
Queueing Syst (2006) 53:115–125

DOI 10.1007/s11134-006-6669-x

Exact emulation of a priority queue with a switch and delay lines
A. D. Sarwate∗ · V. Anantharam†

Received: 30 October 2004 / Revised: 13 December 2005
C© Springer Science + Business Media, LLC 2006

Abstract All-optical packet switched networking is ham-

pered by the problem of realizing viable queues for optical

packets. Packets can be buffered in delay lines, but delay

lines do not functionally emulate queues from an input-output

point of view. In this paper we consider the problem of exact
emulation of a priority queue of size K using a switching sys-

tem comprised of a switch of size (M + 1) × (M + 1), which

has one distinguished input for external arrivals, one distin-

guished output for external departures, and fixed-length delay

lines of lengths L1, L2, . . . , L M connecting the other inputs

and outputs in pairs. We measure the complexity of such an

emulation by M + 1. We prove that M ≥ �log(K − 1)� and

present a construction which works with M = O(
√

K ); fur-

ther, in our construction
∑M

m=1 Lm = K + O(
√

K ). We also

sketch an idea for an all-optical packet switched communica-

tion network architecture based on approximate emulation of

priority queues of finite size using switches and delay lines,

with erasure control coding at the packet level.

Keywords Erasure control coding · Error control

coding · Networking · Optical networking · Priority

queues · Queueing · Switching

AMS 2000 subject classifications: Primary: 60K25;

Secondary: 90B22 . 90B36 . 68R99

∗The work of A. D. Sarwate is supported by an NDSEG Graduate
Research Fellowship which is sponsored by the U.S. Department of
Defense.

†The work of V. Anantharam is supported by ONR grant No.
N00014-1-0637, DARPA grant No. N66001-00-C-8062, and by NSF
grant No. ECS 0123512.

A. D. Sarwate (�) · V. Anantharam
Department of Electrical Engineering and Computer Sciences,
University of California, Berkeley
e-mail: asarwate@eecs.berkeley.edu
e-mail: ananth@eecs.berkeley.edu

1. Introduction

Packet switched communication networks need to resolve

contention for links by buffering some of the contending

packets. Optical networks with wavelength division mul-

tiplexing can already support data rates of several ter-

abytes per second [15]. Unfortunately, there do not ex-

ist buffering strategies for optical packets that have the

flexibility of their electronic counterparts [14]. As a re-

sult, currently deployed high speed optical packet switched

networks have to transform optical packets into electron-

ics for switching, and then convert the switched elec-

tronic packets back to optics for high speed transmis-

sion [13]. This so-called O-E-O bottleneck is one of the

main stumbling blocks to the rapid deployment of all-optical

networks.

There have been many schemes proposed for mimicking

buffering for optical packets, almost all of which involve

using a system comprised of an optical switch and delay lines

to hold the packets. In this paper we will call such a system a

switching system. A survey of this work is available in [10];

see also [14], and the more recent work [6] (as referenced

in [7]). All of these schemes are ad-hoc in nature, and the

extent to which they are successful in emulating buffering

for arbitrary traffic patterns is rather unclear. Our purpose in

this paper is to formulate and investigate from first principles

the problem of emulating buffered queueing disciplines with

a switching system.

2. Problem formulation

We first describe in detail the dynamics of the priority queue
of size K with gated service that we seek to emulate. The

Springer



116 Queueing Syst (2006) 53:115–125

Fig. 1 A queue implemented as
a switch with delay lines. From
the view of the input/output the
system in the dashed box works
like a queue

queue is assumed to start empty at time 0.1 At each time

there may or may not be an arrival request and there may or

may not be a departure request. Each arrival request has an

associated integer called its priority. The queue operates as

follows:

– If there is no arrival request and no departure request the

packets that were in the queue continue to remain in the

queue.

– If there is no arrival request and there is a departure request,

then among the packets in the queue (if any) the oldest one

among those with the highest priority is released from the

queue to serve the departure request. The other packets

remain in the queue.

– If there is an arrival request which has lower priority than j
of the packets currently in the queue and there is no depar-

ture request, and if the total number of packets currently

in the queue is k < K , the arriving packet is admitted into

the queue. The packets that were in the queue remain in

the queue.

– If there is an arrival request and there is no departure request

and the total number of packets in the queue is K , the

arriving packet is rejected, irrespective of its priority.2

– If there is an arrival request which has higher priority than

all the packets currently in the queue and there is a depar-

ture request, the departure request is served by the arriving

packet and the packets that were in the queue remain in the

queue.

– If there is an arrival request which has lower priority than

j of the packets currently in the queue, j > 0, and there

is a departure request, the departure request is served by

1 The modifications required to derive our results without this assump-
tion are straightforward.
2 It is possible to modify our results to deal with the case that the
arriving packet displaces the lowest priority packet. See Section 5 for
this extension. The packets that were in the queue remain in the queue.

the packet in the queue that is the oldest among the highest

priority packets in the queue. The arriving packet is admit-

ted into the queue and the packets that were in the queue,

other than the one that departed, remain in the queue.

It is not hard to check that both a finite buffer First-In-

First-Out (FIFO) queue and a finite buffer Last-In-First-Out

(LIFO) queue3 are priority queues.

Consider a time t at which there are 0 ≤ k ≤ K packets in

the queue. It is convenient to think of each packet, if any, as

carrying a tag at time t from among the numbers 1 through

k. Packets of higher priority have smaller tags than those of

lower priority, and among packets of the same priority older

packets have smaller tags than younger packets. From the

dynamics of the queue, as described above, one sees that the

relative order of the tags of the packets in the queue never

changes from one time to another. It is also convenient to

define a next-tag at time t for each packet that is in the queue

at time t and the arriving packet at time t (if any). For a packet

that is present in the queue both at time t and at time t + 1

its next-tag at time t equals its tag at time t + 1. If a packet is

released from the queue at time t to serve a departure request

at time t (if any) its next-tag at time t equals 0. An arriving

packet at time t (if any) is assigned next-tag 0 at time t if

either it is rejected from a full queue or if it is the one that

serves the departure request at time t (if any). An arriving

packet at time t (if any) that is admitted into the queue has its

next-tag at time t equal to its tag at time t + 1 (as a member

of the queue).

We turn now to switching systems. The switching systems

we consider in this paper are as shown in Figure 1. Packets

arrive along a distinguished input to the switch (indexed by 0),

called the arrival input; they exit along a distinguished output

of the switch (indexed by 0), called the departure output. The

3 In the LIFO case, if there is an arrival request into a full queue when
there is no departure request, it is the arriving packet that is rejected.

Springer



Queueing Syst (2006) 53:115–125 117

remaining M inputs and outputs are connected in pairs via

delay lines of lengths L1, L2, . . . , L M . We assume that the

switching system is synchronous at the packet level, and that

all packets have the fixed length 1. At each time step t , the

following events happen in order:

1. A packet may arrive at the arrival input. Also, a departure

request may arrive.

2. The packets in the delay lines move forward by one slot.

The switch implements a one-to-one mapping (matching)

from its M + 1 inputs to its M + 1 outputs. Thus the ar-

riving packet, if any, and the packets at the ends of the M
delay lines, if any, are switched into the departure output

and the beginnings of the M delay lines. The matching

used by the switch at any time t is in principle allowed to

depend on the entire history of the arrival process up to

and including time t and the history of the previous match-

ings used up to and including time t − 1. A packet that

is switched into the departure output leaves the switching

system.

We now define what we mean by saying that a switching

system exactly emulates a priority queue of size K . We start

with an empty priority queue of size K at time 0 on the

one hand, and an empty switching system at time 0 on the

other hand. We are given an arbitrary sequence of departure

requests and an arbitrary sequence of arrival requests with

associated priorities, which we think of as applied to the

queue on the one hand and to the switching system on the

other hand. We will say that the switching system exactly

emulates the priority queue up to time t if for each time

0 ≤ s ≤ t the packets that are in the priority queue at time s
are identical to those that are in the switching system at time

s and the packet that is placed on the departure output of the

switching system at time s is identical to the one that departs

from the queue at time s or to the one that is rejected from

the queue at time s.4 We will say that the switching system

exactly emulates the priority queue for all time if it emulates

the priority queue up to time t for each t ≥ 0.

We measure the complexity of the switching system for a

target queue depth K by the size M + 1 of the switch. We

are interested in how small we can make M as a function of

K . In this paper, we will show that M ≥ �log(K − 1)� and

provide a construction with M = O(
√

K ).

4 At the times when an arriving packet is rejected from the full priority
queue when there is no departure request, in the emulation we treat
it as being placed on the departure output of the switching system.
This is just a convenient way of representing its rejection. In a practical
implementation, in this case, the arriving packet would simply be erased,
for instance by disconnecting the departure output from the rest of the
world.

3. A lower bound of �log(K − 1)�

We now establish a lower bound on the switch size in any ex-

act emulation. In this section we will assume that the lengths

of the delay lines are ordered so that L1 ≤ L2 ≤ · · · ≤ L M .5

There must be at least enough room in the delay lines for K
packets, so we must have

M∑
i=1

Li ≥ K . (1)

We claim that a packet with next-tag k at time t cannot

be switched at time t into a delay line with length more than

k. Suppose to the contrary that at time t , the packet with

next-tag k is switched into a delay line of length more that

k. Suppose furthermore that at times t + 1, t + 2, . . . t + k,

there are departure requests and no arrivals. Then at time t +
k, this packet will have next-tag 0, but will not be available

to be switched to the output line of the switching system, so

the switching system cannot correctly emulate the priority

queue.

This observation leads to the following lemma, which ap-

plies to any switching system that exactly emulates a priority

queue of size K :

Lemma 1. L1 = 1. If K ≥ 2, then for all m ≥ 1 such that

m∑
i=1

Li ≤ K − 1, (2)

we have

Lm+1 ≤ 1 +
m∑

i=1

Li . (3)

Proof: First note that the statement of the lemma makes

sense, since if (2) holds then, by (1), line m + 1 must exist.

We must have L1 = 1 because if the switching system is

empty at time t and there is an arrival request and no departure

request at this time, then the arriving packet must, by our

observation above, be assigned to a delay line of length 1.

Thus there has to be at least one delay line of length 1, so

L1 = 1.

Now suppose that (2) holds but (3) does not hold, for

some m ≥ 1. Let j denote
∑m

i=1 Li . Note that 1 ≤ j ≤ K −
1 under our assumptions. Suppose the switching system has

j packets in it at time t and there are no arrivals and no

departure requests at times t, t + 1, . . . , t + j − 1. From our

5 This assumption applies only in this section; for instance, it does not
apply in the next section.

Springer



118 Queueing Syst (2006) 53:115–125

observation above, at time t + j the switching system has j
packets which are all in the delay lines numbered 1, 2, . . . , m.

Thus these delay lines are “full”. Suppose that at time t + j
there is an arrival request but no departure request, and that

this arrival request has lower priority than all the packets in

the switching system at time t + j . The new packet then has

next-tag j + 1. Since the lines 1, 2 . . . , m are full at time

t + j , the total number of packets to be switched back into

the delay lines at time t + j is m + 1. Hence, at least one

packet has to be switched into a line numbered m + 1 or

higher. The switching system is therefore forced to assign

a packet with next-tag j + 1 or less to a line with length

j + 2 or higher. But by our observation, this implies that the

switching system cannot exactly emulate a priority queue of

size K . �

Using Lemma 1 we get our lower bound:

Proposition 1. M ≥ �log(K − 1)�.

Proof: Let K = 2A + 1. From Lemma 1, starting with L1 =
1, we see that L2 ≤ 2, L3 ≤ 4, and so on, through to L A ≤
2A−1. This tells us that

∑A
m=1 Lm ≤ 2A − 1. However, we

have
∑M

m=1 Lm ≥ K = 2A + 1; this is (1). Hence M ≥ A +
1 ≥ log K . Since the smallest possible M is a nondecreasing

function of K – any switching system that can emulate a

priority queue of a given size can emulate one of smaller

size – it follows that M ≥ �log(K − 1)�. �

4. An upper bound of O(
√

K )

In this section we describe an algorithm to emulate a priority

queue of size K using a switching system with a switch of size

M = O(
√

K ). Since a switching system emulating a priority

queue of a given size can also emulate one of any smaller

size, it suffices to consider only the case where K is of the

form 1
2

N (N + 1) for some N ≥ 1 and to show that a priority

queue of size K can be emulated by a switching system

with an (M + 1) × (M + 1) switch with M = 2N − 1. The

architecture for the switching system we construct is given in

Figure 2 for the case N = 5. This figure shows the lengths of

the 9 delay lines; the switch itself is a 10 × 10 switch, since

it also has an arrival input and a departure output. It emulates

a priority queue of size 15.

For a more realistic assessment of our construction, note

that a 128 × 128 switch can be used to emulate a priority

queue of size 2080, which is bigger than 2048, a quite inter-

esting size in practice.6 The switch has one arrival input and

one departure output. Of the 127 delay lines in the switching

6 Commonly, 2048 is called “2K”.

Fig. 2 A queue of size K = 15. With reference to Figure 2, only the
portion below the switch inside the dashed box is being shown. Here
M = 9

system, the first 64 have length equal to their index, and the

next 63 are of length 1. The longest delay line used is of length

64. The total length needed for all the delay lines is 2143,

so the overhead, in terms of this metric, as compared to the

absolute lower bound of 2080, as given by (1), is negligible.

Let α(k) be defined as

α(k) = −1

2
+ 1

2

√
1 + 8k. (4)

Then α(k) satisfies k = 1
2
α(k)(α(k) + 1), so if K = 1

2
N (N +

1), as we assume, then N = α(K ). We will show how to

emulate a priority queue of size K with a switching system

that uses a switch of size 2N × 2N , so M = 2N − 1. We

partition the set of delay lines into two sets of size N and

N − 1 respectively: the set of regular lines R and the set of

overflow lines F . The lines in R have lengths L1 = 1, L2 =
2, . . . L N = N , and the lines in F all have length 1. That

is, L N+1 = 1, L N+2 = 1, . . . L2N−1 = 1. Note that, with this

construction, the total length of the delay lines needed, for

arbitrary K , is

M∑
m=1

Lm = 1

2
�α(K )�(�α(K )� + 1) + �α(K )� − 1

= K + O(
√

K ).

To start with we are going to consider a sloppy switching

system (SSS), which uses a much bigger switch, with the reg-

ular lines as above, but with a total of K − 1 overflow lines,

each of which is of length 1. With some abuse of notation,

we will continue to use R for the set of regular lines and F
for the set of overflow lines in the SSS. We consider only

K = 1
2

N (N + 1) for some N ≥ 1, so the SSS has N regular

lines, of lengths 1, . . . , N respectively, and K − 1 overflow

lines, each of length 1, and it needs an (N + K ) × (N + K )

switch. We will describe a switching algorithm for the SSS

and prove that it exactly emulates a priority queue of size K .

We will then argue that at every time at most N − 1 over-

flow lines are used in the SSS, so it unnecessary to have so

many overflow lines. Thus, the same algorithm, applied to

Springer



Queueing Syst (2006) 53:115–125 119

the original switching system, will ensure that it also exactly

emulates a priority queue of size K .

We now describe a class of algorithms for the SSS that

will make it emulate a priority queue of size K . Assume that

the SSS has been correctly emulating the priority queue up to

time t , so we can talk about the tag and post-tag of packets at

time t . The algorithms we consider are of the following type:

at time t , the algorithm computes a number 1 ≤ T (t) ≤ N .

The regular line with this index is called the trapping line.

At time t , the algorithm places the packet with next-tag 0, if

any, in the departure line, and places the remaining packets

that need to be switched, if any, in order of increasing next-

tag, in the regular lines of least index, up to and including the

trapping line, and places any remaining packets that still need

to be switched into the overflow lines, one to each overflow

line.

Note that, in the SSS, irrespective of how T (t) is computed,

an algorithm of this type will continue to exactly emulate the

priority queue up to time t + 1, and the packet with tag 1 at

time t + 1 will be in the regular line of least index at time

t + 1. This follows from the observation that the packet with

next-tag 0, if any, is always placed in the departure line, and

any other packet is always placed in a line of length that is

no bigger than its next-tag.

We will now build up to a particular way of computing

T (t), given in equation (9) below. Let a(t) denote that indi-

cator that there is an arrival request at time t . Let d(t) denote

the indicator that there is a departure request at time t . Let

ωQ(t) denote the total number of packets in the SSS at time

t . This does not include the arrival request, if any. We have

already proved that that the SSS exactly emulates the prior-

ity queue of size K , so we know that ωQ(t) evolves like the

queue size in the priority queue, i.e.

ωQ(t + 1) = min(K , [ωQ(t) + a(t) − d(t)]+). (5)

For future convenience, let ω+
Q(t) denote ωQ(t + 1). Thus

ω+
Q(t) = min(K , [ωQ(t) + a(t) − d(t)]+). (6)

Let ωF (t) denote the number of packets in the overflow

lines of the SSS at time t . Let S(t) denote the largest index

among the regular lines that have a packet at time t , if any,

with S(t) = 0 if none of the regular lines have packets at

time t . Let δ(t) denote the number of packets that need to be

circulated back into the N + (K − 1) delay lines of the SSS

at time t . Note that this does not include the packet placed

in the departure output of the switch in the SSS, if any. Then

we have

δ(t) ≤ [S(t) + ωF (t) + a(t) − d(t)]+ . (7)

This comes from the fact that every packet that needs to be

recirculated as well as the packet that departs (if any) is either

the arriving packet (if any), a packet at the head of one of

the regular lines 1 through S(t), or a packet in one of the

occupied overflow lines (of which there are ωF (t)).
Let P(t) denote the number of shortest regular lines that

would be needed to pack ω+
Q(t), i.e.

P(t) = �α(ω+
Q(t))�. (8)

The trapping line is given by setting

T (t) = max {1, S(t), P(t)} . (9)

We have 0 ≤ S(t) ≤ N , since there are only N regular lines.

We have 0 ≤ P(t) ≤ N , since we have ω+
Q(t) ≤ K . Hence

we have 1 ≤ T (t) ≤ N . The algorithm used by the SSS is as

described above, with this particular choice for T (t). Thus,

of the δ(t) packets that need to be recirculated into the delay

lines at time t , up to exactly T (t) will be put in the shortest

T (t) delay lines in increasing order of next-tag, and any others

will be placed in the overflow lines, one to a line. We therefore

have

S(t) ≤ T (t − 1) , (10)

ωF (t) = [δ(t − 1) − T (t − 1)]+ , (11)

and

S(t) < T (t − 1) =⇒ ωF (t) = 0. (12)

For the convenience of the reader, in the following table

we give a glossary of the notation we have introduced so far.

All quantities are at time t .

ωQ(t) Queue size in the priority queue being emulated.

a(t) Indicator of arrival request.

d(t) Indicator of departure request.

ω+
Q(t) Projected queue size one step later,

i.e. ωQ(t + 1).

ωF (t) Number of packets in the overflow lines.

S(t) Largest index of a regular line with a packet

(equals 0 if all regular lines are empty).

P(t) Number of shortest regular lines needed to pack

ω+
Q(t) (equals 0 if ω+

Q(t) = 0).

δ(t) Number of packets needing recirculation into

the delay lines.

T (t) Trapping line.

Our aim is to show that with T (t) chosen as in equation (9),

we have ωF (t) ≤ N − 1 for all t . We do this in Proposition 2

Springer



120 Queueing Syst (2006) 53:115–125

after first proving a sequence of lemmas. The SSS and the

priority queue of size K that is being emulated are assumed

to start empty at time t = 0. Thus all the variables defined

in the preceding table may be taken to be zero for all t ≤ 0,

the exceptions being a(0) and d(0), which are given at t =
0, ω+

Q(0), which equals (a(0) − d(0))+, P(0), which equals

�α(ω+
Q(0))�, δ(0), which equals (a(0) − d(0))+, and T (0),

which will equal 1 for all t ≤ 0.

Lemma 2. For all t we have

ωF (t) ≤ ωF (t − 1) + 1. (13)

Proof: Starting with equation (7) we have

δ(t − 1) ≤ [S(t − 1) + ωF (t − 1) + a(t − 1) − d(t − 1)]+

≤ S(t − 1) + ωF (t − 1) + 1

≤ T (t − 1) + ωF (t − 1) + 1, (14)

where the last step uses equation (9). Now, starting with equa-

tion (11) we have

ωF (t) = [δ(t − 1) − T (t − 1)]+

≤ [ωF (t − 1) + 1]+

= ωF (t − 1) + 1,

where the inequality comes from equation (9). This com-

pletes the proof. �

Lemma 3. For all t we have

T (t) < T (t − 1) =⇒ ωF (t) = 0. (15)

Proof: From equation (9) we know that T (t) < T (t −
1) =⇒ S(t) < T (t − 1). From equation (12) this further im-

plies that ωF (t) = 0. This completes the proof. �

Lemma 4. For all t , if T (t − 1) < T (t) then T (t) = T (t −
1) + 1 and ω+

Q(t) = ω+
Q(t − 1) + 1.

Proof: We have

max(1, S(t)) ≤ max(1, T (t − 1)) = T (t − 1),

where the first step is from equation (10) and the second step

is from equation (9). From the definition of T (t) in equation

(9) it follows that

T (t) = max(1, S(t), P(t)) ≤ max(T (t − 1), P(t)).

It then follows that

T (t) > T (t − 1) =⇒ T (t) = P(t) > T (t − 1) ≥ P(t − 1).

Since ω+
Q(·) and P(·) can increase by at most 1 at any time,

this completes the proof of the lemma. �

Lemma 5. For all t , if T (t − 1) < T (t) then S(t) = T (t −
1).

Proof: From equation (10) we know that S(t) ≤ T (t − 1).

Assume that S(t) < T (t − 1). From equation (12) this im-

plies that ωF (t) = 0. From the algorithm used by the switch

in the SSS to recirculate packets, we have that ωF (t) = 0

implies ωQ(t) ≤ T (t−1)(T (t−1)+1)
2

, because all the packets in

the system at time t would be in the shortest regular lines

up to and including the line of index T (t − 1). However,

since we have also assumed that S(t) < T (t − 1), it fol-

lows that ωQ(t) < T (t−1)(T (t−1)+1)
2

. This then implies that

ω+
Q(t) ≤ T (t−1)(T (t−1)+1)

2
, because ω+

Q(·) can increase by at

most 1 at any time. Hence α(ω+
Q(t)) ≤ T (t − 1), and so

P(t) = �α(ω+
Q(t))� ≤ T (t − 1). It then follows that T (t) =

max(1, S(t), P(t)) ≤ T (t − 1). We have thus completed the

proof of the lemma. �

Lemma 6. For all t , if T (t − 1) < T (t) then S(t + 1) =
T (t).

Proof: From equation (10), we always have S(t + 1) ≤
T (t). If S(t + 1) < T (t), then, from equation (12), we would

have ωF (t + 1) = 0. From the algorithm used by the switch

in the SSS, this means that all packets in the queue at

time t + 1 are in the regular lines of least index up to

and including the line of index T (t) − 1, if any.7 We then

have ω+
Q(t + 1) ≤ (T (t)−1)((T (t)−1)+1)

2
. Since we assumed that

T (t − 1) < T (t) and since T (·) can increase by at most 1 at

any time, what this says is that ω+
Q(t + 1) ≤ T (t−1)((T (t−1)+1)

2
.

From this, exactly as in the proof of Lemma 5, we con-

clude that T (t) ≤ T (t − 1), a contradiction. This concludes

the proof of the lemma. �

Lemma 7. For all t , if T (t − 1) < T (t) then S(t + 1) =
S(t + 2) = . . . = S(t + T (t)) = T (t) and T (t) = T (t + 1)

= . . . = T (t + T (t) − 1) .

Proof: In Lemma 3 we proved that T (t − 1) < T (t) implies

that T (t) = T (t − 1) + 1 and that ω+
Q(t) = ω+

Q(t − 1) + 1 =
ωQ(t) + 1. It follows that ω+

Q(t) = T (t−1)(T (t−1)+1)
2

+ 1. In

Lemma 6 we proved that S(t + 1) = T (t). Intuitively, what

7 If T (t) = 1 the conclusion would be that there no packets in the queue
at time t + 1.

Springer



Queueing Syst (2006) 53:115–125 121

has happened is that the algorithm has placed, at time t + 1,

exactly one packet in the “new” regular line, of index T (t)
that it has just “opened” at time t + 1. Now, since the

queue size can increase by at most 1 at each time step, we

have ω+
Q(t + i) ≤ T (t−1)(T (t−1)+1)

2
+ i + 1. So, for 0 ≤ i ≤

T (t) − 1, we have P(t + i) ≤ T (t) from equation (8). Since

S(t + 1) = T (t) and P(t + 1) ≤ T (t), we have T (t + 1) =
T (t). The packet that was placed in the line of index T (t)
at time t + 1 must continue to be in the same line at time

t + 2. Hence S(t + 2) = T (t). If T (t) = 2, we have com-

pleted the proof. Otherwise, we may continue in this manner

to argue that since S(t + 2) = T (t) and P(t + 2) ≤ T (t), we

have T (t + 2) = T (t). If T (t) ≥ 3, the packet that was placed

in the line of index T (t) at time t + 1 must continue to be in

the same line at time t + 3, so we have S(t + 3) = T (t). In the

general case, the last step is to use the previously proved fact

that S(t + T (t) − 1) = T (t) with P(t + T (t) − 1) ≤ T (t) to

conclude that T (t + T (t) − 1) = T (t). Because the packet

that was placed in the line of index T (t) at time t + 1 must

continue to be in the same line at time t + T (t) we conclude

that S(t + T (t)) = T (t). �

Lemma 8. For all t , if T (t − 1) < T (t) then ωF (t + i) ≤
ωF (t + i − 1) for all i = 1, 2, . . . T (t).

Proof: In Lemma 5 we proved that T (t − 1) < T (t) implies

that S(t − 1) = T (t). In Lemma 3 we proved that T (t − 1) <

T (t) implies that T (t) = T (t − 1) + 1 and that ω+
Q(t) =

ω+
Q(t − 1) + 1 = ωQ(t) + 1. This implies that a(t) = 1

and d(t) = 0. We may now start from equation (7) to

write

δ(t) ≤ [S(t) + ωF (t) + a(t) − d(t)]+

= S(t) + ωF (t) + 1

= T (t − 1) + ωF (t) + 1

= T (t) + ωF (t).

From equation (11) we now have ωF (t + 1) = [δ(t) −
T (t)]+ ≤ ωF (t).

From Lemma 7, using the fact that there is no packet

that is present at the output of the regular line of in-

dex T (t) at times t + i − 1 for i = 2, . . . , T (t), we have

δ(t + i − 1) ≤ (T (t) − 1) + ωF (t + i − 1) + 1 for all such

i . Further, Lemma 7 tells us that T (t + i − 1) = T (t) for

all such i , so ωF (t + i) = [δ(t + i − 1) − T (t + i − 1)]+ ≤
ωF (t + i − 1) for all such i . This completes the proof of the

lemma. �

We are now able to prove the claim that the SSS never

needs to use more than N − 1 overflow lines.

Proposition 2. We have ωF (t) < T (t) for all t . In particular,
we have ωF (t) ≤ N − 1 for all t .

Proof: The proof is by induction on T (t). To start with,

it is true for all t with T (t) = 1. To see this, consider two

cases. First, if T (t − 1) = 1, then ω+
Q(t − 1) ≤ 1 so ωF (t) =

0. Second, if T (t − 1) ≥ 2, then since S(t) ≤ 1, we have

ωF (t) = 0. In either case, we are done.

Next, we show that the claim is true for all t with T (t) = 2.

We have to consider three cases. First, if T (t − 1) = 1, then

ω+
Q(t − 1) ≤ 1 so ωF (t) = 0. Second, if T (t − 1) ≥ 3, then

since S(t) ≤ 2, we have ωF (t) = 0. Third, if T (t − 1) = 2,

then ω+
Q(t − 1) ≤ 3, so if S(t) = 2, we have ωF (t) ≤ 1, while

if S(t) < 2, we have ωF (t) = 0. In all three cases, we are

done.

Assume now that the claim has been established for all t
with T (t) ≤ r − 1, where r − 1 ≥ 2. Consider t with T (t) =
r . We again consider three cases. First, if T (t − 1) ≤ r − 1,

then T (t − 1) = r − 1 and ωF (t − 1) < r − 1 so δ(t − 1) <

2(r − 1) + 1, so ωF (t) ≤ r − 1. Second, if T (t − 1) ≥ r +
1, then since S(t) ≤ r we have ωF (t) = 0.

The third case, when T (t − 1) = r , is the most interesting.

Suppose ωF (t) ≥ r . Then, as we proved in Lemma 2, we have

ωF (t − i) > 0 for 0 ≤ i ≤ r − 1. Hence we have

T (t − r ) ≤ T (t − r + 1) ≤ . . . ≤ T (t) = r.

Suppose there is 1 ≤ τ ≤ r with T (t − τ ) < T (t − τ + 1) =
r . Then by Lemma 8, ωF (t − τ + 1) ≥ ωF (t − τ + 2) . . . ≥
ωF (t) = r , a contradiction. On the other hand, if there is no

such τ , i.e. if we suppose that

T (t − r ) = T (t − r + 1) = . . . = T (t) = r,

then ωQ(t) ≥ r (r+1)
2

+ r − 1 > r (r+1)
2

, so T (t) ≥ r + 1,

which is also a contradiction. Thus we are done in all three

cases and have completed the proof of the proposition. This

implies that there was no need to have as many overflow

lines as provided in the SSS: the original switching sys-

tem would have done as well. This completes our proof that

M = O(
√

K ). �

5. A modified packet rejection scheme

In this section we describe an extension to the previous con-

struction that allows arriving packets to force the switching

system to drop the lowest priority packet rather than reject-

ing the arriving packet. As before, at each time t we will

talk about the tag for each packet in the queue at time t ,
and we will talk about the next-tag for packets that are in

the queue at time t and for the arriving packet at time t (if

any). The tag at time t is defined exactly as before: higher

Springer



122 Queueing Syst (2006) 53:115–125

priority packets have smaller tags than lower priority packets,

and among packets of the same priority, older packets have

smaller tags than younger packets. The next-tags at time t
will be computed in terms of the tags at time t + 1 exactly

as for the preceding definition of priority queues, except in

one case: if the queue is full at time t , there is no departure

request at time t , and there is an arrival at time t that has

priority higher than precisely j of the packets currently in

the queue 0 ≤ j ≤ K − 1, then the packet that had tag K at

time t will get next-tag 0 at time t and the packet that arrived

at time t will be given next-tag j + 1 at time t . The point,

of course, is that it is now the arriving packet that gets ad-

mitted by displacing a lowest priority packet currently in the

(full) queue (which we take to be the youngest of the lowest

priority packets).

We will show how to emulate a priority queue of size K =
N (N+1)

2
, in the new sense, with a switching system having

a switch of size N + (N − 1) + (N − 1). The method we

propose is like that in the preceding discussion, except that

we require N − 1 additional delay lines of length 1 each and

a slight modification to the switch operation.

Let us add to the previous construction a set E of N − 1

delay lines of length 1 each. We call this the set of end lines.

To start with, we again use a sloppy switching system (SSS)

with N regular lines, K − 1 overflow lines, and the N − 1

end lines, prove that the SSS exactly emulates the priority

queue of size K and then prove that no more than N − 1

overflow lines ever need to be used.

The operation of the new SSS is similar to that in the previ-

ous section. At each time t the algorithm computes a trapping

line T (t) ≥ 1. Let A = {K − N + 2, K − N + 3, . . . K }.
The algorithm places a packet with next-tag 0, if any, in

the departure line, places any packets with next-tags in the

set A into the lines in E , places T (t) packets in increasing

order of next-tag into the regular lines of smallest index, and

places the remaining packets in the overflow lines. In this

new operation, the end lines E are reserved for the packets

with tags in A.

Since a packet is always placed in a line of length no

bigger than its next-tag, we can see that packet with highest

priority is always available at the input of the switch. The

new requirement we have is that the packet with tag K , if any,

should be available at the input of the switch. We will prove

this below in Lemma 9. This lemma holds true irrespective
of how the trapping line is computed.

Lemma 9. At all times t for which queue is full, the
packet with tag K is always available at the input of the
switch.

Proof: Suppose that the queue is full at time t and the packet

with tag K is not available at the input of the switch. Then

it cannot be in the overflow lines F or the end lines E since

they are of length 1. The packet must be in a line of length

j > 1 in R. Since this line has length less than or equal to N
and the packet is not at the input of the switch, it must have

been switched into this line at a time s where t − N + 1 ≤
s ≤ t − 1. Thus the packet’s next-tag at time s, i.e. its tag

at time s + 1, must have been at most K − N + 1. Since

the tag of a packet can increase by at most 1 at each time, its

current tag is at most (K − N + 1) + (t − (s + 1)) ≤ K − 1,

a contradiction. Thus the packet with tag K must be available

at the input of the switch. �

We have now proved that the new SSS correctly emulates

a priority queue of size K in the new sense. The proof that

N − 1 overflow lines are sufficient proceeds along the same

lines as in the last section by showing that, with a specific

choice of the trapping line given below, the SSS needs to use

no more than N − 1 of the overflow lines.

Let ωQ(t), ω+
Q(t), a(t), and d(t) be as before. Let ωE (t)

denote the number of packets in E . Let S(t) denote the longest

length among the regular lines that have a packet at time t ,
if any, with S(t) = 0 if none of the regular lines has a packet

at time t . Let P(t) be defined as in equation (8). Let T (t)
be defined as in equation (9). Let δ̂(t) denote the number of

packets that need to be circulated back into the N + (K − 1)

delay lines in R ∪ F at time t . Note that this does not include

packets that need to be recirculated into the end lines, if any.

Then it is clear that the following holds:

δ̂(t) ≤ [S(t) + ωF (t) + 1 − d(t)]+ . (16)

This bound is different from the analogous bound (7) of the

preceding section, because we may have the case where a

departure forces a packet formerly in E to be switched into

R ∪ F . It is also clear that we have

S(t) ≤ T (t − 1), (17)

ωF (t) = [
δ̂(t − 1) − T (t − 1)

]+
, (18)

S(t) < T (t − 1) =⇒ ωF (t) = 0. (19)

The following three lemmas are the analogs of Lemmas 2,

3, and 4 respectively. The proof only depends on equations

(16)–(19), in exactly the same way in which the proofs of

those lemmas depend on equations (7) and (10)–(12) respec-

tively, so they follow immediately.

Lemma 10. For all t we have

ωF (t) ≤ ωF (t − 1) + 1. (20)

Lemma 11. For all t we have

T (t) < T (t − 1) =⇒ ωF (t) = 0. (21)

Springer



Queueing Syst (2006) 53:115–125 123

Lemma 12. For all t , if T (t − 1) < T (t) then T (t) = T (t −
1) + 1 and ω+

Q(t) = ω+
Q(t − 1) + 1.

The next three lemmas correspond to Lemmas 5, 6, and 7

respectively. Their proofs are given in the appendix.

Lemma 13. For all t , if T (t − 1) < T (t) then S(t) =
T (t − 1).

Lemma 14. For all t , if T (t − 1) < T (t) then S(t + 1) =
T (t).

Lemma 15. For all t , if T (t − 1) < T (t) then S(t + 1) =
S(t + 2) = . . . = S(t + T (t)) = T (t) and T (t) = T (t + 1)

= . . . = T (t + T (t) − 1) .

The three lemmas above can be used to show Lemma 16,

which is the analog of Lemma 8. The proof is given in the

appendix.

Lemma 16. For all t , if T (t − 1) < T (t) then ωF (t + i) ≤
ωF (t + i − 1) for all i = 1, 2, . . . T (t).

With these lemmas one can prove the following analog to

Proposition 2. The proof is given in the appendix.

Proposition 3. We have ωF (t) < T (t) for all t . In particular,
we have ωF (t) ≤ N − 1 for all t .

This proposition establishes that it is possible to em-

ulate a priority queue of size K in the new sense, with

α(K ) + 2(α(K ) − 1) = O(
√

K ) delay lines. The total length

of the lines used is α(K )(α(K )+1)
2

+ 2(α(K ) − 1) = K +
O(

√
K ).

6. Concluding remarks

We have considered exact emulation of finite buffer priority

queues using a switching system comprised of a switch with

delay lines. While this problem is interesting and appears

challenging, we have the more general aim of motivating the

study from first principles of the problem of approximate
emulation of queues by structures that can be implemented

in all-optical technology, in particular switching systems. In

this concluding section we briefly sketch an idea for building

an all-optical packet switched network by approximate emu-

lation of finite buffer priority queues, with end to end erasure

control coding at the packet level.

Our idea is to view the pattern of drops of packets in a flow

as a parameter of quality of service. An approximate emula-

tion of a queueing discipline is thus allowed to occasionally

fail to deliver a packet in response to a departure request, but

we aim to give a guarantee on the dropping pattern. Since an

end to end guarantee on the dropping pattern could be built

up from guarantees at the switches along the path of the flow,

this architecture decouples the network level design problem

into a set of switch level problems.

We propose to characterize a dropping pattern by s, an

integer, and p, a number in (0, 1), such that, for each n ≥ 1,

over any stretch of n successive demand requests, the total

number of departure requests that are not satisfied is at most

s + pn. This characterization is analogous to that in the fa-

miliar theory of burstiness constrained flows [3, 8, 9, 11],

except that it is being applied to packet drops. One could

study the problem of most efficient emulation of a priority

queueing discipline by a switching system that can give an

(s, p) guarantee on the dropping pattern. More generally, we

may also allow for the demand requests to be satisfied with

some delay. To avoid dealing with resequencing problems

at the receiving end in a practical system we might insist

that demand requests are served in order and insist that the

maximum delay suffered by any packet is at most some in-

teger �. We could then pose the problem of approximately

emulating a priority queue by a system that can give a qual-

ity of service guarantee (s, ρ, �) on drops and delays. By

this we mean that each departure request is either not sat-

isfied or is satisfied within a delay of � and further that

for each n ≥ 1, over any stretch of n successive demand re-

quests, the total number of departure requests that are not

satisfied is at most s + pn. Other related kinds of quality of

service definitions can be easily imagined and might be of

interest.

A communication network is basically just a channel

shared by the flows that use it to achieve the end to end

communication that they desire. In packet switched net-

works, packet loss can therefore be viewed as a kind of

channel-introduced error, more specifically the erasure of

a packet. Erasure control coding [2, 4, 12] can overcome

this kind of error, so it makes considerable sense to study

such approximate emulation problems. For other ideas that

bring erasure control coding to bear in networking, see

[1, 5].

Clearly there is a large gap between the upper and lower

bounds we proved in this paper for the exact emulation prob-

lem. The proof of our lower bound is quite naive, and it may

be possible to improve it by more careful analysis. Further,

there may exist better constructions for FIFO, LIFO, or other

specific priority queues. Simulations with real traffic patterns

to measure the number of recirculations would help in deter-

mining the practicality of this scheme for implementation.

Ultimately, construction and testing of these optical packet

switches is needed to prove if this feedback mechanism is

feasible in practice.

Springer



124 Queueing Syst (2006) 53:115–125

Appendix

A. Proofs

We prove the lemmas and proposition from Section 5.

Lemma 13. For all t , if T (t − 1) < T (t) then S(t) = T (t −
1).

Proof: Equation (17) gives S(t) ≤ T (t − 1). Assume that

S(t) < T (t − 1). By equation (19) we have ωF (t) = 0. Since

S(t) < T (t − 1) and ωF (t) = 0, all of the packets in the

system at time t are in the lines 1, 2, . . . T (t − 1) − 1 in

R or in E . This implies that ωQ(t) ≤ (T (t−1)−1)T (t−1)
2

+
ωE (t), so ωQ(t) < T (t−1)(T (t−1)+1)

2
+ ωE (t). Because T (t −

1) < T (t) ≤ N , we have T (t − 1) ≤ N − 1, so ωQ(t) <

K − N + ωE (t). Because ωF (t) = 0, this means there

are at most K − N packets in the switching system

at time t that are not in E . This in turn implies

ωE (t) = 0 because E contains packets with rank at least

K − N + 2. Thus ωQ(t) < T (t−1)(T (t−1)+1)
2

. Thus ω+
Q(t) ≤

T (t−1)(T (t−1)+1)
2

, so P(t) = �α(ω+
Q(t))� ≤ T (t − 1). There-

fore T (t) = max(1, S(t), P(t)) ≤ T (t − 1), a contradiction.

This completes the proof. �

Lemma 14. For all t , if If T (t − 1) < T (t) then S(t + 1) =
T (t).

Proof: From equation (17), we always have S(t + 1) ≤
T (t). Suppose that S(t + 1) < T (t). Then, from equa-

tion (19), we would have ωF (t + 1) = 0. From the al-

gorithm used by the switch in the SSS, this means

that all packets in the queue at time t + 1 are in the

shortest regular lines up to and including the line of

length T (t) − 1, if any, and possibly in the end lines.

We then have ωQ(t + 1) < (T (t)−1)(((T (t)−1)+1)
2

+ ωE (t +
1). From Lemma 12 we have T (t) = T (t − 1) + 1, so

ωQ(t + 1) < T (t−1)(T (t−1)+1)
2

+ ωE (t + 1). Because T (t −
1) < T (t) ≤ N , we have T (t − 1) ≤ N − 1, so ωQ(t + 1) <

K − N + ωE (t + 1). From this, exactly as in the proof of

Lemma 13, we conclude that ωE (t + 1) = 0, so ωQ(t + 1) <
T (t−1)(T (t−1)+1)

2
, which is to say ω+

Q(t) < T (t−1)(T (t−1)+1)
2

, so

T (t) ≤ T (t − 1), a contradiction. This concludes the proof

of the lemma. �

Lemma 15. For all t , if T (t − 1) < T (t) then S(t + 1) =
S(t + 2) = . . . = S(t + T (t)) = T (t) and T (t) = T (t + 1)

= . . . = T (t + T (t) − 1) .

Proof: In Lemma 12 we proved that T (t − 1) <

T (t) implies that T (t) = T (t − 1) + 1 and that

ω+
Q(t) = ω+

Q(t − 1) + 1 = ωQ(t) + 1. It follows that

ω+
Q(t) = T (t−1)(T (t−1)+1)

2
+ 1. In Lemma 14 we proved that

S(t + 1) = T (t). Again, the same intuition from Section 4

holds – what has happened is that the algorithm has placed,

at time t + 1, exactly one packet in the “new” regular

line, of length T (t) that it has just “opened” at time t + 1.

Since the queue size can increase by at most 1 at each

time step, we have ω+
Q(t + i) ≤ T (t−1)(T (t−1)+1)

2
+ i + 1.

So, for 0 ≤ i ≤ T (t) − 1, we have P(t + i) ≤ T (t) from

equation (8). Since S(t + 1) = T (t) and P(t + 1) ≤ T (t),
we have T (t + 1) = T (t). The packet that was placed in

the line of length T (t) at time t + 1 must continue to be

in the same line at time t + 2. Hence S(t + 2) = T (t). If

T (t) = 2, we have completed the proof. Otherwise, we may

continue in this manner to argue that since S(t + 2) = T (t)
and P(t + 2) ≤ T (t), we have T (t + 2) = T (t). Since, if

T (t) ≥ 3, the packet that was placed in the line of length

T (t) at time t + 1 must continue to be in the same line at

time t + 3, we have S(t + 3) = T (t). In the general case,

the last step would be to use the previously proved fact that

S(t + T (t) − 1) = T (t) with P(t + T (t) − 1) ≤ T (t) to

conclude that T (t + T (t) − 1) = T (t) and then to use that

fact that the packet that was placed in the line of length T (t)
at time t + 1 must continue to be in the same line at time

t + T (t) to conclude that S(t + T (t)) = T (t). �

Lemma 16. For all t , if T (t − 1) < T (t) then ωF (t + i) ≤
ωF (t + i − 1) for all i = 1, 2, . . . T (t).

Proof: From the previous Lemma, we have S(t − 1) = T (t).
From Lemma 12 we also have T (t) = T (t − 1) + 1 and

ω+
Q(t) = ωQ(t) + 1. Thus a(t) = 1 and d(t) = 0. From equa-

tion (16) we can write

δ̂(t) ≤ [S(t) + ωF (t) + 1 − d(t)]+

≤ S(t) + ωF (t) + 1

= T (t − 1) + ωF (t) + 1

= T (t) + ωF (t).

Therefore ωF (t + 1) ≤ ωF (t), as before.

From Lemma 15 we know that there is no packet

at the output of the regular line of length T (t) at time

t + i for i = 2, . . . T (t). Therefore we have δ̂(t + i − 1) ≤
(T (t) − 1) + ωF (t + i − 1) + 1 for i = 2, . . . T (t). Lemma

15 also tells us that T (t + i − 1) = T (t) for all such i , so

we have ωF (t + i) = [δ̂(t + i − 1) − T (t)]+ ≤ ωF (t + i −
1). This completes the proof of the lemma. �

Proposition 4. We have ωF (t) < T (t) for all t . In particular,
we have ωF (t) ≤ N − 1 for all t .

Springer



Queueing Syst (2006) 53:115–125 125

Proof: The proof, as in the previous construction, is by in-

duction on T (t). Assume T (t) = 1. We have two cases. If

T (t − 1) = 1 then ω+
Q(t − 1) ≤ 1 so ωF (t) = 0. If T (t −

1) ≥ 2, then since S(t) ≤ 1 we have ωF (t) = 0.

Now we show the claim for times t with T (t) = 2. There

are now three cases. First, if T (t − 1) = 1, then ω+
Q(t − 1) ≤

1 so ωF (t) = 0. Second, if T (t − 1) ≥ 3, then since S(t) ≤ 2

we have ωF (t) = 0. Third, if T (t − 1) = 2, then ω+
Q(t − 1) ≤

3, so if S(t) = 2 we have ωF (t) ≤ 1, while if S(t) < 2, we

have ωF (t) = 0. In all three cases, we are done.

Assume now that the claim has been established for all

t with T (t) ≤ r − 1 for r − 1 ≥ 2. Consider times t with

T (t) = r . There are again three cases. First, if T (t − 1) ≤
r − 1 then by Lemma 12, T (t − 1) = r − 1 and by the in-

duction hypothesis ωF (t − 1) < r − 1, so δ̂(t − 1) < 2(r −
1) + 1 and ωF (t) ≤ r − 1. Second, if T (t − 1) ≥ r + 1,

since S(t) ≤ r we have ωF (t) = 0.

For the third case, assume T (t − 1) = r and ωF (t) ≥ r .

From Lemma 10, we know ωF (t) can only increase by one

each time, so ωF (t − i) > 0 for i = 1, 2, . . . r − 1. Thus by

Lemma 11 we have

T (t − r ) ≤ T (t − r + 1) ≤ . . . ≤ T (t) = r.

Suppose there is a 1 ≤ τ ≤ r such that T (t − τ ) < T (t −
τ + 1) = r . Then by Lemma 16, ωF (t − τ + 1) ≥ ωF (t −
τ + 2) ≥ . . . ≥ ωF (t) = r , which is a contradiction. Suppose

now that there is no such τ , so that

T (t − r ) = T (t − r + 1) = . . . = T (t) = r.

Then we have ωQ(t) ≥ r (r+1)
2

+ r − 1 > r (r+1)
2

, which im-

plies T (t) ≥ r + 1, also a contradiction. Therefore N − 1

overflow lines are sufficent to implement a priorty queue un-

der the new dynamic. This concludes the proof of the propo-

sition. �

References

1. A. Albanese, J. Blorner, J. Edmonds, M. Luby and M. Sudan,
‘Priority encoded transmission’. In: Proceedings of the 35th Annual
ACM Symposium on the Foundations of Computer Science (1994).

2. N. Alon and M. Luby, ‘A linear time erasure-resilient code
with nearly optimal recovery’. IEEE Transactions on Information
Theory 42(6) (1996), 1732–1736.

3. V. Anantharam and T. Konstantopoulos, ‘A methodology for the
design of optimal traffic shapers in ATM networks’. IEEE Trans-
actions on Automatic Control 44(3) (1999), 583–586.

4. R.E. Blahut, Algebraic Codes for Data Transmission. Cambridge,
UK: Cambridge University Press (2003).

5. J.W. Byers, M. Luby and M. Mitzenmacher, ‘A digital fountain
approach to asynchronous reliable multicast’. IEEE Journal on Se-
lected Areas in Communications 20(8) (2002), 1528–1540.

6. C. Chang, D. Lee and C. Tu, ‘Recursive construction of FIFO op-
tical multiplexers with switched delay lines’. submitted to IEEE
Transactions of Information Theory (2002).

7. C.-S. Chang, D.-S. Lee and C.-K. Tu, ‘Using switched delay lines
for exact emulation of FIFO multiplexers with variable length
bursts’. In: Proceedings of IEEE INFOCOM (2003).

8. R.L. Cruz, ‘A calculus for network delay I: network elements in
isolation’. IEEE Transactions on Information Theory 37(1) (1991a),
114–131.

9. R.L. Cruz, ‘A calculus for network delay II: network analysis’. IEEE
Transactions on Information Theory 37(1) (1991b), 132–141.

10. D. Hunter, M. Chia and I. Androvic, ‘Buffering in Optical Packet
Switches’. IEEE Journal of Lightwave Technology 16(12) (1998),
2081–2094.

11. T. Konstantopoulos and V. Anantharam, ‘Optimal flow control
schemes that regulate the burstiness of traffic’. IEEE/ACM Trans-
actions on Networking 3(4) (1995), 423–432.

12. M. Luby, M. Mitzenmacher, M.A. Shokrollahi and D.A. Spielman,
‘Efficient erasure correction codes’. IEEE Transactions on Infor-
mation Theory 47(2) (2001), 569–584.

13. R. Medina, 2002, ‘Photons vs. electrons [all optical network]’. Po-
tentials 21, 9–11.

14. R. Ramaswami and K. Sivarajan, Optical Networks: a practical
perspective. San Francisco: Morgan Kaufmann (2002).

15. E.J. Tyler, P. Kourtessis, M. Webster, E. Rochart, T. Quinlan,
S.E.M. Dudley, S.D. Walker, R.V. Petty and I.H. White, ‘Towards
Terabit-per-second Capacities over Multimode fiber links using
SCM/WDM Techniques’. Journal of Lightwave Technology 21
(2003), 3237–3243.

Springer


