∣∣ lim
T→∞

1

Td

{
T−1∑
m=N

(
Wmd+r(i, j)− vjd

)
×

log
fj

(
X

(Td−md−r+1)
j ; θM

)
fj

(
X

(Td−md−r+1)
j ; θk

)

∣∣∣∣∣∣

≤ δ

d
E
[∣∣∣∣log

fj (Xj ; θM )

fj (Xj ; θk)

∣∣∣∣] P-a.s..

Similarly for j 6∈ Ar, using (59) we have

∣∣∣∣∣ lim
T→∞

1

Td

T−1∑
m=N

Wmd+r(i, j) ×

log
fj

(
X

(Td−md−r+1)
j ; θM

)
fj

(
X

(Td−md−r+1)
j ; θk

)
∣∣∣∣∣∣

≤ δ

d
E
[∣∣∣∣log

fj (Xj ; θM )

fj (Xj ; θk)

∣∣∣∣] P-a.s..

Again, by the strong law of large numbers we have

d∑
r=1

∑
j∈Ar

vj

 lim
T→∞

1

T

T−1∑
m=N

log
fj

(
X

(Td−md−r+1)
j ; θM

)
fj

(
X

(Td−md−r+1)
j ; θk

)


=

d∑
r=1

∑
j∈Ar

vjE
[
log

fj (Xj ; θM )

fj (Xj ; θk)

]
= K(θM , θk) P-a.s..

Now combining this with (62) we have the assertion of the
lemma.

B. Proof of Theorem 2

Recall the following equation:

lim
t→∞

1

t
log

q
(t)
i (θM )

q
(t)
i (θk)

= lim
t→∞

1

t

n∑
j=1

Nd−1∑
τ=1

W τ (i, j) log
fj

(
X

(t−τ+1)
j ; θM

)
fj

(
X

(t−τ+1)
j ; θk

)
+ lim
t→∞

1

t

n∑
j=1

t∑
τ=Nd

W τ (i, j) log
fj

(
X

(t−τ+1)
j ; θM

)
fj

(
X

(t−τ+1)
j ; θk

) ,
(63)

where N is such that for all m ≥ N,m ∈ N equations (58)
and (59) are satisfied. For any fixed t, using Assumption 4,
the first term in the summation on the right hand side of (63)
can be bounded as∣∣∣∣∣∣1t

n∑
j=1

Nd−1∑
τ=1

W τ (i, j) log
fj

(
X

(t−τ+1)
j ; θM

)
fj

(
X

(t−τ+1)
j ; θk

)
∣∣∣∣∣∣ ≤ nNdL

t
.

Also, the second term in the summation on the right hand
side of (63) can be bounded as∣∣∣∣∣∣1t

n∑
j=1

t∑
τ=Nd

W τ (i, j) log
fj

(
X

(t−τ+1)
j ; θM

)
fj

(
X

(t−τ+1)
j ; θk

)
−

d∑
r=1

∑
j∈Ar

vj
Td

T−1∑
m=0

log
fj

(
X

(Td−md−r+1)
j ; θM

)
fj

(
X

(Td−md−r+1)
j ; θk

)
∣∣∣∣∣∣

≤ δ 1

Td

T−1∑
m=0

∣∣∣∣∣∣log
fj

(
X

(Td−md−r+1)
j ; θM

)
fj

(
X

(Td−md−r+1)
j ; θk

)
∣∣∣∣∣∣ .

Using Assumption 4 we have

1

Td

T−1∑
m=0

∣∣∣∣∣∣log
fj

(
X

(Td−md−r+1)
j ; θM

)
fj

(
X

(Td−md−r+1)
j ; θk

)
∣∣∣∣∣∣ ≤ L

d
.

Therefore, we have∣∣∣∣∣1t log
q

(t)
i (θM )

q
(t)
i (θk)

−
d∑
r=1

∑
j∈Ar

vj
Td

T−1∑
m=0

log
fj

(
X

(Td−md−r+1)
j ; θM

)
fj

(
X

(Td−md−r+1)
j ; θk

)
∣∣∣∣∣∣

≤ δnL

d
.

Applying Hoeffding’s inequality (Theorem 2 of [45]), for
every 0 < ε ≤ K(θM , θk), we can write (63) for t ≥ Nd as

1

t
log

q
(t)
i (θM )

q
(t)
i (θk)

≤ K(θM , θk)− ε+ o

(
1

t
, δ

)
,
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with probability at most exp
(
− ε2T

2L2

)
where o

(
1
t , δ
)

=
δnL
d + nNdL

t . Similarly, for 0 < ε ≤ L − K(θM , θk) we
have

1

t
log

q
(t)
i (θM )

q
(t)
i (θk)

≥ K(θM , θk) + ε+ o

(
1

t
, δ

)
,

with probability at most exp
(
− ε2T

2L2

)
and for ε > L −

K(θM , θk) we have

1

t
log

q
(t)
i (θM )

q
(t)
i (θk)

≥ K(θM , θk) + ε+ o

(
1

t
, δ

)
,

with probability 0. Now, taking limit and letting δ go to zero,
for 0 < ε ≤ K(θM , θk) we have

lim
t→∞

1

t
logP

(
ρ

(t)
i (θk)− ρ(t)

i (θM ) ≤ K(θM , θk)− ε
)

≤ − ε2

2L2d
,

for 0 < ε ≤ L−K(θM , θk) we have

lim
t→∞

1

t
logP

(
ρ

(t)
i (θk)− ρ(t)

i (θM ) ≥ K(θM , θk) + ε
)

≤ − ε2

2L2d
,

and for ε > L−K(θM , θk) we have

lim
t→∞

1

t
logP

(
ρ

(t)
i (θk)− ρ(t)

i (θM ) ≥ K(θM , θk) + ε
)

= −∞.

Since q
(t)
i (θM ) ≤ 1, all the events ω which lie in the set

{ω : ρ
(t)
i (θk) ≤ K(θM , θk) − ε} also lie in the set {ω :

ρ
(t)
i (θk) ≤ K(θM , θk) − ε + ρ

(t)
i (θM )}. Hence, for every

0 < ε ≤ K(θM , θk) we have

lim
t→∞

1

t
logP

(
ρ

(t)
i (θk) ≤ K(θM , θk)− ε

)
≤ − ε2

2L2d
. (64)

For k ∈ [M − 1] and any α ≥ 0, the set{
ρ

(t)
i (θk) ≥ K(θM , θk) + ε

}
lies in the complement of the following set:{

ρ
(t)
i (θk)− ρ(t)

i (θM ) < K(θM , θk) + ε− α
}

∩
{
ρ

(t)
i (θM ) < α

}
.

This implies that

P
(
ρ

(t)
i (θk) ≥ K(θM , θk) + ε

)
≤ P

(
ρ

(t)
i (θk)− ρ(t)

i (θM ) ≥ K(θM , θk) + ε− α
)

+ P
(
ρ

(t)
i (θM ) ≥ α

)
. (65)

Using Lemma 2 we have that for every δ > 0 there exists a
T such that for all t ≥ T

P
(
ρ

(t)
i (θk) ≥ K(θM , θk) + ε

)
≤ exp

(
− (ε− α)2

2L2d
t+ δt

)
(66)

+ exp

(
− min
k∈[M−1]

{
K(θM , θk)2

2L2d

}
t+ δt

)
. (67)

Taking the limit as α→ 0+ for 0 < ε ≤ L−K(θM , θk) we
have

lim
t→∞

1

t
logP

(
ρ

(t)
i (θk) ≥ K(θM , θk) + ε

)
≤ − 1

2L2d
min

{
ε2, min

j∈[M−1]
K2(θM , θj)

}
. (68)

For ε ≥ L−K(θM , θk) we have

lim
t→∞

1

t
logP

(
ρ

(t)
i (θk) ≥ K(θM , θk) + ε

)
≤ − min

k∈[M−1]

{
K(θM , θk)2

2L2d

}
. (69)

Lemma 2. For all α > 0, we have the following for the
sequence q(t)

i (θM )

lim
t→∞

1

t
logP

(
ρ

(t)
i (θM ) ≥ α

)
≤ − min

k∈[M−1]

{
K(θM , θk)2

2L2d

}
. (70)

Proof: For any α > 0, consider

P
(
ρ

(t)
i (θM ) ≥ α

)
≤

∑
k∈[M−1]

P

(
1

M − 1

(
1− e−αt

)
≤ q(t)

i (θk)

)
=

∑
k∈[M−1]

P
(
ρ

(t)
i (θk) ≤ K(θM , θk)− ηt(θk)

)
, (71)

where ηt(θk) = K(θM , θk) − 1
t log(M − 1) +

1
t log (1− e−αt). For every ε > 0, there exists T (ε)
such that for all t ≥ T (ε) we have

P
(
ρ

(t)
i (θk) ≥ α

)
≤

∑
k∈[M−1]

P
(
ρ

(t)
i (θk) ≤ K(θM , θk)−K(θM , θk) + ε

)
=

∑
k∈[M−1]

P
(
ρ

(t)
i (θk) ≤ ε

)
.

Therefore, for every ε > 0, δ > 0, there exists T =
max{T (ε), T (δ)} such that for all t ≥ T we have

P
(
ρ

(t)
i (θM ) ≥ α

)
≤ (M − 1) max

k∈[M−1]
exp

{
− (K(θM , θk)− ε)2

2L2d
t+ δt

}
.
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By taking the limit and making ε arbitrarily small, we have

lim
t→∞

1

t
logP

(
ρ

(t)
i (θM ) ≥ α

)
≤ − min

k∈[M−1]

{
K(θM , θk)2

2L2d

}
.

1) Proof of Corollary 3: From Theorem 2, we have

lim
t→∞

1

t
logP

(
µi ≥ min

k∈[M−1]
K(θM , θk) + ε

)
≤ − 1

2L2d
min

{
ε2, min

k∈[M−1]
K(θM , θk)2

}
.

Now, applying the Borel-Cantelli Lemma to the above equa-
tion we have

µi ≤ min
k∈[M−1]

K(θM , θk) P-a.s.

Letting ε → 0 and by combining this with Corollary 1 we
have

µi = min
k∈[M−1]

K(θM , θk) P-a.s.

C. Proof of Theorem 3

Fact 2 (Cramer’s Theorem, Theorem 3.8 [46]). Consider a
sequence of d-dimensional i.i.d random vectors {Xn}∞n=1.
Let Sn = 1

n

∑n
i=1 Xi. Then, the sequence of Sn satisfies a

large deviation principle with rate function Λ∗(·), namely:
For any set F ⊂ Rd,

liminf
n→∞

1

n
logP(Sn ∈ F ) ≥ − inf

x∈F o
, (72)

and

limsup
n→∞

1

n
logP(Sn ∈ F ) ≤ − inf

x∈F̄
, (73)

where Λ∗(·) is given by

Λ∗(x)
4
= sup

λ∈Rd
{〈λ,x〉 − Λ(λ)} . (74)

and Λ(·) is the log moment generating function of Sn which
is given by

Λ(λ)
4
= logE[e〈λ,Y〉]. (75)

Fact 3 (Contraction Principle, Theorem 3.20 [46]). Let {Pt}
be a sequence of probability measures on a Polish space X
that satisfies LDP with rate function I . Let Y be a Polish space

T : X → Y a continuous map
Qt = Pt ◦ T−1 an image probability measure.

(76)

Then {Qt} satisfies the LDP on Y with rate function J given
by

J(y) = inf
x∈X :T (x)=y

I(x). (77)

To prove that 1
t log q̃

(t)
i satisfies the LDP, first we establish

the LDP satisfied by the following vector:

Q
(t)
i =

[
q

(t)
i (θ1)

q
(t)
i (θM )

,
q

(t)
i (θ2)

q
(t)
i (θM )

, . . . ,
q

(t)
i (θM−1)

q
(t)
i (θM )

]T
. (78)

Note that Q
(t)
i =

q̃
(t)
i

q
(t)
i (θM )

. From Lemma 3, we obtain that
1
t log Q

(t)
i satisfies the LDP with rate function I(·), as given

by (37). Now we apply the Contraction Principle (Fact 3),
for

X = RM−1, Y = RM−1,

T (x) = g (x) , ∀x ∈ RM−1,

Pt = P

(
1

t
log Q

(t)
i ∈ ·

)
,

Qt = P

(
g

(
1

t
log Q

(t)
i

)
∈ ·
)
,

and we get that g
(

1
t log Q

(t)
i

)
satisfies an LDP with a rate

function J(·), i.e., for every F ⊂ RM−1 we have

liminf
t→∞

1

t
logP

(
g

(
1

t
log Q

(t)
i

)
∈ F

)
≥ − inf

y∈F o
J(y),

(79)

and

limsup
t→∞

1

t
logP

(
g

(
1

t
log Q

(t)
i

)
∈ F

)
≤ − inf

y∈F̄
J(y).

(80)

Combining Lemma 4 with (79) and (80), we obtain that
1
t log q̃

(t)
i satisfies the LDP with rate function J(·) as well.

Hence, we have the assertion of the theorem.

Lemma 3. The random vector 1
t log Q

(t)
i satisfies the LDP

with rate function given by I(·) in (36). That is, for any set
F ⊂ RM−1 with interior F o and closure F̄ , we have

liminf
t→∞

1

t
logP

(
1

t
log Q

(t)
i ∈ F

)
≥ − inf

x∈F o
I(x), (81)

and

limsup
t→∞

1

t
logP

(
1

t
log Q

(t)
i ∈ F

)
≤ − inf

x∈F̄
I(x). (82)

Proof: Using the learning rule we have

1

t
log Q

(t)
i =

1

t

t∑
τ=1

n∑
j=1

W τ (i, j)L
(t−τ+1)
j

=
1

t

t∑
τ=1

n∑
j=1

(W τ (i, j)− vj) L
(t−τ+1)
j

+
1

t

t∑
τ=1

Y(τ), (83)
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where L is given by (33) and Y by (32). Using Cramer’s
Theorem (Fact 2) in RM−1, for any set F ⊂ RM−1, we
have

liminf
t→∞

1

t
logP

(
1

t

t∑
τ=1

Y(τ) ∈ F

)
≥ − inf

x∈F o
I(x), (84)

and

limsup
t→∞

1

t
logP

(
1

t

t∑
τ=1

Y(τ) ∈ F

)
≤ − inf

x∈F̄
I(x). (85)

Consider ∣∣∣∣∣∣1t
t∑

τ=1

n∑
j=1

(W τ (i, j)− vj) L
(t−τ+1)
j

∣∣∣∣∣∣
≤ n

t

t∑
τ=1

|λτmax(W )|

 n∑
j=1

∣∣∣L(t−τ+1)
j

∣∣∣
 . (86)

From Assumption 5, we have that Λ(λ) is finite for λ ∈ Rn.
Now, using Lemma 5, we have

lim
t→∞

1

t
logP

∣∣∣∣∣∣1t
t∑

τ=1

n∑
j=1

(W τ (i, j)− vj) L
(t−τ+1)
j

∣∣∣∣∣∣ ≥ δ


= −∞.

(87)

Using Lemma 6 on 1
t log Q

(t)
i , we have the assertion of the

theorem.

Lemma 4. For every set F ⊂ RM−1 and for all i ∈ [n], we
have

liminf
t→∞

1

t
logP

(
1

t
log q̃

(t)
i ∈ F

)
≥ liminf

t→∞

1

t
logP

(
g

(
1

t
log Q

(t)
i

)
∈ F

)
, (88)

and

limsup
t→∞

1

t
logP

(
1

t
log q̃

(t)
i ∈ F

)
≤ limsup

t→∞

1

t
logP

(
g

(
1

t
log Q

(t)
i

)
∈ F

)
. (89)

Proof: For all t ≥ 0, we have

1

t
log q̃

(t)
i = g

(
1

t
log Q

(t)
i

)

− 1

t
log

e−C(t)t +

M−1∑
j=1

e
gj
(

1
t log Q

(t)
i

)
t

1, (90)

where

C(t) = max

{
0,

1

t
log

q
(t)
i (θ1)

q
(t)
i (θM )

,
1

t
log

q
(t)
i (θ2)

q
(t)
i (θM )

,

. . . ,
1

t
log

q
(t)
i (θM−1)

q
(t)
i (θM )

}
.

Also for all t ≥ 0, we have

1 ≤ e−C
(t)t +

M−1∑
j=1

e
gj
(

1
t log Q

(t)
i

)
t ≤M.

Hence for all ε > 0, there exists T (ε) such that for all t ≥
T (ε) we have

g

(
1

t
log Q

(t)
i

)
− ε1 ≤ 1

t
log q̃

(t)
i ≤ g

(
1

t
log Q

(t)
i

)
.

(91)

For any F ⊂ RM−1, let Fε+ = {x+δ1,∀ 0 < δ ≤ ε and x ∈
F}, Fε− = {x− δ1,∀ 0 < δ ≤ ε and x ∈ F}. Therefore, for
every ε > 0 we have

liminf
t→∞

1

t
logP

(
g

(
1

t
log Q

(t)
i

)
∈ F

)
≤ liminf

t→∞

1

t
logP

(
1

t
log q̃

(t)
i ∈ Fε−

)
. (92)

Making ε arbitrarily small, Fε− → F , and by monotonicity
and continuity of probability measure we have

liminf
t→∞

1

t
logP

(
g

(
1

t
log Q

(t)
i

)
∈ F

)
≤ liminf

t→∞

1

t
logP

(
1

t
log q̃

(t)
i ∈ F

)
. (93)

For t ≥ T (ε) we also have

1

t
log q̃

(t)
i ≤ g

(
1

t
log Q

(t)
i

)
≤ 1

t
log q̃

(t)
i + ε1. (94)

This implies for every ε > 0 we have

limsup
t→∞

1

t
logP

(
1

t
log q̃

(t)
i ∈ F

)
≤ limsup

t→∞

1

t
logP

(
g

(
1

t
log Q

(t)
i

)
∈ Fε+

)
. (95)

Again, by making ε arbitrarily small we have

limsup
t→∞

1

t
logP

(
1

t
log q̃

(t)
i ∈ F

)
≤ limsup

t→∞

1

t
logP

(
g

(
1

t
log Q

(t)
i

)
∈ F

)
. (96)

Hence, we have the assertion of the lemma.

D. Proof of the Lemmas

Lemma 5. Let q be a real number such that q ∈ (0, 1).
Let Xi be a sequence of non-negative i.i.d random vectors
in Rn, distributed as X and let Λ(λ) denote its log moment
generating function which is finite for λ ∈ Rn, then for every
δ > 0, we have

lim
t→∞

1

t
logP

(
1

t

t∑
i=1

(q)iXi ≥ δ1

)
= −∞. (97)
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Proof: Applying Chebychev’s inequality and using the
definition of log moment generating function, for λ ∈ Rn,
we have

P

(
1

t

t∑
i=1

(q)iXi ≥ δ1

)
≤ e−t(〈λ,δ1〉−

1
t

∑t
i=1 Λ((q)iλ)).

(98)

From convexity of Λ, we have
∑t
i=1 Λ((q)iλ) ≤

Λ(λ)
∑t
i=1(q)i. Since Λ(λ) is finite and

∑∞
i=1(q)i < ∞,

for all δ > 0 we have

lim
t→∞

1

t
logP

(
1

t

t∑
i=1

(q)iXi ≥ δ1

)
≤ −〈λ, δ1〉. (99)

Since, the above equation is true for all λ ∈ Rn, we have
the assertion of the lemma.

Lemma 6. Consider a sequence {Z(t)}∞t=0 where Z(t) ∈ Rd
such that

Z(t) = X(t) + Y(t), (100)

where sequences {X(t)}∞t=0 and {Y(t)}∞t=0 have the follow-
ing properties:

1) The sequence {X(t)}∞t=0 satisfies

liminf
t→∞

1

t
logP

(
X(t) ∈ F

)
≥ − inf

x∈F o
IX(x), (101)

limsup
t→∞

1

t
logP

(
X(t) ∈ F

)
≤ − inf

x∈F̄
IX(x), (102)

where IX : Rd → R is a well-defined LDP rate
function.

2) For every ε > 0, sequence {Y(t)}∞t=0 satisfies

lim
t→∞

1

t
logP(|Y(t)| ≥ ε1) = −∞. (103)

Then {Z(t)}∞t=0 satisfies

liminf
t→∞

1

t
logP(Z(t) ∈ F ) ≥ − inf

x∈F o
IX(x), (104)

limsup
t→∞

1

t
logP(Z(t) ∈ F ) ≤ − inf

x∈F̄
IX(x). (105)

Proof: For every t ≥ 0, we have

P
(
Z(t) ∈ Fε+ ∪ Fε−

)
≥ P

(
{X(t) ∈ F} ∩ {|Y(t)| ≤ ε1}

)
≥ P

(
X(t) ∈ F

)
− P

(
|Y(t)| > ε1

)
.

For all δ > 0, there exists a T (δ) such that for all t ≥ T (δ)
we have

P
(
X(t) ∈ F

)
≥ e− infx∈Fo IX(x)t−δt.

For all B > 0, there exists a T (B) such that for all t ≥ T (B)
we have

P
(
|Y(t)| > ε1

)
≥ e−Bt.

Now choose B > infx∈F o IX(x) + δ and t ≥
max{T (δ), T (B)}, then we have

P
(
Z(t) ∈ Fε+ ∪ Fε−

)
≥ e− infx∈Fo IX(x)t−δt

(
1− e−Bt+infx∈Fo IX(x)t+δt

)
.

Sending ε to zero and taking the limit we have

liminf
t→∞

1

t
logP

(
Z(t) ∈ F

)
≥ − inf

x∈F o
IX(x).

Similarly, using the fact that P({Z(t) ∈ F} ∩ {|Y(t)| ≤
ε1}) ≤ P

(
X(t) ∈ Fε+

)
we have the other LDP bound.
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