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P
rivate companies, gove­
rnment entities, and insti­
tutions such as hospitals 
routinely gather vast 
amounts of digitized per­

sonal information about the individu­
als who are their customers, clients, 
or patients. Much of this information 
is private or sensitive, and a key tech­
nological challenge for the future is 
how to design systems and process­
ing techniques for drawing infer­
ences from this large-scale data while 
maintaining the privacy and security 
of the data and individual identities. 
Individuals are often willing to share 
data, especially for purposes such as 
public health, but they expect that 
their identity or the fact of their par­
ticipation will not be disclosed. In 
recent years, there have been a number of privacy models and 
privacy-preserving data analysis algorithms to answer these chal­
lenges. In this article, we will describe the progress made on dif­
ferentially private machine learning and signal processing.

Introduction
There are many definitions and models for privacy-preserving 
computation, and a recent survey by Fung et al. compares 

several different approaches [1]. Many 
of these models have been shown to 
be susceptible to composition attacks, 
in which an adversary observing the 
output of the algorithm exploits prior 
knowledge to reidentify individuals 
[2]. For example, the adversary could 
use publicly available records such as 
voting polls [3]. Defining privacy is 
not simple, and the words privacy, 
confidentiality, and security have 
many different meanings across dif­
ferent communities. It has become 
increasingly clear that there is no real 
separation between individuals’ iden­
tity and their data—the pattern of 
data associated with an individual is 
itself uniquely identifying.

Differential privacy is a crypto­
graphically motivated definition of 

privacy [4] that has gained significant attention over the past 
few years in the machine-learning and data-mining communi­
ties. There are a few variant definitions [5]–[7], but for the pur­
poses of this survey, differential privacy measures privacy risk 
by a parameter e that bounds the log-likelihood ratio of the 
output of a (private) algorithm under two databases differing in 
a single individual’s data. When e is small, the inferences that 
an adversary can make observing the output of the algorithm 
will be similar regardless of whether that individual is in the 
data set or not. There have been other surveys of differential 
privacy literature; in particular, Dwork and Smith’s survey [8] 
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covers much of the earlier theoretical work. The privacy guar­
antees made in differential privacy are statistical in nature and 
are different than those based on cryptography [9] or informa­
tion theory [10].

Initial work on differential privacy was motivated by prob­
lems in official statistics such as publishing “sanitized” data 
tables. A different approach is the interactive query model: a 
user poses queries to a curator of the database who then pro­
vides approximate answers. The approximation is designed to 
protect the privacy of individual data entries. From these two 
settings, the literature has spread to cover more complex data 
processing algorithms such as real-time signal processing 
[11]–[13], classification [14]–[16], 
dimensionality reduction [17], 
[18], and auction design [19].

In these applications, the key 
challenge is evaluating the 
impact of the privacy constraint 
on the performance or utility of 
the algorithm. Privacy is in ten­
sion with utility; a completely 
private algorithm releases noth­
ing. However, if the available data set contains many 
individuals, there is a tradeoff between the privacy guarantee 
,e  utility, and the number of data points (or sample size) n. 

This tradeoff will, in general, depend on properties of the 
data, such as its dimension, range, or sparsity. The choice of 
how to measure utility differs across application areas. For 
example, for statistical estimation, we may measure the qual­
ity of the estimate by mean-squared error (MSE), whereas for 
classification, we may measure the expected loss. Calculating 
the achievable privacy and accuracy levels for a given amount 
of data provides a way of comparing different differentially 
private algorithms for the same task.

While the theory of differential privacy has undergone sig­
nificant development, there is substantial work left to be done 
to extend the framework to practical applications. In particu­
lar, much of the theory has been developed for data taking 
discrete values, and there are many challenges raised by con­
tinuous data, ranging from the implementation of differen­
tially private algorithms [20] to theoretical foundations [21]. 
In this tutorial, we will focus on differentially private statisti­
cal methods and algorithms that operate on continuous data. 
We will describe statistical estimators, classification proce­
dures, dimensionality reduction techniques, and signal pro­
cessing techniques.

The theory for differential privacy using continuous data 
is different than for discrete data. For example, learning clas­
sifiers is easier with discrete data. If the number of possible 
classifiers, or hypotheses, is finite or the data is discrete, 
learning the best classifier is possible if the number of data 
points n grows logarithmically with the size of the hypothe­
sis set or the data domain [22], [23]: for data in { , } ,0 1 d  the 
sample size n must grow linearly with d. On the other hand, 
when data is allowed to be continuous and the hypothesis 

class is allowed to be infinite, distribution-free learning is 
impossible [24]: either we need prior knowledge about 
the data distribution, or n will depend on the data distribu­
tion. Thus there is no uniform upper bound on the sample 
requirement. This holds even for simple classes such as 
learning thresholds and linear classifiers: in the absence of a 
privacy constraint, we can pick an n such that we learn the 
true hypothesis for any data distribution, but to learn the 
true hypothesis with differential privacy we must choose n as 
a function of the data distribution.

Techniques from signal processing have the potential to 
greatly expand differentially private algorithms for continuous 

data. Our focus on continuous 
data means we will not discuss the 
many active research topics in 
differential privacy for discrete 
data—in particular, we will not 
discuss some of the progress made 
in software systems engineering 
for differential privacy [25]–[27], 
algorithms for computing histo­
grams and contingency tables 

[28], [29], or the large body of work on privacy-preserving data 
release (references can be found in recent works [18], [30]).

Learning from sensitive data
There are n records in the database ( , , , ),D x x xn1 2 f=  where 
each xi is a vector in Rd and corresponds to the data of an indi­
vidual i. The d elements of a vector x correspond to different 
numerical features. We will assume that the ranges of these 
features are normalized such that ,x 1#  where $< < is the 
Euclidean norm. Although we are focusing on continuous data 
in this survey, there is extensive literature on differentially pri­
vate methods for discrete data.

An example
Suppose that each record ( )ix  represents the numerical read­
ings from d different sensors that are monitoring different 
quantities (temperature, heart rate) related to the health of a 
patient. For simplicity, we will assume that each of the mea­
surements has been normalized so that [ , ] .0 1xi

d!  Given read­
ings from these sensors across a large group of n patients, we 
can ask many statistical and signal processing questions. What 
is the average reading across the population of a given feature? 
How are two of the features correlated with each other? Can we 
predict one of the features from another? Do the data points lie 
(approximately) on a k-dimensional subspace with ?k d1  We 
would like to answer these questions while satisfying a quanti­
fiable notion of privacy.

Defining privacy
Differential privacy seeks to provide guarantees about the 
process of computing functions on sensitive data and has a 
number of features that make it an attractive approach to 
quantifying privacy. Privacy is guaranteed by ensuring that the 
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process is randomized with the following promise: an algo­
rithm is differentially private if the participation of any record 
(corresponding to a single individual) in the database does not 
alter the probability of any outcome by very much. This defini­
tion has many features: it is resistant to attacks to which other 
privacy models are susceptible [2], it bounds the privacy risk to 
each individual, and it degrades gracefully as an individual’s 
data is used in multiple computations.

Definition 1
An algorithm ( )Apriv $  taking values in a set T  provides 
e-differential privacy if

	 ( ) ( )A D S A D SeP Ppriv priv$! # !e l^ ^h h	 (1)

for all measurable S T3  and all data sets D and D l differing 
in a single entry. It provides ( , )de -differential privacy if

	 ( ) ( )A D S A D SeP Ppriv priv! # ! d+e l^ ^h h 	 (2)

for all S T3  and all data sets D  and D l differing in a 
single entry.

Here we assume that each entry in the database D corre­
sponds to a single individual. Privacy parameters are e and d, 
and low e and d ensure more privacy [4], [21]. The second pri­
vacy guarantee [31] is weaker, and reduces to the first one 
when .0d =  Variants of ( , )e d -differential privacy such as 
( , , )1 de -indistinguishability [7] and d-probabilistic privacy [32] 
have also been considered in the literature; we focus on the 
most popular variant for our purpose.

There are two important features of differentially private 
algorithms. First, if v is the output of an e-differentially pri­
vate algorithm ,Apriv  then any function ( )g v  of the output 
also guarantees e-differential privacy. That is, postprocess­
ing of the output does not change the privacy guarantee, as 

long as that postprocessing does not use 
the original data. The second key feature 
is how the privacy guarantees are affected 
by multiple computations on the data. If 
we run algorithms A( )1

priv and A( )2
priv on the 

data with privacy guarantees 1e  and ,2e  
then the pair ( , )A A

( ) ( )1 2
priv priv  guarantees dif­

ferential privacy with privacy risk at most 
.1 2e e+  Somewhat better guarantees may 

be obtained if we are allowed ( , )de - 
differential privacy [33].

Generic Methods for 
Differential Privacy
For a given algorithm or function ,Anonpriv  
there are many general methods for gener­
ating an approximation Apriv of the algo­
rithm that satisfies one of these privacy 
definitions. These approaches are illus­
trated in Figure 1. The methods introduce 

the privacy-preserving randomness in different ways, but most 
involve adding noise during some step of the original algo­
rithm .Anonpriv  We describe below four key approaches for 
obtaining differential privacy.

Input perturbation 
Suppose we would like to provide the data from our body-net­
work sensors to a third party. The easiest method for guaran­
teeing differential privacy is to add noise to the data itself. If x 
is a real d-dimensional vector, then a differentially private 
version of x is

	 ,x x Z= +t � (3)

where Z is a random d-dimensional vector with density

	 ( ) .expp
2

z zZ ? < <e
-` j 	 (4)

By adding this noise to each individual data vector xi in ,D  
we can guarantee that the resulting database ( , , , )D x x xn1 2 f=t t t t  
is an e-differentially private approximation to .D  In the scalar 
case this corresponds to adding noise with a Laplace distribu­
tion. This is not the only distribution that can guarantee differ­
ential privacy—in particular, for a given utility on the output 
the noise distribution that maximizes utility while providing 
differential privacy may have a different shape.

Output perturbation 
Suppose now that we wish to calculate the average of each of 
the sensor readings across the population. In this situation, 
our desired algorithm Anonpriv simply computes a function 
( )Df  of the data, and we can obtain differential privacy by add­

ing noise to ( )Df . The amount of noise we need to add 
depends on the sensitivity of the function f to changes in its 
input. The global sensitivity is the maximum difference of the 
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[Fig1]  An illustration of different approaches for guaranteeing differential privacy.
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function over all pairs of databases D and D l differing in a sin­
gle individual 

	 ( ) ( ) ( ) ,D DmaxS f f f
~D D

= - l
l

	 (5)

where $< < is the Euclidean norm. We can then compute an 
e-differentially private approximation of f:

	 ( ) ( ) ,D Df f Z= +t 	 (6)

where Z is a random d-dimensional vector with density

	 ( )
( )

.expp
S f

z zZ ? e
-c m 	 (7)

For example, to compute the average vector ( )Df =
( / )1 2 xii

n

1=/ , the sensitivity S(f)=2/n. This is the (global) sensi­
tivity method [4], and there are many variants to handle other 
more relaxed notions of sensitivity. For example, the smoothed 
sensitivity method [34] tries to approximate a function f which 
has large ( )S f  only in the “worst case” by adding noise as a func­
tion of a “smoothed” version of the sensitivity at the given .D

Exponential mechanism 
Suppose we would like to publish a predictor of a patient’s heart 
rate after an activity using k readings of the heart rate during 
the activity. Given a set of linear 
predictors { }Pk , which are publicly 
known, we would select one of 
them in a differentially private 
way. We can measure the quality 
of a linear predictor Pk of order k 
by the MSE ( )M P  of the predic­
tions. Using these measurements, 
we can determine ,k*  the k that maximizes ( )M P*

k . In this set­
ting, adding noise to the optimal k may not make sense, but the 
exponential mechanism [35] gives a way of choosing an output 
biased toward having higher utility. Let ( , ) ( )Dq k M P*

k=-  
measure the utility of the order-k predictor and define its 
sensitivity as

	 ( ) ( , ) ( , ) .D DmaxS q q k q k
,D Dk

= -
+

l
l

	 (8)

This is the maximum change in the quality for any output k and 
any database .D  The exponential mechanism picks a random 
value of k with distribution

	 ( )
( )

( , ) .Dexpp k
S q

q k
2

? e
-c m 	 (9)

This approach, due to McSherry and Talwar [35], is very 
general and is not restricted to selecting from discrete sets; it 
can be used whenever a natural performance measure ( , )Dq $  
exists for the algorithm .Anonpriv  In many cases, sampling from 
the distribution in (9) is easy, but for some ( , )Dq $  we do not 
know how to sample from the corresponding distribution in 
polynomial time.

Objective perturbation
Suppose in our example that some of the patients we are moni­
toring had heart attacks. We would like to classify future 
patients into high or low risk for heart attacks using the same 
monitoring data. We can learn such a classifier using regular­
ized convex optimization. Chaudhuri et al. [14] introduced an 
approach that adds noise to the objective function of the optimi­
zation to obtain a differentially private approximation. That is, 
given an algorithm ,Anonpriv  which computes an output f via a 
minimization of a (strongly) convex function ( , ),DJ g  we can 
get a differentially private algorithm Apriv by adding noise prior 
to minimization 

	 ( , ) ,Dargmin Jf u g ZT

g
= +^ h 	 (10)

where the distribution of Z has the same shape as (4) in the pre­
vious examples, but the coefficient in the exponent must be 
chosen as a function of the sensitivity of the optimization [14].

If we use Gaussian noise for input, output, and objective per­
turbation, we can obtain algorithms that will guarantee ( , )de - 
differential privacy—the parameters of the Gaussian noise will 
depend on , ,de  and the specific target function .Anonpriv  In gen­
eral, the sensitivity parameters depend on the Anonpriv that we 
want to approximate but not on the actual data D that is given. 
The sample-and-aggregate framework [34] tries to relax this con­
dition by approximating the function value on subsets of the 

actual data; this may result in less 
noise for many data sets. More 
recent work has focused on how to 
exploit properties of the data (for 
example, incoherence [36], [37]) 
to develop algorithms that add less 
noise and have better perfor­
mance. Notable among these 

methods is the propose-test-release framework [38], which uses 
a differentially private test on the data to check if a property 
holds and then picks an algorithm tuned to exploit this property.

Differential privacy in statistics
One of the most basic tasks in sensitive data analysis is the com­
putation of basic descriptive statistics, such as means, variances, 
and other parameters of the data distribution. In our patient-
monitoring example, we may wish to know the average resting 
heart rate of patients or how heart rate correlates with activity 
level. Publishing the exact value does not preserve differential 
privacy. For example, two data sets D and D l differing in a sin­
gle entry will have different means, so the inequality (1) will not 
hold when S contains ( )A Dpriv  but not ( ) .A Dpriv l  To prevent 
such privacy violation, we can compute these statistics in a dif­
ferentially private way. We can often use standard methods such 
as those in Figure 1 to guarantee differential privacy. For data 
that lies in a bounded domain, many basic statistics can be eas­
ily computed with differential privacy and relatively high accu­
racy. When each individual’s data is a scalar [ , ]x 0 1i !  and this 
interval is known in advance, many statistical estimates can be 
made private and consistent [39]. Starting from the first works 

For data that lies in a bounded 
domain, many basic statistics 
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on differential privacy, estimators have been proposed for statis­
tics such as the mean [4], median [34], covariance matrices 
[40], [41], and a wide range of nonparametric problems [21], 
including density estimation [42].

Example 1: Sample Mean
Suppose we wanted to compute the average heart rate across 
the patient population. For bounded data, the global sensitivity 
method of [4] gives us a very simple differentially private 
approximation to sample mean. If ( , , )x xn1 f  is the input data 
set, then the estimate is

( ) ,A x
n

x
n

Z1 1
i

i

n

1 e
= +

=

/

where e is the privacy parameter and Z is random noise drawn 
from a Laplace distribution with unit variance. If n and e are 
large, this provides a fairly accurate additive approximation to 
the sample mean. Figure 2(a) shows a histogram of outputs of 
this procedure for a data set of size ,n 1 000=  and for . .0 1e =  
The same technique can be used to develop differentially private 
approximations to variance and higher moments, that is, to all 
linear statistical functionals.

Example 2: Sample Median
Suppose instead that we want to compute the median heart 
rate. The global sensitivity approach, however, does not apply to 
the sample median because the global sensitivity of sample 
median is high: in a data set with m zeros and m 1+  ones, 
switching a single element can move the sample median from 
one to zero. Here we can use the exponential mechanism to 
compute a differentially private approximation to the sample 
median for data drawn from a bounded domain. For any 

[ , ],y 0 1!  let ( )F yn  be the empirical cumulative distribution 
function of the input data ( , , ) .x xn1 f  That is, ( )F yn  is the 

fraction of data points xi for which .x yi #  By choosing the 
quality function ( , ) | ( / ) ( ) |Dq y F y1 2 n= - , we have ( ) / .S q n1=  
This quality function is maximized at the true median, and the 
variance of a sample drawn from the exponential mechanism 
decreases with n. Sampling an estimate from the distribution in 
(9) guarantees e-differential privacy. Figure 2(b) illustrates the 
distribution of outputs for this procedure for a data set of size 

,n 1 000=  and . .0 1e =  A different algorithm for computing a 
differentially private approximation to the sample median that 
adds noise proportional to the smoothed sensitivity was pro­
vided by Nissim et al. [34].

Connection to Robust Statistics
The success of individual statistical estimators raises the ques­
tion of whether we can find properties that make a statistical 
estimator easier to approximate under differential privacy. It 
turns out that a key property is robustness. Robust statistics is a 
subfield of statistics that studies the effect of contaminations 
and changes in the data on the performance of estimators. 
Robust estimators are insensitive to changes in the data. 
For example, for data drawn from an unbounded domain, the 
sample mean is not robust because a single outlier can arbi­
trarily perturb the mean. On the other hand, the median is 
robust for distributions where the density at the median is posi­
tive. There are several measures of robustness, and an extensive 
literature on robust statistical estimation [43].

Dwork and Lei [38] identified a connection between robust sta­
tistics and differential privacy, and introduced differentially private 
approximations to several robust statistical estimators, including 
trimmed mean, interquartile range and regression. This connec­
tion was made concrete by Chaudhuri and Hsu [44], who showed 
that the gross error sensitivity (GES), a measure of robustness, 
dictates the finite sample convergence rate of a differentially pri­
vate approximation to any estimator T on a distribution F.

[Fig2]  A comparison of computing the mean and the median. (a) Outputs of 1,000 runs of the differentially private sample mean 
algorithm. (b) Outputs of 1,000 runs of the differentially private sample median algorithm.
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Given an estimator T and a distribution F, the influence 
function of T at F along x at scale t is defined as 

IF ( , , )
(( ) ) ( )

,T F x
T F T F1 x

t

t td
=

- + -
t

where xd  is a point mass at x. The influence function can be 
intuitively thought of as a directional derivative of T at F along 
the point mass at x at a step size of .t  The GES of T at F at scale 
t is defined to be GES ( , ) | IF ( , , )| ;supT F T F xx=t t  thus the 
GES is the absolute value of the maximum directional deriva­
tive. Chaudhuri and Hsu [44] prove two results. First, they give 
a differentially private approximation to the plug-in estimator 

( )T Fn  when T has a bounded range—the additional error due to 
privacy grows as (GES ( , ) / ) .O T F net  Second, they show that 
the convergence rate of any differentially private approximation 
to ( )T F  has to grow as (GES ( , ) / )T F neX t  either for F or for 
some Fl in a small neighborhood around F. In both cases, the 
scale parameter t is ( / ) .O n1 e  These results show that GES 
characterizes how amenable an estimator is to differentially 
private approximation.

Lei [45] provided differentially private approximations of 
M-estimators, a class of robust estimators, by quantizing the 
data and then building an estimator on a perturbed histogram. 
Suppose, in our example, that all of the features have been nor­
malized to lie in [0, 1] so the data lie in [0, 1]d. The algorithm 
chooses a parameter ,hn  partitions the space into cubes of side-
length ,hn  computes an estimate of the data density by counting 
the fraction of points lying in each cube, and adds Laplace noise 
to these counts to guarantee differential privacy. Computing an 
M-estimator using this density estimate preserves differential 
privacy. Lei shows that by choosing hn appropriately the error of 
the estimator can be driven to 0 as .n " 3

Signal processing 
and machine learning with privacy
There is a growing body of research on privacy-preserving 
algorithms for machine-learning and signal processing tasks. 
For example, there are algorithms for privacy-preserving classi­
fication [14], [15], [46], [47], regression [16], [45], principal 
components analysis (PCA) [17], [37], [40], [48], boosting [33], 
and online learning [49]. A different framework was proposed 
by Duchi et al. [50], who analyze statistical risk minimization 
via a noisy (privacy-preserving) gradient descent procedure. 
There has been much work on the theory of learning with dif­
ferential privacy; in this section we instead focus on recent 
applied work and open practical challenges in differentially pri­
vate machine learning.

Classification and regression
In our example, suppose that we would like to learn a rule for 
classifying patients into high- or low-risk categories for a heart 
attack. Classification is a simple and fundamental machine-
learning task and, for discrete data, researchers have developed 
algorithms to compute differentially private decision trees 
[51]–[53]. For continuous data, the most common approach to 

classification is empirical risk minimization (ERM). For exam­
ple, for logistic regression, a regularized ERM procedure takes 
labeled data {( , ) : , , , }y i n1 2xi i f=  with features x Ri

d!  and 
labels { , }y 1 1i ! - +  and finds vector f such that new points 
can be labeled by ( ) .sgn f xT  This is done by solving the follow­
ing minimization:

	 ,argmin log
n

e1 1
2

f gy

i

n

1

2

g

g x

Rd

i
T

i K
= + +$

! =

^c h m/ 	 (11)

where g 2< <  is a regularizer to prevent overfitting and K is a trad­
eoff parameter. There have been several approaches to differen­
tially private classification. Output perturbation computes the 
ERM solution in (11) and adds noise. Objective perturbation 
[14] solves a modified version of the program 

	 .argmin log
n

e1 1
2

f g Z gy

i

n
T

1

2
priv

g

g x

Rd

i
T

i K
= + + +$

! =

^c h m/   (12)

The noise Z guarantees differential privacy. To measure utility 
for classification we can calculate the expected loss of the dif­
ferentially private classifier. The theoretical guarantee on the 
loss for objective perturbation is lower than that for output 
perturbation, which adds noise to f in (11). Objective pertur­
bation also has an empirical performance closer to the non­
private classifier f in (11). Follow-up work has expanded the 
class of functions for which the classifier works [46], and the 
initial empirical evidence is promising [54], [55]. Another 
method for that is based on perturbing the objective function, 
the functional mechanism, was recently proposed by Zhang et 
al. [16]. They claim, incorrectly, that Chaudhuri et al. [14] 
solve a nonstandard form of logistic regression; however, 
their method, based on adding noise to a Taylor-series approx­
imation of (11), can also achieve lower classification error 
than output perturbation. In general, differentially private 
approximations (both output and objective perturba­
tion) to the optimization in (11) guarantee differential privacy 
for the exact minimizer. The effect of approximate computa­
tion from numerical methods on the privacy guarantee is an 
open question.

Dimensionality reduction
Another fundamental building block of machine-learning and 
signal processing systems is dimensionality reduction. Data 
may be presented in high dimension, but the underlying phe­
nomenon may be fundamentally low dimensional. The simplest 
example of this is when the data all lie on or close to a low-
dimensional subspace of the original space. In this setting, the 
singular value decomposition (SVD) of the data covariance 
matrix computes this low-dimensional subspace—this is also 
known as the PCA algorithm. Given a set of n vectors 

{ , , , }D x x xn1 2 f= , where each x Ri
d!  corresponds to the pri­

vate data of one individual, let [ , , ]X x xn
T

1 f=  be the matrix 
whose rows are the data vectors { },xi  and ( / )A n X X1 T=  denote 
the d d#  second moment matrix of the data. The SVD 
gives ,A V VTK=  where K is a d d#  diagonal matrix with 
diagonal elements ( ) ( ) ( )A A A 0d1 2 g$ $ $ $m m m  and V is 
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orthonormal. The top-k subspace of A is the first k rows of V, 
which we denote by ( ) .V Ak

There have been several proposed approaches to approxi­
mating the top-k PCA subspace while preserving differential 
privacy. The sublinear queries (SULQ) method [40] adds noise 
to the matrix A and then computes the SVD of the noisy 
matrix. Chaudhuri et al. [17] propose using the exponential 
mechanism [35] to sample a random k-dimensional subspace 
that approximates the top-k PCA subspace. This corresponds 
to sampling from the matrix Bingham distribution, which has 
the density

	 ( ) ( ) ,expf U n U AU
2

tr T? e` j 	 (13)

where U is a k d#  matrix whose rows are orthonormal. This 
distribution has maximal density at ( ),U V Ak=  and samples a 
random subspace which is close to the true subspace [17], [48].

A major difficulty is sampling from the Bingham distribu­
tion. Because differential privacy is a property of the output dis­
tribution, the privacy guarantees are contingent on accurately 
sampling from the distribution. Kapralov and Talwar [48] pro­
pose an intricate procedure for drawing samples according to 
(13) when ,k 1=  but the running time can become prohibitive 
in the data dimension. Chaudhuri et al. propose using a Gibbs 
sampler [56], which is simple to implement; unfortunately, 
there is no rigorous analysis of the 
convergence time of the sampler. 
Developing a practical and exact 
sampler for this distribution is an 
open question.

Time series and filtering
One of the goals of this article is 
to inspire engineers to take some 
of the ideas from differential privacy and apply it to their signal 
processing problems. There has been some recent work con­
necting problems in signal processing and information theory 
to issues in differential privacy. Rastogi and Nath [57] proposed 
a method for dealing with queries on data sets where each indi­
vidual’s data is a time-series data, such as body weight. Their 
approach performs differentially private perturbation of a query 
sequence in the Fourier domain and uses homomorphic 
encryption to enable distributed noise addition. Fan and Xiong 
[13] look at how to publish a differentially private version of a 
single time series by learning a linear predictor and using 
Kalman filtering. To control the amount of privacy lost, they 
adaptively choose whether to release the output of the differen­
tially private predictor or add Laplace noise to the true 
sample. This approach improves over the discrete Fourier trans­
form approach [57] in many cases.

Le Ny and Pappas [11], [12] recently studied differential 
privacy in a signal processing framework. They studied the 
difference between input and output perturbation in the con­
text of aggregating signals and using Kalman filter estimation 
and show that in some cases noise addition at the input is 

better due to the benefits of filtering. This stands in contrast 
to many machine-learning examples in which noise addition 
at the input may incur too much perturbation for learning to 
be possible.

Practical issues and limitations
The literature on differentially private algorithms is growing 
rapidly, but there are many open questions that remain. While 
many of the theoretical results imply that estimating statistics 
or learning while preserving differential privacy is possible [22], 
[39], some of these results depend on technical assumptions 
[24], [58], such as discrete data, finite hypothesis sets, or 
bounded range, which may not hold in all settings. Understand­
ing the fundamental limits for continuous data may shed some 
light on which signal processing tasks are possible under differ­
ential privacy.

A more immediate issue is how to choose e and d in the first 
place. It is clear that smaller e and d guarantee more privacy 
[4], and while there are heuristics [8] for choosing ,e  interpret­
ing the privacy risk for practitioners is challenging. Because a 
single data set may be used in multiple computations, the com­
position rule for privacy implies that we should choose a total e 
for all computations on the data and “budget” privacy for each 
computation. There is little consensus on how to choose d for 
( , )de  differential privacy: experiments often use small but con­

stant d but Ganta et al. [2] sug­
gest d much less than /n1 2 is 
more appropriate.

For a given privacy level ,e  we 
need a larger sample size n to 
achieve the same level of utility or 
approximation error. For smaller 
sample sizes, the randomization 
for differential privacy can some­

times be prohibitive [29]. In such settings it may not be possi­
ble to provide a meaningful level of differential privacy. In some 
applications, such as medical data mining, the amount of data 
n is fixed, and the question becomes one of finding the lowest e 
such that the sacrifice in utility is acceptable.

The privacy definitions rely on an idealized model of compu­
tation. Recent work has shown that standard implementations 
of floating point arithmetic may be problematic from a privacy 
perspective [20]. Since every computation has to be made differ­
entially private, more complex systems such as PINQ [25], 
AIRAVAT [26], and GUPT [27] may only work with a large value 
of .e  Even so, there are privacy risks arising from how these 
systems are implemented, in particular, the time it takes to 
respond to a query can disclosed information [59].

Future challenges
Ideas from differential privacy are already beginning to influ­
ence some systems, but many theoretical and practical chal­
lenges remain. Some core topics in signal processing are being 
explored now, and the rich body of expertise in the signal pro­
cessing community can help spur the development of new 

One of the goals of this  
article is to inspire engineers 

to take some of the ideas from 
differential privacy and  
apply it to their signal  
processing problems.
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privacy-preserving data processing algorithms and systems. The 
literature on differential privacy is growing rapidly, and we were 
only able to touch on a few topics here. We hope that interested 
readers will investigate the wide range of topics that have been 
studied through the lens of differential privacy.

From a signal processing perspective, there are several direc­
tions that should be explored in future research. First, in many 
signal processing applications, signal acquisition is part of the 
design; an open question is how to best integrate privacy con­
siderations while measuring the signal. For example, how 
should we represent the signal if it is later going to be used in a 
differentially private system? Can we design signal acquisition 
methods which themselves guarantee privacy?

Second, the signals associated with an individual may be 
more complex than the d-dimensional vectors we considered in 
this survey. Although some work has been done with unidimen­
sional time series, there are many interesting open questions for 
prediction and forecasting methods, transforms, and other core 
signal processing tasks. Image processing is another important 
topic that received little attention in the existing privacy litera­
ture. Images are very high-dimensional signals, and the data 
requirements of many differentially private machine-learning 
methods scale poorly with the data dimension. However, images 
are also very structured signals, and this structure could poten­
tially be used to develop algorithms with better theoretical guar­
antees and practical performance.

Networked information systems are another emerging applica­
tion for differential privacy. Large-scale data mining often involves 
parties who wish to collaborate but do not wish to divulge their 
data. While there have been cryptographic approaches to this 
problem, differentially private distributed algorithms are still in 
their infancy [60], [61]. Social networks and other distributed col­
lection and measurement systems also provide a rich source of 
applications for privacy-preserving algorithms.

In this article, we were only able to give an introduction to 
the extensive literature on differential privacy. Differentially pri­
vate algorithms for continuous data are the most relevant for 
signal processing. Privacy impacts time series and real-time 
processing differently than offline algorithms such as parameter 
estimation. Through application of domain-specific metrics and 
signal assumptions, we believe that it will be possible to achieve 
meaningful privacy-utility tradeoff curves for many signal pro­
cessing applications. However, more work is needed to explore 
the potential of differential privacy and related ideas in signal 
processing systems; we hope that this article will help motivate 
that work.
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