
Learning Tree Structures from Noisy Data

Konstantinos E. Nikolakakis Dionysios S. Kalogerias Anand D. Sarwate
Rutgers University Princeton University Rutgers University

Abstract

We provide high-probability sample complex-
ity guarantees for exact structure recovery of
tree-structured graphical models, when only
noisy observations of the respective vertex
emissions are available. We assume that the
hidden variables follow either an Ising model
or a Gaussian graphical model, and the ob-
servables are noise-corrupted versions of the
hidden variables: We consider multiplicative
±1 binary noise for Ising models, and ad-
ditive Gaussian noise for Gaussian models.
Such hidden models arise naturally in a va-
riety of applications such as physics, biology,
computer science, and finance. We study the
impact of measurement noise on the task of
learning the underlying tree structure via the
well-known Chow-Liu algorithm, and provide
formal sample complexity guarantees for ex-
act recovery. In particular, for a tree with
p vertices and probability of failure δ > 0,
we show that the number of necessary sam-
ples for exact structure recovery is of the or-
der of O(log(p/δ)) for Ising models (which
remains the same as in the noiseless case),
and O(polylog(p/δ)) for Gaussian models.

1 Introduction

Graphical models are a useful tool for modeling high-
dimensional structured data. In particular, Markov
random fields (MRFs) are undirected graphical mod-
els in which variables, represented by nodes in a graph,
satisfy conditional independence properties, the so-
called Markov properties. The graph models the de-
pendence between variables: the set of the edges cor-
responds to (often physical) interactions between vari-
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ables. There is a long and deep literature on graphi-
cal models (see [1] for a comprehensive introduction),
which have also found wide applications in areas such
as image processing and vision [2, 3, 4, 5, 6, 7], arti-
ficial intelligence more broadly [8, 9], signal process-
ing [10, 11], and gene regulatory networks [12, 13].

An undirected graphical model, or Markov Random
Field, is defined in terms of a hyper-graph G = (V, E),
which models a joint distribution on variables X =
(X1, X2, . . . , Xp) where p = |V|. A tree-structured
graphical model is one in which G is a tree. We denote
the tree-structured model as T = (V, E).

This paper studies concurrently two distinct prob-
lem settings. First, we consider binary models on
2p variables (X,Y), where the joint distribution p(·)
of X is a tree structured model distribution and
Y = (Y1, Y2, . . . , Yp) constitutes a noisy version of X.
Specifically, we assume thatX follows a tree structured
Ising model, whereas Y is the output of a binary sym-
metric channel with crossover probability q, and input
X. Under this setting, our objective is to exactly re-
cover the underlying tree structure of the hidden layer
X by only using noisy observables Y. This is non-
trivial, as Y does not itself follow any tree structure.

We also consider the case where X follows a Gaussian
tree-structured distribution, and Y is the output X
measured through an Additive White Gaussian Noise
(AWGN) channel. This is similar to more traditional
nonlinear filtering, where a Markov process of known
distribution (and thus, of known structure) is observed
through noisy measurements [14, 15, 16, 17, 18].

Under both settings, we use the Chow-Liu algo-
rithm [19] to reconstruct the tree. The main contribu-
tion of this paper is to characterize the effect of obser-
vation noise on hidden tree-structure estimation.

Notation. Boldface indicates a vector or tuple. Cal-
ligraphic face is used for sets and trees. For an integer
n, let [n] , {1, 2, . . . n}. The cardinality of the set of
nodes V is assumed to be equal to p, |V| = [p]. The in-
dicator function of a set A is denoted as 1A. For a pair
i, j ∈ [p], the correlation of two hidden random vari-
ables Xi, Xj is denoted µij

4
= E [XiXj ] and the corre-
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lation coefficient as ρi,j , E[XiXj ]/
√
E[X2

i ]E[X2
j ]. If

(i, j) ∈ E , then we write µe , E[XiXj ] and e ≡ (i, j).
For two nodes w, w̃ of a tree, the path(w, w̃) denotes
the set of edges in the unique path with endpoints w
and w̃. The probability mass function of X is denoted
as p(·). We use the symbol † to indicate the corre-
sponding quantity for the observable (noisy) layer. For
instance, p†(·) is the probability mass function of Y
and µ†i,j , E[YiYj ] corresponds to the correlation of
variables Yi, Yj , where Yi generates noisy observations
of Xi, for any i ∈ V. Also, BSC(q)p denotes a binary
symmetric channel with crossover q and block-length
p.

1.1 Motivating Examples and Applications

Models for joint distributions characterized by pair-
wise variable interactions have found many applica-
tions, with the Ising model being a popular model for
binary variables. Our work is primarily motivated by
examples of Ising models corrupted by noise. In many
cases, the underlying graph-structured process cannot
be observed directly; instead, only a noisy version of
the process is available; examples abound in physics,
computer science, biology, medicine, psychology, social
sciences, and finance. Some applications motivating
this work include the following:

1) Statistical mechanics of population, social and
pedestrian dynamics [20, 21]: The Ising model can
be used to represent the statistical properties of the
spreading of a feeling, behavior or the change of an
emotional state among individuals in a crowd, where
each individual interacts with his neighbors.

2) Epidemic dynamics and epidemiological models [22,
23]: Disease spread can be modeled through the
Ising model, where each individual is susceptible (spin
down) or ineffective (spin up).

3) Neoplastic transitions and related applications in
biology [24]: Each cell interacts with neighboring cells.
Different cases are studied in the literature, for in-
stance, healthy versus cancerous cells, malignant ver-
sus benign cells, where both can be modeled as spin up
and spin down observations. The probability of diag-
nostic error is not zero which gives rise to the hidden
model that we consider.

4) Differential Privacy [25]: In computer science, dif-
ferential privacy is used to guarantee privacy for indi-
viduals. A hidden model describes data gathered using
a privacy-preserving mechanism such as randomized
response (Section C, Appendix).

5) Trading and related applications in economics [26,
27]: The Ising model has been considered in the litera-

ture to model increasing (spin up) or decreasing (spin
down) price trends in a market. In Section 5, we con-
sider the closing prices of ten equities to demonstrate
the performance of Chow-Liu algorithm.

1.2 Contribution

The main question asked by this paper is as follows:
What is the impact of observation noise on the sam-
ple complexity of learning a tree structured graphical
model? For the binary case, we sample variables Y
generated by X, which follows a tree-structured Ising
model distribution and randomly flipping each sign in-
dependently with probability q. A typical example
is classification, where a subset of the data might be
misclassified. Then, corrupted data are observed, how-
ever, we are still able to retrieve the underlying struc-
ture by considering the appropriate number of sam-
ples. Under the Gaussian model assumption, we sam-
ple Y, the output of an AWGN channel with Gaussian
input X.

This paper makes the following contributions:

• For the binary case, we provide a lower bound
(Theorem 1) on the number of samples that are
sufficient for the Chow-Liu algorithm to recover
the tree structure of p(·), with probability at least
1−δ. This generalizes the noiseless case, for which
the Chow-Liu algorithm applied to simple pair-
wise correlation estimates is order-optimal [28],
and has interesting implications for the applica-
tions mentioned earlier. Here, we explicitly show
that the same algorithm, with appropriate minor
modifications, achieves nearly the same rate, as
the order of necessary number of samples remains
the same as in the noiseless case, i.e., O(log(p/δ)).

• We prove an upper bound (Theorem 2) on the
number of binary samples necessary for any al-
gorithm to recover a tree structure. The proof
shows an intriguing connection between the hid-
den model and recent studies on strong data
processing inequalities [29]. Future work could
strengthen this upper bound but may require ad-
ditional assumptions.

• For the Gaussian case, we provide a lower bound
(Theorem 3) on the number of samples that are
sufficient for the Chow-Liu algorithm to recover
the underlying structure. This is a general result
which reduces to the noiseless case as the noise
variance goes to zero. In particular, we show that
the order of the necessary number of samples is
polylogarithmic in p/δ, i.e., O(log4(p/δ)).

Our results strictly generalize the noiseless case [28,
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Theorem 3.1, Theorem 3.2] for that of a hidden model.
Our proof strategy is similar, but the hidden model
presents additional complexity, which presents ex-
tended technical challenges, requiring the development
of new arguments. In particular, the corresponding
graph of the observable layer, Y, is no longer a tree,
so the Markov property does not hold for the observ-
able nodes. In addition, closed-form bounds of the KL
divergence can not be computed for the set of out-
put distributions p†(·). To overcome this, we combine
Bresler’s and Karzand’s method [28] and a strong data
processing inequality by Polyanskiy and Wu [29], to
derive an upper bound on the sample complexity.

1.3 Related Work

We refer the reader to the textbook by Koller and
Friedman [1] for background material and a recent re-
view by Drton et al. [30]. In general, learning the
graph structure of a graphical model from samples can
be intractable, which has been shown by [31, 32]. For
general graphs, neighborhood selection methods [33,
34, 35] estimate the conditional distribution for each
vertex in order to learn the neighborhood of each node
and therefore the full structure. These approaches may
use greedy search or `1 regularization. For Gaussian
or Ising models, works have proposed `1-regularization
by [36], the GLasso [37, 38] or coordinate descent ap-
proaches by [39] to learn the structure by estimating
the non-zero entries of the precision (or interaction)
matrix. Model selection can also be done using score
matching methods [40, 41, 42, 43] or Bayesian infor-
mation criterion methods by [44, 45, 46]. Other works
address non-Gaussian models such as elliptical distri-
butions, t-distribution models, latent Gaussian data or
even mixed data [47, 48, 49, 50, 51]. Latent variable
models are considered by [52, 53, 54, 55, 56], when
some variables of the graph are deterministically un-
observed.

For tree- or forest-structured models the problem is
significantly simpler: the Chow-Liu algorithm [19] pro-
vides an estimate of the tree or forest structure of the
underlying graph. This has resulted in a number of
sample complexity results for for tree-structure learn-
ing [28, 57, 58, 59, 60, 61]).

We differ from these models because we consider the
case of noisy observable data (or a hidden model), in
which the underlying structure does not appear in the
marginal distribution of the observed variables. We
generalize results known for the noiseless case [28] to
this new setting. In the special case of a linear graph,
our class of models also includes hidden Markov mod-
els (HMMs): one application of our results could be to
testing if data follow an HMM.

Our model is similar to previous works considering hid-
den models with discrete exponential distribution and
Gaussian noise [62]. They solve the parameter estima-
tion problem by using moment matching and pseudo-
likelihood methods; the structure can be recovered in-
directly using the estimated parameters. In contrast,
we analyze the performance of Chow-Liu algorithm,
because we can estimate the underlying structure with
low sample complexity and low computational cost.

The performance of Chow-Liu algorithm for Gaussian
tree structured models has also been studied in prior
work by Tan et.al. [63], which shows which tree types
are hardest to be estimated by using the Chow-Liu al-
gorithm. More specifically, they show that, in some
cases, "star"-shaped trees can be harder to be esti-
mated than "chain"-shaped trees. In the worst case
scenario, where the correlations can be small or large
(outside of a critical region), the sample complexity is
not affected by the shape of tree. Our results provide
the exact bound for sufficient number of samples, as
a function of the minimum and maximum correlation,
and the power of noise, in the worst case scenario, thus
the bound does not depend on the type of structure.

Alternative methods and algorithms for sparse struc-
ture estimation are based on Graphical LASSO [39],
and variations of it [64, 65, 66, 67, 68, 69]. These meth-
ods have a competitive sample complexity, but their
algorithms are computationally more expensive than
the Chow-Liu algorithm. An interesting approach for
the noiseless case, which uses the Chow-Liu algorithm,
was recently proposed by Tavassolipour et.al. [70]. By
observing only the sign of the Gaussian observations,
they show that structure learning is feasible, while the
sample complexity is O(log(p/δ)). This result can lead
to further improvements of our results for the Gaus-
sian hidden model, and constitutes a subject currently
under investigation.

2 Models and Problem Statement

We start by presenting the models under consideration
and their properties.

2.1 Tree-structured Ising models

According to the Ising model, the hypergraph G is a
simple undirected graph, indicating that the associ-
ated node variables have only pairwise and unitary in-
teractions, and each variable takes values in {−1,+1}.
The joint distribution for the Ising model with zero
external field is given by

p(x) =
1

Z(θ)
exp

 ∑
(s,t)∈E

θstxsxt

 , x ∈ {−1, 1}p, (1)
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where {θst : (s, t) ∈ E} are parameters of the model
representing the interaction strength of the variables,
and Z(·) ∈ (0,∞) is the partition function. In this
paper, the considered model allows only pairwise in-
teractions between the nodes. These interactions are
expressed through potential functions exp(θstxsxt),
which ensure that the Markov property holds with re-
spect to the graph G = (V, E). From Lauritzen’s prior
work [71], we know that any distribution p(·) which is
Markov with respect to a tree T = (V, E) factorizes as

p(x) =
∏
i∈V

p (xi)
∏

(i,j)∈E

p(xi, xj)

p(xi)p(xj)
, x ∈ {−1, 1}p. (2)

For our analysis, as in the noiseless setting [28], we
require the parameters θst to be bounded for edges
(s, t) ∈ E in (1), as follows.

Assumption 1. There exist α and β, such that 0 <
α ≤ |θst| ≤ β <∞ for all (s, t) ∈ E.

We also use the notation PT(α, β) to denote the set of
tree structured Ising models satisfying Assumption 1.

2.2 Hidden Ising Model

For the binary case, we consider a hidden Markov ran-
dom field with hidden layer X ∼ p(·) ∈ PT(α, β),
under Assumption 1. The observed variables Y are
formed by setting Yr = NrXr, for all r ∈ V, where
{Nr} are i.i.d. Rademacher(q) random variables. Un-
der this model, the observables Y ∼ p†(·) are the out-
puts of X when passed through a memoryless binary
symmetric channel (BSC) with crossover probability
q, or BSC(q)p.

2.3 Tree structured Gaussian models

Let X = (X1, X2, . . . , Xp) be a Gaussian random vec-
tor with distribution N (0,Σ). The nonzero entries of
the precision matrix Σ−1 indicate the existence of the
corresponding edge in the underlying graph. The fol-
lowing assumption holds on the Gaussian data.

Assumption 2. The variances of variables Xi are
equal to 1, for all i ∈ V. Furthermore, there exist
numbers ρm, ρM , such that

0 < ρm ≤ |ρi,j | ≤ ρM < 1, ∀(i, j) ∈ E . (3)

Hereafter, we use the notation N m,M
T to denote the

set of tree structured Gaussian distributions satisfying
Assumption 2. We also use the notation µi,j for the
correlation coefficient, since ρi,j = E[XiXj ] under As-
sumption 2.

2.4 Hidden Gaussian Model

For the Gaussian setting, and for N ∼ N (0, σ2I), the
noisy output variables of the hidden model are taken
as X+N = Ỹ ∼ N (0,Σ +σ2I). Then the correlation
coefficient of the observable data is

ρ†i,j = E

[
Ỹi√

1 + σ2

Ỹj√
1 + σ2

]
, ∀i, j ∈ V. (4)

The random variables Yi , Ỹi/
√

1 + σ2 are normalized
Gaussian with variance equal to 1. To simplify the
analysis, we use normalized samples, instead of sam-
ples directly from Ỹ, which correspond to the variable
Y with distribution

Y ∼ N
(

0,
Σ + σ2I
1 + σ2

)
. (5)

Thus, E[YiYj ] = ρ†i,j . For the rest of the paper we
use the notation µ†i,j , where µ†i,j ≡ E[YiYj ] and its
corresponding estimated value is denoted as µ̂†i,j .

2.5 Chow-Liu Algorithm

The algorithm we study throughout this paper is the
classical Chow-Liu algorithm (Algorithm 1), which
requires as input the set of noisy observations
{y(1),y(2), . . . ,y(n†)}, computes the estimates µ̂†i,j ,
and returns a tree structure TCL

† , that is an estimate of
T. The estimates µ̂†i,j are consistent with the Gaussian
model as well because of (5). Following the noiseless
case [28][Lemma A.2],

TCL
† = argmaxT∈T

∑
(i,j)∈∈ET

∣∣∣µ̂†i,j∣∣∣ . (6)

The difference between and Algorithm 1 in our setting
and the noiseless version [28] is that we use the ob-
served noisy variables Y rather than X. This idea is
immediately theoretically justified; the tree structure
estimate TCL

† converges to T when n† →∞ since

lim
n→∞

µ̂†i,j
(1− 2q)2

a.s.
= µi,j , (7)

for the hidden Ising model, whereas

lim
n→∞

(1 + σ2)µ̂†i,j
a.s.
= µi,j , (8)

for the case of a hidden Gaussian model. From (6), (7)
and (8), it is true that, for both cases,

lim
n→∞

TCL
†

a.s.
= T. (9)
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Algorithm 1 Chow − Liu

Require: Data set D = {y(1),y(2), . . . ,y(n†)}
1: µ̂†i,j ← 1

n†

∑
k yi(k)yj(k), for all i, j ∈ V

2: TCL
† ← MaximumSpanningTree

(
∪i 6=j{µ̂†i,j}

)
3: return TCL

†

2.6 Problem Statement

Under the models outlined above, we are interested
in exact recovery the underlying tree-structures from
noisy observations, as well as explicitly comparing the
sample complexity of the hidden model n† with n, de-
noting the number of samples required for exact struc-
ture learning when observations directly from the hid-
den variable X are available [28]. Likewise, we call
TCL (compare with TCL

† ) the structure that is learned
by using purely noiseless observations of X. From our
discussion above, it readily follows that both TCL and
TCL
† converge to T. However, we expect that more

samples should be required for a hidden model, com-
pared to the noiseless case. The goal of this paper is
to quantitatively characterize this gap.

3 Exact Recovery of Hidden
Structures

For our structure learning task, we consider the zero-
one loss error measure, which has been used to denote
quantify structure recovery by [28, 59, 60, 72, 73] and
it is defined as

L0−1
(
T,TCL

†
)
, 1T6=TCL

†
. (10)

Thus, the probability of incorrect reconstruction may
be expressed as

P
(
TCL
† 6= T

)
= E

[
L0−1

(
T,TCL

†
)]
. (11)

Further, in our analysis, the notation SKL(P ||Q) is
used for the symmetric Kullback-Leibler (KL) diver-
gence between probability measures P,Q, defined as

SKL(P ||Q) ,DKL(P ||Q) +DKL(Q||P ). (12)

Specifically, for Ising model distributions P,Q as in (1)
with corresponding parameters θ,θ′, it is true that

SKL
(
θ||θ′

)
, SKL(P ||Q)

=
∑
s,t∈E

(θst − θ′st) (µst − µ′st) . (13)

3.1 Main Results

The first main result of the paper is presented below,
providing a computable bound on the sufficient num-

ber of samples guaranteeing exact structure recovery
for the hidden Ising model under consideration.
Theorem 1 (Sufficient number of samples). Let Y
be the output of a BSC(q)p, with input variable X ∼
p(·) ∈ PT(α, β). Fix a number δ ∈ (0, 1). If the num-
ber of samples of Y satisfies the inequality

n† ≥
32
[
1− (1− 2q)

4
tanhβ

]
(1− 2q)

4
(1− tanhβ)

2
tanh2 α

log
2p2

δ
, (14)

then Algorithm 1 returns TCL
† = T with probability at

least 1− δ.

Complementary to Theorem 1, our next result char-
acterizes the necessary number samples required for
exact structure recovery whatsoever.
Theorem 2 (Necessary number of samples). Let Y
be the output of a BSC(q)p, with input variable X ∼
p(·) ∈ PT(α, β). If the given number of samples satis-
fies

n† <
[1− (4q(1− q))p]−1

16α tanh(α)
e2β log (p) , (15)

then for any (measurable) estimator ψ, it is true that

inf
ψ

sup
T∈T

P∈PT(α,β)

P
(
ψ
(
Y1:n†

)
6= T

)
>

1

2
. (16)

Theorems 1 and 2 provide sufficient and necessary con-
ditions for exact structure recovery, when only noisy
observations are available. It can be shown that the
right hand-side of (14) is greater than the right-hand
side of (15) for any q in [0, 1/2) (and for all possible
values of p, β, α), by comparing the two terms. For
q = 0 the bounds reduce to the noiseless setting, the
sufficient number of samples is an increasing function
of q and structure learning is always feasible as long
as q 6= 1/2.

To better understand the effect of the noise, note that[
1− (1− 2q)4 tanh(β)

]
[(1− 2q)4(1− tanh(β))]

≥ 1, ∀q ∈
[
0,

1

2

)
, (17)

with β ∈ R, and

1

1− (4q(1− q))p
≥ 1, ∀q ∈

[
0,

1

2

)
, p ∈ N, (18)

which shows that the sample complexity in a hidden
model is greater than the noiseless case (q = 0), for
any (measurable) estimator (Theorem 2). When q ap-
proaches 1/2, the sample complexity goes to infinity,
n† →∞, which makes structure learning impossible.

Theorem 2 is an extension of Theorem 3.1 by Bresler
and Karzand [28] to our hidden model. Our results
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combines Bresler and Karzand’s method and a strong
data processing inequality by Polyanskiy and Wu [29].
Upper bounds on the symmetric KL divergence for the
output distribution p†(·) can not be found in a closed
form. However, by using the SDPI, we manage to cap-
ture the dependence of the bound on the parameters
α, β, q and derive a non-trivial result. When p goes
to ∞, the bound of Theorem 2 becomes trivial and
loose; limp→∞ 1/ [1− (4q(1− q))p] → 1, which gives
the classical data processing inequality (contraction of
KL divergence for finite alphabets, [29, 74]). To re-
cover a tighter bound for Theorem 2, one would have
to derive a strong data processing inequality problem
under Assumption 1. This is technically challenging
problem, and constitutes a subject for future research.

Remark. Bresler and Karzand [28] prove additional
sample complexity results on upper-bounding the small-
set total variation (ssTV) metric by a positive number
η. A key property of tree-structured Ising models is
independence of the product variables XiXj, for any
(i, j) ∈ E, (see [28, Lemma 8.6]). This simplifies the
analysis in the noiseless case significantly [28, Lemma
E.1, page 32]. Analyzing our hidden model is strictly
more complicated, since the underlying graph of the
observable layer is a complete graph, and the variables
YiYj are not jointly independent for any (i, j) ∈ E.
We will examine possible solutions to this problem in
future work to characterize how bounded correlations
affect cascades in hidden models.

Our third and final result characterizes the sam-
ple complexity for achieving exact structure recovery,
when only noisy observations from a Gaussian hidden
model (as defined above) are available.

Theorem 3. Let Y be the output of a Gaussian chan-
nel, Y = X + N, where X ∼ p(·) ∈ N m,M

T and
N ∼ N (0, σ2). Fix a number δ ∈ (0, 1). The Chow-Liu
algorithm recovers the structure, T = TCL

† with proba-
bility at least 1− δ, if the number of samples satisfies
the inequality

n ≥
R2
[
7(1 + σ2)2 + ρM

]
log4

(
e2p3

δ

)
ρ2
m (1− ρM )

2 , (19)

and R is a positive constant.

Theorem 3 gives a lower bound on the sufficient num-
ber of samples needed for exact structure recovery,
for the case of the Gaussian model. The required
amount of observations increases as the power of noise
increases. For σ = 0, the bound provides the sam-
ple complexity of the corresponding noiseless setting,
while for σ → ∞ the structure learning task becomes
impossible.

3.2 Comparison with the noiseless setting

Theorems 1 and 2 strictly generalize noiseless tree-
structure recovery [28, Theorem 3.1, Theorem 3.2] for
our hidden model; the noiseless results correspond to
q = 0. In particular, it very interesting to observe
that, in the presence of noise, the dependence of our
complexity bounds on p is still logarithmic, that is,
of the order of O(log(p/δ)). To make the connection
between sufficient conditions more explicit, it is true
that, in the noiseless case, if the weakest edge satisfies
the inequality

tanhα ≥ 4ε√
1− tanhβ

, (20)

and ε is defined as ε ,
√

2 log (2p2/δ) /n, yielding

n ≥ 32

tanh2 α (1− tanhβ)
log

(
2p2

δ

)
, (21)

then the structure is recovered exactly with probabil-
ity 1 − δ by the Chow-Liu algorithm. For our hidden
model, the respective condition for the weakest edge is

tanhα ≥
4ε†

√
1− (1− 2q)

4
tanhβ

(1− 2q)
2

(1− tanhβ)
, (22)

and ε† is similarly defined as ε† ,
√

2 log (2p2/δ) /n†.

Note that, for q = 1/2, the mutual information of the
hidden and observable variables is zero, that is, X and
Y are independent, so structure recovery is impossible.

To make the relevant connection between necessary
conditions, it holds that, in the noiseless case, if the
number of samples satisfies

n <
1

16
e2βα−2 log (p) , (23)

then for any (measurable) algorithmic mapping ψ, it
is true that

inf
ψ

sup
T∈T

P∈PT(α,β)

P (ψ (X1:n) 6= T) >
1

2
. (24)

When q = 0, we retrieve the noiseless result, while for
any q ∈ (0, 1

2 ) the sample complexity increases since
[1− (4q(1−q))p]−1 > 1 in (15) and for q → 1/2 the re-
quired number of samples n† →∞ which makes struc-
ture learning impossible. The ratio between the noise-
less and noisy necessary conditions indicates the gap
between the hidden model and the noiseless one

n†
n
≤ [1− (4q(1− q))p]−1 ≤ 1

ηKL
, (25)

where the right hand-side inequality is the strong data
processing inequality for the binary symmetric channel
by Polyanskiy and Wu [29, Equation (39)].
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As far as Theorem 3 is concerned, this reduces to the
noiseless setting for σ = 0. Recently, the performance
of the Chow-Liu algorithm for the noiseless Gaussian
case was studied by Tavassolipour [70]. In this work, a
lower complexity bound is derived, closely resembling
the noiseless Ising model. The approach of [70] might
potentially drive further improvement of our hidden
Gaussian model bound (Theorem 3), and is the subject
of our future work.

4 Analysis: Proof Sketches

Due to space limitation a sketch of the proof for each
theorem is given. The definition of necessary events
and the complete proofs can be found in Section A
(Appendix).

Theorem 1. To analyze the Chow-Liu algorithm, we
consider the error event [28], at least one edge to be
missed; if an edge f = (w, w̄) ∈ T and f /∈ TCL

† (i.e.
the edge is incorrectly not inferred), then there exists
an edge g ∈ TCL

† and g /∈ T such that f ∈ pathT (u, ū),
g ∈ pathTCL

†
(w, w̄), and( n†∑
i=1

Z
(i)
f,u,ū

)( n†∑
i=1

M
(i)
f,u,ū

)
< 0, (26)

where Zf,u,ū , YwYw̄ − YuYū and Mf,u,ū , YwYw̄ +
YuYū. Thus, to show that the reconstruction is suc-
cessful, we need to show that this event does not hap-
pen, with high probability.

By using Bresler and Karzand’s method [75, Lemmas
9.6, 9.7] under the error event (at least one incorrect
edge in the estimated tree structure TCL

† ) we have∣∣∣µ̂†f ∣∣∣ ≤ ∣∣µ̂†g∣∣, which gives

0 ≥
∣∣∣µ̂†f ∣∣∣2 − ∣∣µ̂†g∣∣2

=
(
µ̂†f − µ̂

†
g

)(
µ̂†f + µ̂†g

)
=

1

n2
†

( n†∑
i=1

N (i)
w X(i)

w N
(i)
w̄ X

(i)
w̄ −N (i)

u X(i)
u N

(i)
ū X

(i)
ū

)

×

( n†∑
i=1

N (i)
w X(i)

w N
(i)
w̄ X

(i)
w̄ +N (i)

w X(i)
u N

(i)
ū X

(i)
ū

)

=
1

n2
†

( n†∑
i=1

Z
(i)
f,u,ū

)( n†∑
i=1

M
(i)
f,u,ū

)
. (27)

Notice that the random variables Z(i)
f,u,ū, M

(i)
f,u,ū are

functions of noisy observables. To understand how
these quantities behave we use Bernstein’s inequality,
which produces a factor of (1−2q)2 to account for the
variance in the noisy samples. The concentration of

measure results we need are for Z(i)
f,u,ū, M

(i)
f,u,ū. Defin-

ing events EZ and EM as

EZ ,
⋂

(w,w̄)∈E,u,ū∈V

E
(w,w̄),u,ū
Z , (28)

EM ,
⋂

(w,w̄)∈E,u,ū∈V

E
(w,w̄),u,ū
M , (29)

and

E
(w,w̄),u,ū
Z ,

{∣∣∣∣∣ 1

n†

n†∑
i=1

Z
(i)
e,u,ū − E [Ze,u,ū]

∣∣∣∣∣
≤ max

{
8ε2†, 4ε†

√
1− µ†A

}}
, (30)

E
(w,w̄),u,ū
M ,

{∣∣∣∣∣ 1

n†

n†∑
i=1

M
(i)
e,u,ū − E [Me,u,ū]

∣∣∣∣∣
≤ max

{
8ε2†, 4ε†

√
1 + µ†A

}}
, (31)

it is possible to show that each occurs with probabil-
ity at least 1 − δ′/2 and 1 − δ′′/2 respectively, where
ε† =

√
2/n† log (2p2/δ) and A = pathT (u, ū) \ {e}. A

union bound over all pairs w, w̄, u, ū and finally for the
events EZ , EM shows that the event EZ∪EM happens
with probability at least 1 − δ, where δ′/2 + δ′′/2 ≤
2 max{δ′/2, δ′′/2} , δ.

Theorem 2. To show a (minimax) lower bound
on tree structure estimation we follow the stan-
dard information-theoretic recipe using Fano’s in-
equality [76, Corollary 2.6]. As for noiseless mod-
els [75, Section 8.1], we consider difficult instances of
the problem correspond to graphs which are nearly
chains, see also Section A.2 (Appendix). First, we de-
fine Pθ0 to be an Ising model distribution with under-
lying structure a chain with p nodes and parameters
θ0
j,j+1 = α when j is odd and θ0

j,j+1 = β, when j is
even. The rest of family is constructed as follows: the
elements of each θi are equal to the elements of θ0

apart from two elements θii,i+1 = 0 and θii,i+2 = α for
each odd value of i. There are (p+ 1)/2 distributions
in the constructed family. To find a non-trivial upper
bound for the quantity SKL(P †θ0 ||P

†
θi), (where P

†
θi is

the distribution of the observable variables of the ith
model) we require new techniques, namely the strong
data processing inequality (SDPI) for the binary sym-
metric channel [29].

Consider our hidden model in which X is drawn
from p(·) ∈ PT(α, β), corrupted by multiplicative
Rademacher(q) noise, Ni. We have [29]:

ηKL , sup
Q

sup
P :0<DKL(P ||Q)<∞

DKL
(
PY|X ◦ P ||PY|X ◦Q

)
DKL (P ||Q)

≤ 1− (4q(1− q))p. (32)
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We combine this with an upper bound on the symmet-
ric KL divergence between any pair of noiseless models
in a specially constructed set of M + 1 trees:

SKL(Pθ0 ||Pθi) ≤ 4α2e−2β , ∀i ∈ [M ]. (33)

This in turn yields the factor 1 − (4q(1 − q))p in the
final bound.

Theorem 3. The proof of Theorem 3 differs from
that of Theorem 1 at two points. First, the correla-
tion decay property holds as a correlation coefficient
decay property, which makes the normalization of Ỹ
an essential step for the analysis (see (5)). The corre-
lation coefficient decay property [63] can be stated as
follows. If X ∼ p(·) ∈N m,M

T , then

ρi,j =
∏

e∈pathT(i,j)

ρe, ∀(i, j) ∈ V, (34)

where ρi,j = E[XiXj ]/
√
E[X2

i ]E[X2
j ]. Furthermore,

to bound the probability of the events analogous to
(28) and (29) in the Gaussian case from above, we
need concentration of measure inequalities for polyno-
mials of dependent continuous random variables. For
that purpose, we use a recent concentration result by
Shudi and Sviridenko [77, Theorem 1.10]. This results
in the polylogarithmic sample complexity in the Gaus-
sian Case.

5 Experiments

For the experimental part we consider synthetic data.
To demonstrate the performance of the Chow-Liu al-
gorithm experimentally, we present the decay of the
probability of incorrect recovery (Fig. 1), while the
number of samples increases, for fixed values of the pa-
rameters α, β, p, ρM , ρm. These results illustrate how
noisy observations can degrade performance, unless we
increase the sample size. Based on the experiments,
more observations are required for the Gaussian model
than the Ising model to provide an estimate TCL

† with

small P
(

TCL
† 6= T

)
(compared under equivalent noise

levels). The probability (Fig. 1) approaches zero with
less observations in the case of the Ising model than
the Gaussian model, for instance compare the lines for
q = 0, which corresponds to SNR = ∞. Further ex-
periments are provided in Section B (Appendix).

6 Conclusion

We have analyzed the problem of perfect reconstruc-
tion of hidden tree-structures from noisy observations,
using the well-known Chow-Liu algorithm. In particu-
lar, we have focused on two distinct cases, namely, hid-
den Ising models observed in multiplicative ±1 binary

P
( T

C
L
†
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)
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Figure 1: Estimating the probability of the error event
through 1000 iterations.

noise, and hidden Gaussian graphical models observed
in additive Gaussian noise. For the case of a hidden
Ising model, our results (Theorem 1 and Theorem 2)
give lower and upper bounds on the sample complexity
of accurately inferring the latent tree structure, strictly
generalizing the previously-studied noiseless case. In
particular, the lower bound shows that the number
of samples needed to estimate the tree grows only as
O(log(p/δ)), where δ > 0 is the probability of incor-
rect recovery. For hidden Gaussian models, we provide
an extension of our method, and derive a lower bound
on the number of sufficient samples for exact structure
recovery, which is polylogarithmic in p/δ (Theorem 3).
Experiments illustrate the impact of the noise and how
properly accounting for noisy samples can lead to more
accurate structure inference.
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A Proofs

A.1 Proof of Theorem 1 (Sufficient number
of samples)

Lemmas 1, 2, 3 together with Lemma 4 give the re-
quired number of samples for exact structure recovery
when observations from a hidden model are given. To
analyze the error event we use the "Two Trees Lemma”
of Bresler and Karzand [75, Lemmas 10.1, 10.2]. For
two different spanning trees on same set of nodes. In-
formally, if two maximum spanning trees T, T′ have a
pair of nodes connected in a different way then there
exist at least one edge in ET which does not exist in
ET′ and vice versa.

Lemma 1. Let f = (w, w̄) be an edge such that
f ∈ T and f /∈ TCL

† . Then there exists an edge
g ∈ TCL

† and g /∈ T such that f ∈ pathT (u, ū) and
g ∈ pathTCL

†
(w, w̄) and the following holds under the

error event T 6= TCL
† :( n†∑

i=1

Z
(i)
f,u,ū

)( n†∑
i=1

M
(i)
f,u,ū

)
< 0, (35)

where Zf,u,ū = YwYw̄ − YuYū and Mf,u,ū = YwYw̄ +
YuYū.

Proof. Using the same argument as the noiseless
case [75, Lemmas 9.6, 9.7] we see that

∣∣∣µ̂†f ∣∣∣ ≤ ∣∣µ̂†g∣∣
implies

0 ≥
∣∣∣µ̂†f ∣∣∣2 − ∣∣µ̂†g∣∣2

=
(
µ̂†f − µ̂

†
g

)(
µ̂†f + µ̂†g

)
=

1

n2
†

( n†∑
i=1

N (i)
w X(i)

w N
(i)
w̄ X

(i)
w̄ −N (i)

u X(i)
u N

(i)
ū X

(i)
ū

)

×

( n†∑
i=1

N (i)
w X(i)

w N
(i)
w̄ X

(i)
w̄ +N (i)

w X(i)
u N

(i)
ū X

(i)
ū

)

=
1

n2
†

( n†∑
i=1

Z
(i)
f,u,ū

)( n†∑
i=1

M
(i)
f,u,ū

)
. (36)

Notice that the random variables Z(i)
f,u,ū, M

(i)
f,u,ū are

functions of observations of the observable variables
(noisy observations). These differ from the corre-
sponding terms in the noiseless case and require a new
analysis.

In Lemmas 2, 3, we derive two concentration of mea-
sure inequalities for the variables Z(i)

f,u,ū and M
(i)
f,u,ū.

In fact, we have that the event EZ in (28) as

EZ ,
⋂

(w,w̄)∈E,u,ū∈V

E
(w,w̄),u,ū
Z , (37)

and

E
(w,w̄),u,ū
Z ,

{∣∣∣∣∣ 1

n†

n†∑
i=1

Z
(i)
e,u,ū − E [Ze,u,ū]

∣∣∣∣∣
≤ max

{
8ε2†, 4ε†

√
1− µ†A

}}
, (38)

happens with probability at least 1− δ′

2 and the event
EM , which is defined as

EM ,
⋂

(w,w̄)∈E,u,ū∈V

E
(w,w̄),u,ū
M , (39)

and

E
(w,w̄),u,ū
M ,

{∣∣∣∣∣ 1

n†

n†∑
i=1

M
(i)
e,u,ū − E [Me,u,ū]

∣∣∣∣∣
≤ max

{
8ε2†, 4ε†

√
1 + µ†A

}}
. (40)

happens with probability at least 1− δ′′

2 . The thresh-
old variable ε† is a decreasing function of n†, both
ε†, µA, which are defined below. Finally, we apply
union bound to guarantee that the event EZ∪EM hap-
pens with probability at least 1 − δ, where δ′

2 + δ′′

2 ≤
2 max{ δ

′

2 ,
δ′′

2 } , δ. Then, we can apply the union
bound over all pairs w, w̄, u, ū in Lemmas 2 and 3 and
finally for the events EZ and EM .
Lemma 2. For all pairs of vertices u, ū ∈ V and edges
e = (w, w̄) in the path pathT (u, ū) from u to ū, given
n† samples Z(1)

e,u,ū, Z
(2)
e,u,ū, ..., Z

(n)
e,u,ū of Ze,u,ū = YwYw̄−

YuYū we have

P

(∣∣∣∣∣
n†∑
i=1

Z
(i)
e,u,ū − n†E [Ze,u,ū]

∣∣∣∣∣
≤ n†max

{
8ε2†, 4ε†

√
1− µ†A

})
≥ 1− δ

2
,

where ε† =
√

2/n† log (2p2/δ) and A =
pathT (u, ū) \ {e}.

Proof. The proof is based on Bernstein’s inequal-
ity [78]. Expanding the definition of Ze,u,ū,

Ze,u,ū = XwNwXw̄Nw̄ −NuXuNūXū (41)
= NwXwNw̄Xw̄

× (1−NwXwNw̄Xw̄NuXuNūXū) . (42)
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Then

E [Ze,u,ū] = (1− 2q)
2 E [XwXw̄ −XuXū]

= (1− 2q)
2
µe (1− µA) (43)

and

Var (Ze,u,ū)

= E
[
(Ze,u,ū)

2
]
− E [(Ze,u,ū)]

2

= E
[
(XwNwXw̄Nw̄ −NūXuNūXū)

2
]

−
[
(1− 2q)

2 E [XwXw̄ −XuXū]
]2

= E [1 + 1− 2XwNwXw̄Nw̄NuXuNūXū]

− (1− 2q)
4 E [XwXw̄ −XuXū]

2

= 2− 2E [XwNwXw̄Nw̄NuXuNūXū]

− (1− 2q)
4 E [XwXw̄ −XuXū]

2

= 2− 2 (1− 2q)
4 E [XwXw̄XuXū]

− (1− 2q)
4 E [XwXw̄ −XuXū]

2

= 2− 2 (1− 2q)
4
µA − (1− 2q)

4
(µe (1− µA))

2

= 2− (1− 2q)
4
[
2µA + µ2

e (1− µA)
2
]
. (44)

Using the expressions for the mean and the variance,
we apply Bernstein’s inequality [78] for the noisy set-
ting: for all i ∈ [n†] we have

∣∣∣Z(i)
e,u,ū − E [Ze,u,ū]

∣∣∣ ≤ M

almost surely, that is, for any t > 0

P

[∣∣∣∣∣
n†∑
i=1

Z
(i)
e,u,ū − n†E [Ze,u,ū]

∣∣∣∣∣ ≥ t
]

≤ 2 exp

(
− t2

2n†Var (Ze,u,ū) + 2
3Mt

)
(45)

P

[∣∣∣∣∣
n†∑
i=1

Z
(i)
e,u,ū − n†E [Ze,u,ū]

∣∣∣∣∣ ≤ t
]

≥ 1− 2 exp

(
− t2

2n†Var (Ze,u,ū) + 2
3Mt

)
. (46)

Set

δ/2 = 2 exp

(
− t2

2n†Var (Ze,u,ū) + 2
3Mt

)
, (47)

then

log
4

δ
=

t2

2n†Var (Ze,u,ū) + 2
3Mt

. (48)

By solving with respect to t, we have

t1,2 =
2
3M log 4

δ

2

±
√(

2
3M log 4

δ

)2
+ 8n†Var (Ze,u,ū) log 4

δ

2

=
1

3
M log

4

δ

±

√(
1

3
M log

4

δ

)2

+ 2n†Var (Ze,u,ū) log
4

δ
.

(49)

Since t > 0, we have

t =
1

3
M log

4

δ

+

√(
1

3
M log

4

δ

)2

+ 2n†Var (Ze,u,ū) log
4

δ
. (50)

Since M = 4,

t =
4

3
log

4

δ

+

√(
4

3
log

4

δ

)2

+ 2n†Var (Ze,u,ū) log
4

δ
. (51)

This makes the probability of the union of events

⋃
u,ū,w,w̄:(w,w̄)∈pathT(u,ū)

{∣∣∣∣∣
n†∑
i=1

Z
(i)
e,u,ū − n†E [Ze,u,ū]

∣∣∣∣∣ ≥ t
}

to be at most δ
2p3 , then the union bound gives proba-

bility at most δ
2 . Also,

Var (Ze,u,ū) = 2− (1− 2q)
4
[
2µA + µ2

e (1− µA)
2
]

= 2− (1− 2q)
4

2µA

− (1− 2q)
4
µ2
e (1− µA)

2

≤ 2− (1− 2q)
4

2µA + 0

= 2
(

1− (1− 2q)
4
µA

)
= 2

(
1− µ†A

)
. (52)
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From (50) and (52)

t =
4

3
log

4p3

δ

+

√(
4

3
log

4p3

δ

)2

+ 4n†

(
1− µ†A

)
log

4p3

δ

≤ 8

3
log

4p3

δ
+

√
4n†

(
1− µ†A

)
log

4p3

δ
, and

t = n†

(
4

3n†
log

4p3

δ

+

√(
4

3n†
log

4p3

δ

)2

+
4

n†

(
1− µ†A

)
log

4p3

δ

)

≤ n†

(
8

3n†
log

4p3

δ
+

√
4

n†

(
1− µ†A

)
log

4p3

δ

)
. (53)

Define ε† =
√

log (2p2/δ) 2/n† (as following the defini-
ton by [28]), then we have

t ≤ n†
(

4ε2† + 2ε†

√
1− µ†A

)
≤ n†max

{
8ε2†, 4ε†

√
1− µ†A

}
. (54)

This completes the proof.

Lemma 3 gives the concentration of measure bound for
the event EM defined in (39).

Lemma 3. For all pairs of vertices u, ū ∈ V and
edges e = (w, w̄) in the path pathT (u, ū) from u to ū,
given n† samples M (1)

e,u,ū,M
(2)
e,u,ū, ...,M

(n)
e,u,ū of Me,u,ū =

YwYw̄ + YuYū, we have

P

(∣∣∣∣∣
n†∑
i=1

M
(i)
e,u,ū − n†E [Me,u,ū]

∣∣∣∣∣
≤ n†max

{
8ε2†, 4ε†

√
1 + µ†A

})
≥ 1− δ

2
,

ε† ,
√

2/n† log (2p2/δ) (55)

and

A , pathT (u, ū) \ {e} . (56)

.

Proof.

E [Me,u,ū] = (1− 2q)
2 E [XwXw̄ +XuXū]

= (1− 2q)
2
µe (1 + µA) . (57)

Var (Me,u,ū)

= E
[
(Me,u,ū)

2
]
− E [(Me,u,ū)]

2

= E
[
(XwNwXw̄Nw̄ +NuXuNūXū)

2
]

−
[
(1− 2q)

2 E [XwXw̄ +XuXū]
]2

= E [1 + 1 + 2XwNwXw̄Nw̄NuXuNūXū]

− (1− 2q)
4 E [XwXw̄ +XuXū]

2

= 2 + 2E [XwNwXw̄Nw̄NuXuNūXū]

− (1− 2q)
4 E [XwXw̄ +XuXū]

2

= 2 + 2 (1− 2q)
4 E [XwXw̄XuXū]

− (1− 2q)
4 E [XwXw̄ +XuXū]

2

= 2 + 2 (1− 2q)
4
µA − (1− 2q)

4
(µe (1 + µA))

2

= 2 + (1− 2q)
4
[
2µA − µ2

e (1 + µA)
2
]
. (58)

By applying Bernstein’s inequality, for any t > 0

P

[∣∣∣∣∣
n†∑
i=1

M
(i)
e,u,ū − n†E [Me,u,ū]

∣∣∣∣∣ ≥ t
]

≤ 2 exp

(
− t2

2n†Var (Me,u,ū) + 2
3Mt

)
,

P

[∣∣∣∣∣
n†∑
i=1

M
(i)
e,u,ū − n†E [Me,u,ū]

∣∣∣∣∣ ≤ t
]

≥ 1− 2 exp

(
− t2

2n†Var (Me,u,ū) + 2
3Mt

)
. (59)

In the same way as done previously we get

t ≤n†

(
8

3n†
log

4p3

δ
+

√
2

n†
Var (Me,u,ū) log

4p3

δ

)
(60)

and

Var (Me,u,ū) =2 + (1− 2q)
4
[
2µA − µ2

e (1 + µA)
2
]

≤2 + (1− 2q)
4

2µA

=2
(

1 + µ†A

)
. (61)

By setting ε† =
√

log (2p2/δ) 2/n†, we derive the fol-
lowing bound on t

t ≤ n†
(

4ε2† + 2ε†

√
1 + µ†A

)
≤ n†max

{
8ε2†, 4ε†

√
1 + µ†A

}
. (62)

In Lemma 4, we derive the set of strong edges for the
hidden model. There is a threshold τ†

(1−2q)2 ≥ τ as in
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the case where there was no noise [75] and the thresh-
old was τ . Also we find a lower bound for the necessary
number of samples for exact structure recovery. In fact
we have n† ≥ n, as expected. By setting q = 0 (then
the probability to flip a bit equals to zero) we derive
the exact expressions for the threshold τ and the suf-
ficient number of samples defined in [75]. Under the
event Estrong

† (ε†) only the strong edges are guaranteed
to exist in the estimated structure TCL

† .

Lemma 4. Define the set of strong edges:{
(i, j) ∈ ET : |tanh θij | ≥ τ†

(1−2q)2

}
. Under the

events defined in Lemmas 2 and 3 all the strong edges
will be recovered from the Chow-Liu algorithm with
probability at least 1− δ. That is,

P
[
Estrong
† (ε†)

]
≥ 1− δ = 1− 2p2 exp

(
−
n†ε

2
†

2

)
.

Proof.

Lemma 1 gives( n†∑
i=1

Z
(i)
f,u,ū

)( n†∑
i=1

M
(i)
f,u,ū

)
< 0 =⇒

n†∑
i=1

Z
(i)
f,u,ū ≤ 0 or

n†∑
i=1

M
(i)
f,u,ū ≤ 0 =⇒

∣∣∣∣∣
n†∑
i=1

Z
(i)
f,u,ū − n†E

[
Z

(i)
f,u,ū

]∣∣∣∣∣ ≥ n†E [Z(i)
f,u,ū

]
or∣∣∣∣∣

n†∑
i=1

Y
(i)
f,u,ū − n†E

[
Y

(i)
f,u,ū

]∣∣∣∣∣ ≥ n†E [M (i)
f,u,ū

]

Lemmas 2 and 3
=⇒

(43),(57)

(1− 2q)
2
µf (1− µA) ≤ max

{
8ε2†, 4ε†

√
1− µ†A

}
or

(1− 2q)
2
µf (1 + µA) ≤ max

{
8ε2†, 4ε†

√
1 + µ†A

}
which implies that

∣∣∣µ†f ∣∣∣ ≤ (1− µA)
−1

max

{
8ε2†, 4ε†

√
1− µ†A

}
or∣∣∣µ†f ∣∣∣ ≤ (1 + µA)

−1
max

{
8ε2†, 4ε†

√
1 + µ†A

}

and the lasts yields to∣∣∣µ†f ∣∣∣ ≤ max

{
8ε2†

(1− µA)
,

8ε2†
(1 + µA)

,

4ε†

√
1− µ†A

(1− µA)
,

4ε†

√
1 + µ†A

(1 + µA)

}
=⇒

∣∣∣µ†f ∣∣∣ ≤ max

 8ε2†
(1− µA)

,
4ε†

√
1− µ†A

(1− µA)

 =⇒

∣∣∣µ†f ∣∣∣ ≤ 4ε†

√
1− µ†A

(1− µA)
. (63)

We get the last inequality for non trivial values of the
bound 8ε2†

(1−µ†
A)
≤ 1 and by using the following bound

8ε2†
(1− µA)

≤
16ε2†

(1− µA)
≤ 4ε†√

1− µA

=
4ε†
√

1− µA
(1− µA)

≤
4ε†

√
1− µ†A

(1− µA)
.

Finally, the function f(µA) =
4ε†
√

1−µ†
A

(1−µA) =

4ε†
√

1−(1−2q)2µA
(1−µA) is increasing with respect to µA (for

all µA ≤ 1) and µA ≤ tanhβ < 1, thus we have

∣∣∣µ†f ∣∣∣ ≤ 4ε†

√
1− µ†A

(1− µA)
(64)

≤
4ε†

√
1− (1− 2q)

4
tanhβ

(1− tanhβ)
, τ †. (65)

Notice that τ † > τ = 4ε√
1−tanh β

when n = n† (or ε =

ε†).

The weakest edge should satisfy the following property
to guarantee the correct recovery of the tree under the
event Estrong

† (ε†)∣∣∣µ†f ∣∣∣ ≥ τ † =⇒

(1− 2q)
2

tanhα ≥
4ε†

√
1− (1− 2q)

4
tanhβ

(1− tanhβ)
=⇒

tanhα ≥
4ε†

√
1− (1− 2q)

4
tanhβ

(1− 2q)
2

(1− tanhβ)
. (66)

When there is no noise [75, Lemma 9.8], we can guar-
antee exact recover with high probability under the
event Estrong (ε) and the assumption that the weakest
edge satisfies the inequality

tanhα ≥ 4ε√
1− tanhβ

. (67)



Konstantinos E. Nikolakakis, Dionysios S. Kalogerias, Anand D. Sarwate

Notice that (67) can be obtained by (66) when q = 0
and n = n†. When q > 0 and n = n† it is clear
that the set of trees which can be recovered from noisy
observations is a subset of the set of trees that can
be recovered from the original observations. Also, we
have

ε ,

√
2 log (2p2/δ)

n
=⇒ n =

2

ε2
log
(
2p2/δ

)
and

ε† ,

√
2 log (2p2/δ)

n
=⇒ n† =

2

ε2†
log
(
2p2/δ

)
. (68)

By combining (66) with (68) we found the number of
samples that we need to recover the tree with probality
at 1− δ,

n† >
32
[
1− (1− 2q)

4
tanhβ

]
(1− tanhβ)

2
(1− 2q)

4
tanh2 α

log
2p2

δ
. (69)

On the other hand, when there is no noise [75] we need

n >
32

tanh2 α (1− tanhβ)
log

2p2

δ
. (70)

The last two inequalities give us how the number of
samples scales as a function of the probability q

n†
n
≥ 1− (1− 2q)

4
tanhβ

(1− tanhβ) (1− 2q)
4

=
1

2

[
e2β
(

(1− 2q)
−4 − 1

)
+ 1 + (1− 2q)

−4
]
. (71)

From the above we can distinguish specific cases for
values of q. For instance when q → 1

2

− then we need
n† = ∞ for exact structure recovery, when q → 0
then we need at least n number of samples for exact
structure recovery.

A.2 Proof of Theorem 2 (Necessary number
of samples)

In this section, we use a strong data processing in-
equality together with a family of models (considered
also by Bresler and Karzand [75]) to derive the proof of
Theorem 2. Specifically, we combine the proofs of The-
orem 3.2 by Bresler and Karzand [75, Lemma 8.1] and
a strong data processing inequality result by Polyan-
skiy and Wu [29]. First, we consider the following
variation of Fano’s inequality [76].
Lemma 5. [76, Corollary 2.6]: Assume that Θ is a
family of M + 1 distributions θ0, θ1, . . . , θM such that
M ≥ 2. Let Pθi be the distribution of the variable X
under the model θi, if

1

M + 1

M∑
i=1

DKL (Pθi ||Pθ0) ≤ γ logM, (72)

for any γ ∈ (0, 1
8 ), then for the probability of the error

pe the following inequality holds: pe ≥ log(M+1)−1
log(M) −

γ. We restrict the values of γ to (0, 1
8 ) because we

are interested in the case where pe ≥ 1
2 , in general

the above holds for all values of γ ∈ (0, 1), see [76,
Corollary 2.6].

At this point we consider Bresler and Karzand’s con-
struction [75, section 8.1] ofM+1 different Ising model
distributions {Pθi : i ∈ {0, . . . ,M}}. This family of
structured distributions is chosen such that the recov-
ery task is sufficiently hard. First, we define Pθ0 to be
an Ising model distribution with underlying structure
a chain with p nodes and parameters θ0

j,j+1 = α when
j is odd and θ0

j,j+1 = β when j is even. The rest of
family is constructed as follows: the elements of each
θi are equal to the elements of θ0 apart from two ele-
ments θii,i+1 = 0 and θii,i+2 = α for each odd value of
i. There are (p+ 1)/2 distributions in the constructed
family. Bresler and Karzand evaluate the upper bound
for the quantity SKL(Pθ0 ||Pθi) for all i ∈ [M ] under
this family of distributions and we have [75, Section
8.1]:

SKL(Pθ0 ||Pθi)
= 2α (tanh(α)− tanh(α) tanh(β))

≤ 4α tanh(α)e−2β . (73)

For each distribution Pθi and i ∈ {0, . . . ,M} we con-
sider the distribution of the noisy variable in the hid-
den model P †θi , PY|X ◦ Pθi and we would like to
find an upper bound for the quantities SKL(P †θ0 ||P

†
θi).

To do this we a use a strong data processing inequal-
ity result [29] for any binary symmetric channel. The
input random variable X is considered to have cor-
related elements while the noise variables Ni are i.i.d
Rademacher(q) which is equivalent to the hidden model
that we consider in this paper. In fact we have the fol-
lowing bound

ηKL ≤ 1− (4q(1− q))p. (74)

The quantity ηKL is defined as:

ηKL, sup
Q

sup
P :0<DKL(P ||Q)<∞

DKL
(
PY|X ◦ P ||PY|X ◦Q

)
DKL (P ||Q)

,

(75)

where PY|X is the distribution of the BSC and P,Q
are any distributions of the input variable X. Since
(75) has the supremum over all possible distributions
it covers any pair of distributions in the desired family
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{Pθj : j ∈ {0, . . . ,M}} and we have

DKL(P †θ0 ||P
†
θi)

DKL(Pθ0 ||Pθi)
(74),(75)
≤ 1− (4q(1− q))p =⇒ (76)

SKL(P †θ0 ||P
†
θi) ≤ [1− (4q(1− q))p]SKL(Pθ0 ||Pθi).

(77)

(73) and (77) give

SKL(P †θ0 ||P
†
θi) ≤ [1− (4q(1− q))p]4α2e−2β . (78)

Finally, from (78) and Lemma 5 we derive the bound
of Theorem 2.

A.3 Proof of Theorem 3, (Sufficient number
of samples for a noisy Gaussian model)

Let X = (X1, X2, . . . , Xp) be a Gaussian random vec-
tor with distribution N (0,Σ). We assume that the
Markov property holds such that the underlying graph
is a tree T = (V, E). Also assumption 2 holds;

Var (Xi) = E[X2
i ] = 1, ∀i ∈ V

0 < ρm ≤ |E[XiXj ]| ≤ ρM < 1, ∀(i, j) ∈ E .

We consider i.i.d. Gaussian noise N ∼ N (0, σ2I).
The noisy output variables of the hidden model are
Ỹ = X +N ∼ N (0,Σ + σ2I). Then

ρ†i,j ,
E[ỸiỸj ]√

E[(Ỹi)2]E[(Ỹj)2]
=

E[ỸiỸj ]
√

1 + σ2
2 (79)

= E

[
Ỹi√

1 + σ2

Ỹj√
1 + σ2

]
, ∀i, j ∈ V. (80)

The random variables Yi , Ỹi/
√

1 + σ2 are normalized
Gaussian with variance equal to 1. Instead of using Ỹ,
we use the normalized variable Y with distribution

Y ∼ N
(

0,
Σ + σ2I
1 + σ2

)
. (81)

Then

Var (Yi) = E[Y 2
i ] = 1, ∀i ∈ V, (82)

ρm
1 + σ2

≤ |E[YiYj ]| =
∣∣∣∣E[XiXj ]

1 + σ2

∣∣∣∣
≤ ρM

1 + σ2
, ∀(i, j) ∈ E . (83)

(83) shows that noise makes the edges "weaker", since
1+σ2 > 1 and for σ →∞ we have |E[YiYj ]| → 0 which
makes the structure learning task impossible.

The following Lemma provides upper bounds on the
probabilities of the sufficient events.

Lemma 6. Define

f
(1)
u,ũ,e

(
Y1:n

)
,

n∑
i=1

Z
(i)
f,u,ū

=

n∑
i=1

Y (i)
w Y

(i)
w̃ − Y (i)

u Y
(i)
ũ , (84)

f
(2)
u,ũ,e

(
Y1:n

)
,

n∑
i=1

Z̃
(i)
f,u,ũ

=

n∑
i=1

Y (i)
w Y

(i)
w̃ + Y (i)

u Y
(i)
ũ . (85)

Then

P

[ ⋂
u,ũ,e

{∣∣∣f (1)
u,ũ,e

(
Y1:n

)
− E[f

(1)
u,ũ,e

(
Y1:n

)
]
∣∣∣

≤ R
√

Var(f
(1)
u,ũ,e (Y1:n)) log2

(
p3e2

δ

)}]
≥ 1− δ

2
.

and

P

[ ⋂
u,ũ,e

{∣∣∣f (2)
u,ũ,e

(
Y1:n

)
− E[f

(2)
u,ũ,e

(
Y1:n

)
]
∣∣∣

≤ R
√

Var(f
(2)
u,ũ,e (Y1:n)) log2

(
p3e2

δ

)}]
≥ 1− δ

2
.

and R ∈ R+.

Proof. We apply a concentration of measure Theorem
by Schudy and Sviridenko [77, Theorem 1.10];

P
[∣∣f (Y1:n

)
− E[f

(
Y1:n

)∣∣ ≥ λ]
≤ e2e

−
(

λ

R
√

Var(f(Y1:n))

)1/q

, ∀λ > 0, (86)

where f
(
Y1:n

)
= f (Y1, . . . , Yn) is a q degree poly-

nomial and the random variables Y1, . . . , Yn are dis-
tributed according to a log-concave measure in Rn
and they are not necessarily independent. In our case
f (Y) =

∑n
i=1 Z

(i)
f,u,ū or f (Y) =

∑n
i=1 Z̃

(i)
f,u,ũ and we

have q = 2. Then we choose the probability to be at
least δ

2p(p2)
, since we apply union bound for all pairs of

nodes u, ũ and edges e = (w, w̃) ∈ pathT(u, ũ)

δ

2p
(
p
2

) = e2e
−
(

λ

R
√

Var(f(Y1:n))

)1/q

=⇒

λ = R
√

Var (f (Y)) log2

(
2pe2

(
p
2

)
δ

)

< R
√

Var (f (Y)) log2

(
e2p3

δ

)
. (87)
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Then we have to calculate the Var(f (Y)) for both
cases, when f (Y) =

∑n
i=1 Z

(i)
f,u,ū and f (Y) =∑n

i=1 Z̃
(i)
f,u,ũ. When f (Y) =

∑n
i=1 Z

(i)
f,u,ū, by using

Isserlis’ theorem [79] we can express the higher order
moments in terms of the covariates:

E[Y 2
i Y

2
j ] = E[Y 2

i ]E[Y 2
j ] + 2E2[YiYj ], (88)

E[YiYĩYjYj̃ ] = E[YiYĩ]E[YjXj̃ ] + E[YiYj ]E[YĩYj̃ ]

+ E[YiYj̃ ]E[YĩYj ], (89)

and we have

Var
(
f

(1)
u,ũ,e

)
i.i.d.
=

n∑
i=1

Var
(
Z

(i)
f,u,ū

)
= nVar (Zf,u,ũ)

= n
(
E[(YwYw̃ − YuYũ)

2
]− E2[YwYw̃ − YuYũ]

)
= n

(
E[Y 2

wY
2
w̃ ] + E[Y 2

u Y
2
ũ ]− 2E[YwYw̃YuYũ]

− E2[YwYw̃]− E2[YuYũ] + 2E[YwYw̃]E[YuYũ]

)
= n

(
2 + E2[YwYw̃] + E2[YuYũ]

− 2 (E[YwYu]E[Yw̃Yũ] + E[YwYũ]E[Yw̃Yu])
)

(90)

≤ n
(
6 + E2[YwYw̃] + E2[YuYũ]

)
= n

(
6 +

1

(1 + σ2)2
E2[XwXw̃] +

1

(1 + σ2)2
E2[XuXũ]

)

= 6n+
n

(1 + σ2)2
E2[XuXũ]

 ∏
e∈path(w,w̃)\(u,ũ)

µ2
e + 1

 ,

where (90) comes from (82), (88), (89) and the last
comes from the correlation coefficient decay property.

In a similar way,

Var
(
f

(2)
u,ũ,e

)
i.i.d.
=

n∑
i=1

Var
(
Z̃

(i)
f,u,ũ

)
= nVar

(
Z̃f,u,ũ

)
= n

(
E[(YwYw̃ + YuYũ)

2
]− E2[YwYw̃ + YuYũ]

)
= n(E[Y 2

wY
2
w̃ ] + E[Y 2

u Y
2
ũ ] + 2E[YwYw̃YuYũ]

− E2[YwYw̃]− E2[YuYũ]− 2E[YwYw̃]E[YuYũ])

= n(2 + E2[YwYw̃] + E2[YuYũ]

+ 2 (E[YwYu]E[Yw̃Yũ] + E[YwYũ]E[Yw̃Yu]))

≤ n
(
6 + E2[YwYw̃] + E2[YuYũ]

)
= n

(
6 +

1

(1 + σ2)2
E2[XwXw̃] +

1

(1 + σ2)2
E2[XuXũ]

)

= 6n+
6

(1 + σ2)2
E2[XuXũ]

 ∏
e∈path(w,w̃)\(u,ũ)

µ2
e + 1

 ,

and we have

λ < R
√

Var (f (Y1:n)) log2

(
e2p3

δ

)
≤R
√

7n+
n

(1 + σ2)2

∏
e∈path(w,w̃)\(u,ũ)

µ2
e log2

(
e2p3

δ

)
.

Similarly to the Ising model, we start by stating the
condition for the error event; Let f = (w, w̄) be an
edge: f ∈ T and f /∈ TCL

† then ∃ g ∈ TCL
† and g /∈ T:

f ∈ pathT (u, ū) and g ∈ pathTCL
†

(w, w̄), then for the
error event we have

0 ≥
∣∣∣ρ̂†f ∣∣∣2 − ∣∣ρ̂†g∣∣2

=
(
ρ̂†f − ρ̂

†
g

)(
ρ̂†f + ρ̂†g

)
(82)
=

1

n2

(
n∑
i=1

Y (i)
w Y

(i)
w̄ − Y (i)

u Y
(i)
ū

)

×

(
n∑
i=1

Y (i)
w Y

(i)
w̄ + Y (i)

u Y
(i)
ū

)

=
1

n2

(
n∑
i=1

Z
(i)
f,u,ū

)(
n∑
i=1

Z̃
(i)
f,u,ũ

)
=⇒

n∑
i=1

Z
(i)
f,u,ū ≤ 0 or

n∑
i=1

Z̃
(i)
f,u,ũ ≤ 0 =⇒
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n∑
i=1

Z
(i)
f,u,ū − E

[
n∑
i=1

Z
(i)
f,u,ū

]∣∣∣∣∣ ≥
∣∣∣∣∣E
[

n∑
i=1

Z
(i)
f,u,ū

]∣∣∣∣∣ or∣∣∣∣∣
n∑
i=1

Z̃
(i)
f,u,ũ − E

[
n∑
i=1

Z̃
(i)
f,u,ũ

]∣∣∣∣∣ ≥
∣∣∣∣∣E
[

n∑
i=1

Z̃
(i)
f,u,ũ

]∣∣∣∣∣ (91)

From Lemma 6 with probability at least 1− δ the fol-
lowing holds

R

√
7n+

n

(1 + σ2)2

∏
e∈path(w,w̃)\(u,ũ)

µ2
e log2

(
e2p3

δ

)

≥ R
√

Var(f
(1)
u,ũ,e (Y1:n)) log2

(
e2p3

δ

)
≥

∣∣∣∣∣
n∑
i=1

Z
(i)
f,u,ū − E

[
n∑
i=1

Z
(i)
f,u,ū

]∣∣∣∣∣ ,

R

√
7n+

n

(1 + σ2)2

∏
e∈path(w,w̃)\(u,ũ)

µ2
e log2

(
e2p3

δ

)

≥ R
√

Var(f
(2)
u,ũ,e (Y1:n)) log2

(
e2p3

δ

)
≥

∣∣∣∣∣
n∑
i=1

Z̃
(i)
f,u,ũ − E

[
n∑
i=1

Z̃
(i)
f,u,ũ

]∣∣∣∣∣ . (92)

We combine (91) and (92) and we have

R

√
7n+

n

(1 + σ2)2

∏
e∈path(w,w̃)\(u,ũ)

µ2
e log2

(
e2p3

δ

)

≥

∣∣∣∣∣E
[

n∑
i=1

Z
(i)
f,u,ū

]∣∣∣∣∣
or

R

√
7n+

n

(1 + σ2)2

∏
e∈path(w,w̃)\(u,ũ)

µ2
e log2

(
e2p3

δ

)

≥

∣∣∣∣∣E
[

n∑
i=1

Z̃
(i)
f,u,ũ

]∣∣∣∣∣ =⇒

R

√
7n+

n

(1 + σ2)2

∏
e∈path(w,w̃)\(u,ũ)

µ2
e log2

(
e2p3

δ

)

≥ n

∣∣∣∣∣∣E[XuXũ]

1 + σ2

 ∏
e∈path(w,w̃)\(u,ũ)

µe − 1

∣∣∣∣∣∣
or

R

√
7n+

n

(1 + σ2)2

∏
e∈path(w,w̃)\(u,ũ)

µ2
e log2

(
e2p3

δ

)

≥ n

∣∣∣∣∣∣E[XuXũ]

1 + σ2

 ∏
e∈path(w,w̃)\(u,ũ)

µe + 1

∣∣∣∣∣∣ =⇒

R

√
n
(

7 + 1
(1+σ2)2

∏
e∈path(w,w̃)\(u,ũ) µ

2
e

)
log2

(
e2p3

δ

)
1−

∏
e∈path(w,w̃)\(u,ũ) µe

≥ n
∣∣∣∣E[XuXũ]

1 + σ2

∣∣∣∣
or

R

√
n
(

7 + 1
(1+σ2)2

∏
e∈path(w,w̃)\(u,ũ) µ

2
e

)
log2

(
e2p3

δ

)
∏
e∈path(w,w̃)\(u,ũ) µe + 1

≥ n
∣∣∣∣E[XuXũ]

1 + σ2

∣∣∣∣ . (93)

From (93) we find the sufficient condition for the weak-
est edge: for exact structure recovery we need ρm to
be greater than the following term

R(1 + σ2)

√(
7 + 1

(1+σ2)2

∏
e∈path(w,w̃)\(u,ũ) µ

2
e

)
√
n
(

1−
∏
e∈path(w,w̃)\(u,ũ) µe

)
× log2

(
e2p3

δ

)
.

The function f(x) =
R
√

(7+x) log2
(
e2p3

δ

)
√
n(1−x)

is increasing

for all x ∈ [0, 1) and
∣∣∣∏e∈path(w,w̃)\(u,ũ) µ

2
e

∣∣∣ ≤ ρM .
Thus, it is sufficient to have

ρm ≥
R
√

7(1 + σ2)2 + ρM log2
(
e2p3

δ

)
√
n (1− ρM )

and the sufficient number of samples is given by:

n ≥
R2
[
7(1 + σ2)2 + ρM

]
log4

(
e2p3

δ

)
ρ2
m (1− ρM )

2 ,

where R is a positive constant.

B Additional Experiments

We define the distance between two tree structures
T = (V, E),T′ = (V, E ′) with identical node set and
possibly different edge sets as

DT (T,T′) ,
|E4E ′|

2
, (94)

where the symbol 4 denotes the symmetric differ-
ence between two sets. Note that 0 ≤ DT (T,T′) ≤
max{|E|, |E ′|}. The definition in (94) can be used as
an alternative of (10) for evaluating the performance
of the Chow-Liu algorithm. In particular, DT (T,TCL

† )
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counts the number of incorrect edges for the estimated
structure. Similar metrics can be found in the lit-
erature. A closely related one is "false positive and
false negative rates", which has been considered by
Liu et.al [80].

Synthetic Data. To demonstrate the performance of
the algorithm experimentally, we present the decay of
the error based on the metric DT (T,TCL

† ) (Figure 2)
and the probability of the error event {T 6= TCL

† } (Fig-
ure 3), while the number of samples increases, for fixed
values of the parameters α, β, p, while the crossover
probability q varies between 0 and 1/2. Specifically,
for the plots in Figures 2 and 3, we have chosen
α = arctanh(0.25), β = arctanh(0.75), p = 100. These
results illustrate how noisy observations can signif-
icantly degrade performance unless we increase the
sample size significantly. We consider synthetic Gaus-
sian data for the plots of Figure 4. These show how the
error DT (T,TCL

† ) and the probability of the not exact
recovery {T 6= TCL

† } varies as the number of observa-
tions increases and for different values of the signal to
noise ration (SNR).

Real Data. We consider as observations the increase
(spin up) or decrease (spin down) of the closing prices
for 10 stocks. The estimated tree structure TCL is
found by applying Chow-Liu’s algorithm, Figure 5.
Noisy data are generated by flipping each observation
with probability q. Then the structure TCL

† is esti-
mated by taking into consideration (semi-synthetic)
noisy data. The error DT (TCL,TCL

† ) is plotted as
function of q in figure 5. Notice that for hidden model
structure estimates, where q ∈ (0, 1/2), we see that
small noise levels lead to a modest increase in sample
complexity for a target error probability, but as the
channel gets worse, the sample complexity explodes.

C Connections with Differential
Privacy

One way in which a hidden model can arise in in in-
ference from data released under differential privacy.
Suppose that data about individuals can be modeled
as drawn from an Ising model: the j-th sample from
the population has data X(j) drawn according to p(·)
representing p correlated features characterizing the
individual. Because of privacy concerns, the analyst
is only given access to Y(j), where each feature is
randomly flipped with probability q. The noisy data
guarantees differential privacy [81]: we can think of
this process as a form of vectorized randomized re-
sponse. More formally, the noisy samples guarantees

D
T

(T
,T

C
L
†

)

number of samples ×100

Ising Model Synthetic Data

D
T

(T
,T

C
L
†

)

number of samples ×1000

Figure 2: DT (T,TCL
† ) as a function of number of sam-

ples. The upper graph is over 1000 independent runs
and up to 104 independent samples, while the down
over 100 independent runs and up to 105 independent
samples.

ε-diffferential privacy if for all c, c′, c′′ ∈ {0, 1}p,

P (Y = c|X = c′)

P (Y = c|X = c′′)
≤ eε. (95)

For our choice of q,

P (Y = c|X = c′)

P (Y = c|X = c′′)
=

(1− q)p−`q`

(1− q)p−`′q`′

=

[
1− q
q

]`′−`
, (96)

where `, `′ is the number of different elements of the
pairs c, c′ and c, c′′ respectively, for any c, c′, c′′ ∈
{−1,+1}p. Since `, ` ∈ {1, 2, . . . , p} and q ∈ [0, 1/2],
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P
( T

C
L
†
6=

T
)

number of samples ×1000

Ising Model Synthetic Data
P
( T

C
L
†
6=

T
)

number of samples ×1000

Figure 3: Estimating the probability of the error event,
P
(

TCL
† 6= T

)
, as a function of number of samples.

The upper graph is estimated through 100 indepen-
dent runs while the right through 1000 independent
runs.

we may write

P (Y = c|X = c′)

P (Y = c|X = c′′)
≤ max

`,`′

[
1− q
q

]`′−`
=

[
1− q
q

]p
. (97)

Thus for εo = p log ((1− q)/q) we guarantee εo-local
differential privacy.

We can interpret the main result of this paper, in terms
of differential privacy, as characterizing the tradeoff
between privacy and sample complexity in inference
from data protected by differential privacy. In this
simplified mechanism, however, each individual data
sample is perturbed, which is a form of local differen-
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Figure 4: Upper: DT (T,TCL
† ) as a function of num-

ber of samples. Down: Estimating the probability of
the error event. Both simulations are through 1000
independent iterations.

tial privacy or (alternatively) input perturbation. An
interesting question would be the tradeoff in standard
differential privacy, where the algorithm releases only
the estimated tree.
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Figure 5: Upper: Tree structure estimate TCL for
the closing prices of 10 different stocks. 105 number
of samples have been considered, data have been re-
trieved from https://finance.yahoo.com. Down:
DT (TCL,TCL

† ) as a function of q for different number
of samples.
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