
DOI 10.1515/spp-2012-0003      Statistics, Politics, and Policy 2013; 4(1): 29–64

Anand D. Sarwate*, Stephen Checkoway and Hovav Shacham
Risk-limiting Audits and the Margin of 
Victory in Nonplurality Elections
Abstract: Post-election audits are an important method for verifying the outcome 
of an election. Recent work on risk-limiting, post-election audits has focused 
almost exclusively on plurality elections. Several organization and municipali-
ties use nonplurality methods such as range voting, the Borda count, and instant-
runoff voting (IRV). We believe that it is crucial to develop effective methods of 
performing risk-limiting, post-election audits for these methods. We define a 
general notion of the margin of victory and develop risk-limiting auditing proce-
dures for these nonplurality methods. For scored systems, we show how to adapt 
methods from plurality auditing. For IRV, the situation is markedly different. We 
provide a risk-limiting method for auditing the candidate elimination order. We 
provide a more efficient audit for the elections in which the margin of the IRV 
election can be efficiently calculated or bounded. We provide efficiently comput-
able upper and lower bounds on the margin and, where possible, compare them 
to the exact margins for a large number of real elections.
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1  Introduction
In political elections, plurality voting (also known as first-past-the-post) is the 
most widely-used system for determining the winner. The drawbacks of plu-
rality voting, such as the “spoiler effect,” are well-documented (Black 1958; 
Poundstone 2008; Saari 2001; Szpiro 2010), and recently, several groups and 
municipalities have adopted alternative voting systems. The most common 
alternative systems are instant-runoff voting (IRV) or, its multi-winner version, 
the single transferable vote (STV), but other systems such as approval voting 
(Brams and Fishburn 2005), range voting, and Borda counts are used in both 

Brought to you by | Rutgers University
Authenticated | asarwate@alum.mit.edu author's copy

Download Date | 12/9/14 6:22 PM



30      Anand D. Sarwate et al.

political and nonpolitical elections. A major component of election certification 
is a post-election audit which is a procedure that samples ballots and compares 
the electronic vote tallies with paper ballots in order to validate the reported 
outcome. These tallies may be formed by scanning the paper ballots in an  
optical-scan machine, or from voting machines that produce paper ballot 
“receipts” as part of a voter-verified paper audit trail (VVPAT). A risk-limiting audit 
is one for which there is a known probability (over the sampling), or risk level, of 
certifying an outcome that is incorrect. Although many audit mechanisms have 
been proposed for plurality voting, to our knowledge few audit mechanisms have 
been proposed for alternative voting systems. We contend that auditing is integral 
to properly certifying elections; our contribution in this paper is to describe risk-
limiting audit mechanisms for a range of nonplurality voting systems.

Many political systems allocate resources to parties based on their popula
rity in elections; they can receive funding and recognition if they capture the first 
preferences of a certain portion of the electorate (Roberts 2010). Many activists, 
especially in the United States, feel that plurality voting entrenches two-party 
systems. Proponents of various alternatives to plurality voting have successfully 
changed the voting systems used by municipalities and professional societies, 
and there are some recent empirical studies of how these systems work in prac-
tice (Brams and Fishburn 2005; Farvaque, Jayet, and Ragot 2009).

We divide alternatives to plurality voting into two classes. In scored systems voters 
assign points to each candidate; examples include range voting, approval voting, 
and Borda counts; these include positional systems (Saari 1995). In ranked systems, 
voters rank some or all of the candidates; IRV and Condorcet methods (Fishburn 1977; 
Schulze 1997; Tideman 1987; Woodall 1997) are ranked systems. Approval and range 
voting are used by some professional societies but not yet in major political elections 
(Brams and Fishburn 2005), whereas Borda counts are used for some political elec-
tions in Slovenia (Consortium for Elections and Political Process Strengthening 2011) 
and the Pacific island nations of Nauru and Kiribati (Reilly 2002), as well as in sports –  
e.g., the Heisman Trophy (The Heisman Memorial Trophy 2011) – and academic  
professional societies (Brams and Fishburn 2005). A Condorcet method proposed 
by Schulze (2011) is used by the Swedish Pirate Party (for primaries), the Wikimedia 
Foundation, the Debian project, and the Gentoo project.1

By far the most popular alternatives to plurality voting are STV or IRV [some-
times known also as Ranked Choice Voting (RCV)]. In an IRV election, candidates 
are eliminated sequentially, beginning with the candidate receiving the fewest 

1 Wikipedia lists 60 organizations which use the Schulze Method in some form. http://
en.wikipedia.org/w/index.php?title = Schulze_method&oldid = 434396935#Use_of_the_
Schulze_method. Accessed 2011-06-15.
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2 This is Hare’s rule for ballot transfers (Tideman 1995).
3 San Francisco allows voters to rank no more than three of the candidates for each race.
4 In a presentation at the EVN 2011 conference, Emily Shen gave another such example.

first-ranked votes.2 The ballots whose first-ranked candidate was eliminated are 
assigned to their second-ranked candidates. A more formal description of IRV is 
given in Section 5.3. The Australian House of Representatives uses STV (Austral-
ian Electoral Commission 2011), as does the Republic of Ireland for all public elec-
tions including presidential elections and elections to Dáil Éireann – the lower 
house of parliament (Consortium for Elections and Political Process Strength-
ening 2011). The California cities of Berkeley, Oakland, San Francisco, and San 
Leandro use IRV for some elections.

California law requires a 1% manual tally of each election that is then 
reported to the Secretary of State. Officials may then compare the paper ballots 
to machine records to determine if there are anomalies. Municipal elections in 
San Francisco use IRV. For these elections, the following manual tally procedure 
is employed (San Francisco Voting Systems Task Force 2011). First, in each ran-
domly chosen precinct, the paper ballots are examined to determine the number 
of first-choice, second-choice, and third-choice votes each candidate received;3 
these totals are compared against the corresponding totals claimed in the original 
machine count. Second, an IRV elimination election is run with only the ballots 
from the tallied precinct, and the winner of this mini-election is noted.

There is no reason to believe that the San Francisco tally of IRV elections is a 
risk-limiting audit for any particular risk level. Indeed, the San Francisco Voting 
Systems Task Force gives an example election in which two sets of ballots that 
are identical under the tally procedure produce two different election outcomes 
(San Francisco Voting Systems Task Force 2011, appendix A).4 In this example 
election, running San Francisco’s manual tally and finding no discrepancies does 
not increase our confidence that the reported and actual winner are the same! By 
contrast, a 1% manual tally of a plurality election can provide a risk-measuring 
audit, though the risk level depends on the election margin.

1.1  Our contributions

In this paper, we take steps towards developing audit mechanisms for nonplural-
ity voting systems. We propose a generalized definition of the margin of victory for 
an election. Our new margin is the minimum level of ballot errors – unintentional 
or otherwise – that must have been introduced to change the final tallies from 
a situation with a different outcome (i.e., a winner different from the reported 
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5 A simpler form of auditing simply recounts ballots to confirm the winner, called a ballot  
polling audit in Lindeman and Stark (2012).

winner) to the reported tallies. The key to this definition is that ballot errors are 
measured differently under different voting rules. Margins are discussed in more 
detail in Sections 4.1 and 5.1.

We show how to audit scored systems by adapting risk-limiting audits for plu-
rality elections. For Condorcet methods, we can reduce the auditing problem to 
one with multiple-contest plurality elections; these can be audited by adapting 
the method of Stark (2010). We propose two approaches for risk-limiting audits 
for IRV based on the margin of victory or a bound on the margin. Although it is 
possible to compute the margin exactly (Section 6), these methods may be com-
putationally costly, especially when the number of candidates is large. As an 
alternative, we provide low-complexity upper and lower bounds on the margin 
which can be used to evaluate the difficulty of auditing a particular election. 
Furthermore, we analyze real election data from IRV elections to compare our 
bounds with the exact margin. Intriguingly, we find that in these real elections, 
the IRV winner is almost always a Condorcet winner.

2  Related work
Auditing non-plurality systems is connected to both the statistical literature on 
post-election auditing and the mathematical literature on social choice theory.

2.1  Risk-limiting audits

An audit consists of sampling ballots, comparing the paper ballots with the 
cast vote records (CVRs), and deciding whether to continue sampling, stop and 
certify the reported winner of the election, or demand a full hand count. A sin-
gle-ballot audit samples individual ballots from all those cast in the election. 
For ballots that are sampled, we assume that the auditor can determine both 
the intent of the voter and how that vote was counted. Based on the random-
ness used to sample the ballots, if the auditor can find a number α such that 
based on the evidence, certifying the election will be incorrect with probability 
at most α, then the procedure is called a risk-limiting audit at risk level α. Statis-
tical, post-election audits were first proposed by Saltman (1975), and a recent 
survey is available in Lindeman and Stark (2012).5 In recent years, the problem 
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of providing strong guarantees for the election outcome’s correctness has been 
studied along two orthogonal axes.6

The first axis concerns exactly what the audit seeks to (statistically) guaran-
tee. Earlier work focused on finding evidence of a single miscounted vote (see 
Dopp (2008) and the references therein for the history of these methods). These 
audits do not certify the outcome unless no errors are found. Unfortunately, almost 
every election has some miscounted ballots, due to human or machine error, tam-
pering with voting machines, or tampering with election software. In contrast, 
Stark (2008a) proposed the first complete audit procedure that specifies what to 
do when miscounts are discovered. Stark’s procedure looks for evidence that the 
reported outcome is incorrect rather than looking for incorrect tallies. Follow up 
work produced procedures that are easier to understand and, simultaneously, sta-
tistically more powerful (Stark 2008b,c, 2009a,b,d, 2010). Checkoway, Sarwate, 
and Shacham (2010) proposed an auditing method based on convex optimization 
with the same basic goal of finding evidence of incorrect outcomes.

The second axis of study concerns the size of each sample to be audited. Most 
early auditing procedures operate at the granularity of a precinct as that is the gran-
ularity at which most results are tabulated (Aslam, Popa, and Rivest 2007, 2008; 
Higgins, Rivest, and Stark 2011; Stanislevic 2006; Stark 2008a,b,c, 2009a,b,c,d). 
The traditional organization of elections into precincts makes this a natural model; 
however, Calandrino, Halderman, and Felten (2007); Johnson (2004); Neff (2003); 
and Sturton, Rescorla and Wagner (2009) note that the statistical power of postelec-
tion audits would be greatly increased by reducing the unit of an audit to a single 
ballot.7 One challenge with ballot-level auditing is that the system must be able to 
associate the CVR with the physical ballot. This can be done by printing a unique 
serial number on each ballot as they are being counted (Calandrino et al. 2007) or by 
weighing stacks of ballots (Sturton et al. 2009). Because the gain in statistical power 
is so great, most recent algorithms use ballot-level auditing (Benaloh, Jones, Lazarus, 
Lindeman, and Stark 2011; Checkoway et al. 2010; Stark 2010).

2.2  Social choice, strategic voting, and manipulation

The field of social choice theory deals with how to aggregate individual 
preferences into a societal preference. Starting with the seminal work of Arrow 

6 The remainder of this subsection is adapted from the authors’ earlier work on risk-limiting, 
post-election audits (Checkoway, Sarwate, and Shacham, 2010).
7 Intermediate sub-precinct audit units, such as individual voting machines, appear to provide 
littlegain in statistical power, but may reduce the cost of locating the ballots to audit.
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(1951), researchers have investigated what is and what is not possible in terms of 
the properties of social choice aggregation functions. Popular accounts can be 
found in recent books of Poundstone (2008) and Szpiro (2010), and more techni-
cal introductions in books by Black (1958) and Saari (2001). Social choice theory 
is primarily interested in the structure of how individual choices are aggregated, 
and not in how to measure and correct errors for a given social choice function. 
While plurality voting is hardly beloved, scholars have demonstrated theoretical 
flaws in many voting systems, including STV (Brams and Fishburn 1983; Doron 
and Kronick 1977; Dummett 1984).

Some work has been done in computational social choice on the problem 
of strategic voting (Gardenfors 1976; Gibbard 1973; Satterthwaite 1975). Strategic 
voting arises because voters have an incentive to cast ballots that do not reflect 
their true preferences. However, from the auditor’s perspective, the voters’ true 
preferences are irrelevant; a post-election audit is concerned with making sure 
that the voters’ expressed preferences are counted correctly. A question common 
to both strategic voting and auditing is the following: Given the ballots cast in 
an election, how large a subset must an adversary control in order to force a 
particular outcome of the election? From the perspective of strategic voting, 
this subset is a coalition of strategic voters. From the perspective of auditing, 
the subset is the minimum number of errors required to change the outcome of 
the election.

Bartholdi III and Orlin (1991) showed that under STV, it is NP-complete for 
a manipulator, knowing all other ballots, to find a preference order for them-
selves to ensure the election of a favored candidate. For scored systems like  
plurality voting the manipulation problem can be easier for a single manipulator 
(Bartholdi III, Tovey, and Trick 1989, 1992), but recent work has shown that it is 
NP-hard to find multiple manipulators for a Borda count (Betzler, Niedermeier, 
and Woeginger 2011; Davies, Katsirelos, Narodytska, and Walsh 2011). In these 
works the complexity is measured as a function of the number of candidates. 
Later work has focused on the computational hardness results when the number 
of candidates is fixed (Conitzer, Sandholm, and Lang 2007).

These hardness results show that an instance of an NP-hard problem is 
equivalent to a particular election manipulation problem, but do not show that 
a given election is hard to manipulate. This has led to several alternative ways 
of thinking about the complexity of manipulation, for example by extending the 
types of manipulation (Faliszewski, Hemaspaandra, and Hemaspaandra 2011), 
designing approximation algorithms (Brelsford, Faliszewski, Hemaspaandra, 
Schnoor, and Schnoor 2008), using average-case complexity (Procaccia and 
Rosenschein 2007), or random models for errors (Friedgut, Kalai, and Nisan 
2008; Isaksson, Kindler, and Mossel 2010). Some researchers believe that the 
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hardness of manipulation is a desirable property, especially in elections done 
automatically by computer agents (Faliszewski, Hemaspaandra, and Hemas-
paandra 2010).

These hardness results do not immediately imply that computing the number 
of ballots needed to manipulate a given election is itself hard. Firstly, in many real 
elections the number of candidates is small. Secondly, most real elections will 
not look like the NP-hard manipulation instances used in computational social 
choice.

3  Risk-limiting audits and the margin of victory
Let k denote the number of candidates in the election and let [k] = {1,2, …, k} denote 
the set of candidates. Let n be the total number of ballots cast in the election. We 
think of each ballot as a pair of values (xi,yi), where xi is the true marking of the 
ballot by voter i and yi is the marking of the ballot as reported by the election 
tabulation system. In some cases xi ≠ yi; our underlying assumption is that some 
of the ballots may be miscounted either due to human error, machine error, or 
adversarial tampering.

Let Ω(·) be the function that calculates the winner of the election and let 
wr = Ω({yi : i ∈[n]}) be the reported winner of the election. The function Ω(·) rep-
resents the particular voting system used (e.g., plurality, Borda count, IRV). The 
actual winner of the election is wa = Ω({xi : i ∈ [n]}), which is the Ω(·) function 
applied to the true ballot values. The reported outcome is correct if wr = wa; other-
wise, it is incorrect.

For simplicity, we will consider ballot-level audits; an audit is ballot-level if 
it can sample an individual ballot from the set of all n ballots. Ballot-level audits 
have much greater statistical power than precinct-level audits. We restrict our 
attention to audits that draw ballots uniformly at random (with replacement) 
from the list of ballots used in the election.8 The auditor samples K numbers {i1, i2, 
…, ik} uniformly from [n] and examines the ballots A = {(xij,yij) : j∈[K]}. We assume 
the auditor can determine xi and yi for each sampled ballot. The auditor then 
computes a test statistic T(A) and compares it to a threshold to decide if (1) more 
ballots should be drawn to continue the audit, (2) the election outcome is cer-
tified, or (3) all remaining ballots are counted by hand at which point the true 
outcome is known.

8 This is not without loss of generality—if more information is known about the reported 
margins,more targeted sampling can be more efficient (Stark 2009b).
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Definition 1. A auditing procedure is risk-limiting with risk level α if

P (election certified | wr≠wa) < α.

An audit works by estimating amount of ballot error in an election, and the 
margin of victory is the total ballot error necessary to change the outcome of the 
election. The way in which ballot errors are defined varies according to the partic-
ular voting system. We discuss the definition of ballot error for scored and ranked 
systems separately.

Definition 2. Let e(x,y) measure the error of a ballot. The margin of a set of 
reported ballots {yi: i∈[n]} is the minimum number of ballot errors necessary 
changes the outcome of the election:

	 }{ }{( ) }{( ) ( )ε
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4  Scored systems

Some methods proposed for auditing elections based on plurality voting can be 
easily extended to single-winner elections in which voters’ preferences can be 
interpreted as scores given to each candidate. These systems can be audited effi-
ciently using the methods of Stark (2010) or Checkoway et al. (2010). We illustrate 
our ideas by extending the method of Stark to scored systems.

4.1  Errors for scored systems

In a scored voting system, we can write the true value of ballot i as a vector of scores 
xi = (xi(1), xi(2), …, xi(k)) ∈ [0,R]k, where xi(j) is the score that voter i gives to candi-
date j and R is the maximum score that a voter can assign to a candidate. Ballot i is 
counted as yi∈[0,R]k. For example, in plurality elections, ballots have values of the 
form (1,0,0, …,0), (0,1,0, …,0), and so on. The true and reported outcomes are:

	 1 1
, = .

n n

i i
i i= =
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(2)

The reported winner and runner-up are

	 wr = argmaxj∈[k]{Q(j)},� (3)

	 lr = argmaxj∈[k]{Q(j):j≠wr},� (4)
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whereas the actual winner and runner-up are

	 wa = argmaxj{P(j)}, � (5)

	 la = argmaxj{P(j):j≠wa}. � (6)

We will write w for wr since the auditor only knows wr.

Definition 3. For scored systems, the error of ballot i is
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= −∑,
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 �

(7)

Because scored systems are relatively simple, calculating the margin can be 
done directly from the reported outcome.

Definition 4. Given an election of n reported ballots {yi : i∈[n]} with reported 
outcome Q = (Q(1), Q(2), …, Q(k)), and reported winner wr and runner-up lr, The 
pairwise margin between i and j is

	 mij = |Q(i)–Q(j)|� (8)

and the margin of the election is

	 m = Q(wr)–Q(lr).� (9)

Our definition of the margin is measured in actual scores, not fractions or 
percentages of the number of ballots cast. According to our definition, the margin 
is the lowest level of ballot error necessary to change the outcome of the election. 
In scored systems, the effect of individual ballots can be different.

4.2  Auditing scored systems

We now show how to generalize the method in Stark (2010) using our definition 
of margins. Suppose the audit has drawn K ballots uniformly from the set of n 
ballots. Let (Xt, Yt) denote the tth ballot in the sample (that is, (Xt, Yt) = (xi, yi) 
for some i drawn uniformly from [n]). The relative overstatement of the tth ballot 
between the winner w and another candidate j is

	 ( ) ( ) ( )( ) ( ) ( )( )− − −
=, .t t t t

t
wj

Y w Y j X w X j
e w j

m  �
(10)

For example, in elections where votes are in {0,1}k, this is 0 when there is no 
error, positive (either 1/mwj or 2/mwj) when there is an error that, when corrected, 
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decreases the margin, and negative (either -1/mwj or -2/mwj) when there is an error 
that, when corrected, increases the margin.

For the tth audited ballot, the worst case relative overstatement is

	

( ) ( )( ) ( ) ( )( )ˆ max .t t t t
t j w

wj

Y w Y j X w X j
e

m≠

− − −
=
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(11)

A ballot for which Xt = Yt has êt = 0. We have êt > 0 whenever correcting the 
error in the tth ballot causes any of the margins {mwj} to decrease, and not just 
the margin mwl = m in (9). For example, in an approval election, if the tth audited 
ballot contains votes for two candidates w and c but the CVR only counted the 
vote for w, correcting this error would cause mwc to decrease and therefore êt  > 0, 
even if c≠l.

To use these overstatements êt we can apply the same martingale arguments 
used by Stark (2009d) to compute the Kaplan-Markov P-value. The test procedure 
consists of sampling ballots and computing the test statistic

	

( ) ( )
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If we choose to certify when T(K) < α, then this procedure is a risk-limiting audit 
with risk level α in the sense of Definition 1 [see Stark (2009d) and Kaplan (1987)]. 
Otherwise, more ballots can be sampled and the audit continues or all remaining 
ballots can be counted by hand, thus ending the audit. The parameter γ > 1 effec-
tively shrinks the margin m (or, equivalently, inflates the error) which helps make 
the test statistic more robust. Experiments with plurality elections show γ = 1.01 to 
γ = 1.1 work well, but choosing γ may depend on the particular non-plurality system.

This analysis is loose for a number of reasons. Firstly, the sum of the over-
statements êt over t is an upper bound on the aggregate relative overstatement of 
the K audited ballots. The bound uses a the worst-case upper bound on the rela-
tive error êt ≤ 2R/m rather than considering the error bound ballot-by-ballot. Refin-
ing the analysis to take into account the statistics of the actual sampled ballots 
could yield a more efficient test. Similarly, non-uniform sampling of ballots (say 
according to their CVRs) could yield a more statistically efficient audit.

This approach to auditing was proposed by Stark (2010) for multi-winner 
plurality contests. It is easy to apply this generalized method to approval, range 
voting, and Borda counts.

Approval voting. In approval voting, each voter can decide to approve or disap-
prove of each candidate. Therefore the ballots are xi∈{0,1}k and thus R = 1. The 
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auditing method was originally designed to work for the setting where voters 
could approve of up to c candidates and there were c winners, so this is a simple 
extension for approving of up to k candidates with 1 winner.

Range voting. In range voting users can assign a score to each candidate. These 
scores are typically integers, say from 0 to 10. The winner is the candidate who 
garners the maximum sum score from the voters. For a range voting system, the 
scores will be in [0,R] where R is the maximum allowed score. Note that for range 
voting the upper bound of 2R/m on êt may be significantly more conservative than 
for approval voting, especially if many voters do not have polarized views about 
all of the candidates. This, in turn, may increase the number of ballots required, 
lowering the efficiency of the audit.

Borda count. The Borda count is thought of as a voting system where users rank 
candidates. This is true in that users submit their preferences in terms of a ranked 
list. However, the Borda count converts this ranked list into a numerical score 
for each candidate, and hence can be audited by the same mechanism as other 
scored systems. On a ballot for an election to be tabulated by a Borda count, 
voters rank candidates in order of preference. In an election with k candidates, 
the Borda count assigns k-s+1 points to the sth highest ranked candidate. Thus 
the top-ranked candidate for the voter gets k points, the second-ranked candidate 
gets k-1 points, and so on. Voters need not rank all candidates; an unranked can-
didate gets 0 points. By setting R = k, it is clear that the Borda count is a special 
case of range voting.

5  Ranked systems
Unlike scored systems, ranked systems do not share a common framework for 
tabulation. However, the two methods we discuss in this section, Condorcet and 
IRV, perform simple arithmetic operations and comparisons on the ballots in 
order to compute the outcome of the election.

5.1  Errors for ranked systems

We again consider an election with k candidates and n ballots cast. For a set 
A⊆[k], let Π(A) denote the set of all ordered subsets of A. That is, Π(A) contains 
all ranked lists of elements of A. In a ranked-choice election with k candidates, 
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a ballot xi = (xi(1), xi(2),…) for voter i is an element of Π([k]), where xi(j) is the jth 
ranked candidate of voter i. The elements of Π([k]) are called ballot signatures. A 
special case of a ballot signature is a blank ballot, which is denoted by the empty 
list (). The ith ballot is reported as yi which may differ from its true value xi. The 
election systems we discuss in this section all operate on the counts of the elec-
tion. For a ballot signature S∈Π(A) define the count of a set S as

	
( )

=

= =∑
1

( ).
n

i
i

N S s1 y
 �

(13)

That is, N(S) is the number of ballots reported as having signature S.
We differ from Cary (2011) and Magrino, Rivest, Shen, and Wagner (2011), 

who define the margin of an IRV election as the number of ballots that must be 
changed in order to change the outcome. Instead, we define a ballot errors for IRV 
as follows.

Definition 5. Suppose a ballot with signature x is instead recorded as y. For an 
IRV election, the error for this ballot is

	

( )ε
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0                               
, 1  and () or ()

2  and , ()          

x y
x y x y x y

x y x y
 �

(14)

where () is the blank ballot signature.
Thus a ballot that is correctly recorded has 0 errors and a ballot that is 

incorrectly recorded has 1 or 2 errors depending on the actual or reported sig-
nature being blank or not. The intuition behind this definition is that a blank 
ballot neither helps nor hurts any candidate whereas a ranked ballot helps or 
hurts some of the candidates and changing from one that helps a candidate to 
one that hurts the candidate is worse than changing to or from one that helps 
no one.

The special case of an IRV election with two candidates is equivalent to a plu-
rality election. In this case, the margin produced by e in Definition 5 agrees with 
the margin produced in the equivalent plurality election using e in Definition 3.9 
In contrast, merely counting the number of incorrect ballots gives a margin that 
is almost, but not quite, half the margin in the plurality case.

9 To use e in Definition 3, the ballots must first be converted from ordered lists to pairs  
of scores: (1,2), (1)  (1,0); (2,1), (2)  (0,1); and ( )  (0,0) which is to say that only the  
top-ranked candidate on the ballot gets a score of 1.
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5.2  Condorcet methods

To tabulate a Condorcet election, the counts are converted into pairwise pre
ferences

	
( )

[ ]( )
( ) ( )

∈Π

= ⋅∑,   precedes  in .
S k

C i j N S i j S1
�  

(15)

That is, C(i, j) is the number of ballots in which i is ranked higher than j. If 
there exists a candidate w∈[k] such that C(w, j) > C(j,w) for all j≠w, then candidate 
w is called the Condorcet winner. The Condorcet graph has vertices which are the 
candidates and a directed edge from i to j with weight C(i, j), for each pair (i, j).

Since there are many different Condorcet methods, it is difficult to give a 
unified description of the margin of victory; however, there is a simple lower 
bound. If there is a reported Condorcet winner w, then there are k-1 pairwise 
plurality contests involving w. The margin of the Condorcet winner mCW is the 
minimum of the margins of the plurality elections

	
( ) ( )( )

≠
−=min , , .CW j w

m C w j C j w
 �

(16)

If there is no reported Condorcet winner, then define mCW = 0.
If the reported Condorcet winner wr is not the actual winner, then in particu-

lar, wr is not the Condorcet winner. Therefore, there must have been at least mCW 
ballot errors as defined for plurality voting and so mCW is a lower bound on the 
margin m. This insight leads to our method of auditing Condorcet elections.

If there is a reported Condorcet winner wr, then we can audit each edge 
connecting wr to the other candidates in the Condorcet graph by considering a 
plurality election between the two candidates. Verifying that wr is the Condorcet 
winner will then verify the election outcome. We can treat this as a collection of 
k-1 races with two candidates each: wr and some j ≠wr. One way to audit these is 
to use Stark’s simultaneous auditing method (Stark 2010). Note that for this audit 
we do not need consider the ( )2 1k k− +  other pairwise contests between j, k≠wr.

If there is no Condorcet winner, then each of the candidates is defeated in 
at least one pairwise election. In this case, we need to consider the particular 
Condorcet completion method used to determine the winner. There is a verita-
ble menagerie of Condorcet completion methods proposed in the literature. To 
illustrate how auditing applies, we restrict our discussion to a few examples for 
which auditing is simple to describe.

Two-method systems. A two-method system elects the Condorcet winner, if 
one exists. If there is no Condorcet winner, than a completely different method of 
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tabulating the ballots is used. One possible completion method to use when there 
is no Condorcet winner, first described by Black (1958), uses the Borda count to 
decide the winner. Fishburn improves on this by restricting the Borda counts to 
the Smith set – the smallest set of candidates such that each beats all candidates 
outside the set (Fishburn 1977, Function C1).

Auditing a two-method system involves auditing each method – the same 
ballots can be used for each audit. If the reported counts indicate a Condorcet 
winner we can audit at risk level α using the method described above. If the 
reported counts indicate that there is no Condorcet winner we first audit ballots to 
assure that no Condorcet winner exists at risk level α1 by simultaneously auditing 
k pairwise elections, one in which each candidate was reported to have lost. We 
need only be sure that each candidate really lost at least one pairwise election, 
so, for candidate j, we can choose to audit the election in which j was reported 
to have lost by the largest margin. This choice of elections to audit reduces the 
expected number of ballots to be examined by hand.

After simultaneously auditing the k pairwise elections to ensure that there is 
no Condorcet winner, we can audit the particular completion method (e.g., Borda 
count) at risk level α2. We pick α1 and α2 such that

	 1–(1–α1)(1–α2)  ≤  α.� (17)

This guarantees (by the union bound) that the overall risk is no more than the 
target, α.

One-method systems. A one-method system is a single procedure that elects the 
Condorcet winner when one exists, and selects a different candidate otherwise. 
In the latter case, different one-method systems may elect different candidates for 
the same set of cast ballots. If there is a reported Condorcet winner, the election 
can be audited using either the general method above or by auditing the specific 
method used. If there is no reported Condorcet winner, then the specific method 
must be used.

The Nanson method (Nanson 1882) and the related Baldwin method (Baldwin 
1926) work in rounds with one or more candidates eliminated each round, similar 
to instant-runoff voting, except that Borda counts determine who is eliminated. 
The auditing procedure is very similar to IRV (Section 5.3). The Schulze method –  
the most commonly used Condorcet method – is more complicated. Develop-
ing a risk limiting audit for the Schulze method is an open problem. However, 
most organizations which use the Schulze method do not use physical ballots or 
a voter-verified paper audit trail (VVPAT), so the auditing framework used here 
may not be applicable.
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5.3  Instant-runoff voting

In an IRV election, voters also express their preferences as an ordered subset of 
the candidates. The counting proceeds in rounds. In each round, the candidates 
with the fewest top-choice votes are eliminated. Eliminating a candidate effec-
tively removes the candidate from all ballots in which she was ranked, causing 
later ranked candidates to move up one spot. A candidate who is not eliminated 
is called a continuing candidate. A ballot is considered exhausted when all of the 
candidates it ranks have been eliminated. The elimination stops when one candi-
date has a majority of top-choice votes on the nonexhausted ballots.

There are several methods for choosing the candidates to eliminate. The 
simplest is to eliminate the candidate with the fewest top-choice votes. This is 
the base IRV elimination rule. In San Francisco municipal, ranked choice voting 
(RCV) elections, multiple candidates can be eliminated in a single round.10 We 
refer to this as the SF RCV elimination rule. In both cases, the sum of the top-
choice votes for candidates chosen to be eliminated is less than the number of 
top-choice votes for every candidate who is not eliminated (except in the case of a 
tie). That is, if E is an elimination set – a set of candidates to be eliminated – then

	
( )( ) ( )( )

∉
= =

∈ < =∑ ∑
1 1

 1 min  1 ,
n n

i ic Ei i
y E y c1 1
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where yi(1) is the top, noneliminated choice on ballot i. We will focus on these 
rules, which are are provided for completeness in Algorithm 4 of Appendix A. 
Both rules produce the same winner, but the SF RCV rule is more efficient.

Tabulating the outcome of an IRV election produces a list E = (E1,E2, …,EM) 
of sets of eliminated candidates in the order in which they were eliminated. The 
set Er is the set of candidates eliminated in the rth round. Under the base IRV 
rules, Er is always a single candidate for r  <  M, whereas in the SF RCV rule, Er may 
contain many candidates. In either case, once one candidate has a majority, the 
final elimination set EM may contain multiple candidates.

Auditing the elimination order. A simple approach is to audit the elimination 
order E to verify that the set of candidates eliminated in each round is correct. In 
this auditing scheme, each elimination decision is treated as a plurality contest 

10 S.F., Cal., Charter art. XIII, § 13.102(e) (Mar. 2002), “If the total number of votes of the two 
or more candidates credited with the lowest number of votes is less than the number of votes 
credited to the candidate with the next highest number of votes, those candidates with the 
lowest number of votes shall be eliminated simultaneously and their votes transferred to the 
next-ranked continuing candidate on each ballot in a single counting operation.”
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between the lowest-ranked continuing candidate and the elimination set. If any 
elimination selection is a result of a tie breaker11 then a complete hand count is 
necessary.

Otherwise, each round of the algorithm leads to a plurality election to be 
audited. For each round r: (1) eliminate and distribute the votes for candidates 
eliminated in previous rounds, namely E1 ∪E2 ∪…∪Er-1; (2) aggregate the candi-
dates who are to be eliminated in round r, namely those in Er, into a “super candi-
date”; and (3) audit a (k′–1)-winner plurality election with k′ candidates consist-
ing of the super candidate and the k′–1 continuing candidates. The audit in step 
(3) is to ensure that the super candidate lost. This procedure results in M plurality 
elections to audit. The M plurality elections can be audited simultaneously using 
Stark’s method (Stark 2010). Each ballot can cause 0, 1, or 2 errors for each of the 
M plurality-elections; however, due to the nature of the diluted margin in Stark’s 
method, we take the maximum of the errors caused in any race as the error con-
tributed by the ballot. Note that this ignores the correlations in the races and 
hence may result in a loss of statistical efficiency; more careful modeling could 
produce a more efficient audit.

Auditing the elimination order requires only the round-by-round tallies and 
not the full information N(S), but in general may require that too many ballots 
be hand-counted. This is because candidates who are eliminated early often 
constitute a very small fraction of the total ballots. For example, in the 2010 
Oakland Mayoral election, three candidates each received less than 1% of the 
votes. This led to a small margin of 83 votes in round 3 out of a total of 122,264 
ballots cast in the election. Small pairwise margins for candidates eliminated 
early-on in the counting requires large sample sizes to detect an error in the 
elimination order. If instead of the base elimination rule, the SF RCV rule is 
used, then 8 of 11 candidates are eliminated in the first round and the smallest 
margin used for the audit is 1,627, or 1.33% of the cast votes. We will return to 
this example in Section 6.2.

Auditing by error detection. An alternative approach to building a risk-limiting 
audit is to attempt error detection. That is, the auditor can sample K ballots and 
compare each paper ballot to its cast vote record (CVR). If the number of ballot 
errors exceeds a specified threshold, then a manual count of the entire election 
is required. This approach treats all erroneous ballots as if they decreased the 
margin, which is wasteful. Indeed, there may be elections in which the total 

11 For example, with the base IRV elimination rule, if the two candidates with the fewest 
number of top-choice votes in a round have the same number of votes, then the candidate to be 
eliminated may be chosen by some other mechanism such as a coin flip.
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amount of ballot error is quite large but for which the reported and actual winners 
of the election are the same.

Suppose that the margin is m. The effect of auditing by error detection is to 
audit a fictitious plurality contest between two candidates whose margin is m.

Therefore any method for auditing plurality contests may be adapted for the 
purposes of error detection. Such an audit can be performed using any of the 
standard methods (Saltman 1975; Neff 2003; Johnson 2004) by treating all errors 
as being as bad as possible, or via the methods of Checkoway et al. (2010) or 
Stark (2010) by distinguishing between ballots with 1 or 2 errors (a ballot added 
or removed has 1 error; a ballot changed has 2 errors). If fewer erroneous CVRs 
are found than the threshold, the auditor certifies the winner of the election. We 
choose the threshold so that the sample-size is risk-limiting.

This approach to risk-limiting audits requires computing the margin of an 
IRV election, which is a topic of recent interest (Cary 2011, Magrino et al. 2011). 
Once the margin or a lower bound on it is known, then we can set the threshold 
to guarantee a risk-limiting audit. Recent work by Magrino et al. (2011) calculates 
the number of ballots that need to be changed to change the winner of the elec-
tion. This exact calculation can be computationally very expensive, even with 
clever heuristics.

The difficulty of auditing IRV. Because the IRV elimination rules are somewhat 
complicated, it is unclear what a random sample of the ballots tells us about what 
the rule would produce on the true ballots. In elections where voters must rank 
all candidates, the number of ordered subsets S (or the size of N(·)) is potentially 
greater than k!, and the empirical distribution of the ballots in the audit will not 
be a good approximation to N(·). The approaches described above convert the IRV 
election into plurality contests to take advantage of the rich literature on audit-
ing, but these conversions are less statistically efficient because they audit suffi-
cient conditions (the elimination order remaining the same) or make conservative 
assumptions (every error decreases the margin). In the next section we examine 
ways of estimating the true margin of an IRV election and give empirical results 
for real elections.

6  The margin of an IRV election
In this section we investigate the problem of computing the margin for an IRV 
election. We first describe some real IRV elections and their features. We then 
show a lower bound on the margin based on picking elimination sets in each 
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round in such a way as to maximize the difference in votes between the “super 
candidate” described in Section 5.3 and the continuing candidate with the fewest 
votes. In order to evaluate how good this lower bound is, we develop an algo-
rithm that constructs a set of ballot errors that can alter the winner of an IRV 
election. This gives an upper bound which is often close to the lower bound in 
real elections. Our bounds are fast to compute, and when possible we compare 
our bounds to the exact margins.

Appendix B contains several toy examples showing unintuitive features of 
IRV elections related to auditing: a few ballot errors for losing candidates can 
change the outcome, and even when IRV elects the Condorcet winner, the IRV 
margin can be significantly smaller than the Condorcet margin lower bound.

6.1  Margins for real elections

We purchased CVR data from OpenSTV12 for six different elections that were 
conducted using ranked-choice ballots. The three 2002 Dáil Éireann elections –  
Dublin North, Dublin West, and Meath – are multiple winner STV elections 
with many candidates which we include to test the speed of our algorithms, not 
because they are necessarily representative of IRV elections. The others – Burl-
ington mayoral and Takoma Park city council – are IRV elections. Mike LaBonte 
provided the official 2009 Aspen election data acquired through an open records 
request. The Aspen elections used rules similar to IRV but with different first-
round rules. Similar to the STV elections, we use them merely as an example of 
ranked ballots. CVR data for an additional 29 San Francisco Bay Area and Pierce 
County RCV elections were collected from the corresponding municipalities’ web-
sites. A summary of the data is given in Table 1.

The three Dáil Éireann, two Burlington mayoral, two Aspen, and Takoma 
Park City Council special elections allowed voters to provide a complete ranking 
of all of the candidates on the ballot. The last five additionally allowed write-
in candidates although in the case of the Burlington and Aspen elections, the 
writein took the place of one of the candidates in the ranking. All of the California 
and Washington elections used ballots where voters pick their top three candi-
dates, including write-ins.

One common feature of all of these elections is that they involve a relatively 
small number of ballots compared to state and national elections. As an extreme 
example, only 204 people voted in the election for the Takoma Park City Council. 
In such cases a full hand count is easy, and would certainly be risk limiting. After 

12 http://www.openstv.org.
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Election Candidates Ranks Ballots Condorcet 
winner

2002 Dáil Éireann, Dublin North* 12 12 43,942 **
2002 Dáil Éireann, Dublin West* 9 9 29,988 **
2002 Dáil Éireann, Meath* 14 14 64,081 **
2006 Burlington mayor 6‡ 5 9,865 **
2007 San Francisco mayor 18 3 149,465 **
2007 Takoma Park city council special, ward 5 4‡ 4 204 **
2008 Pierce County assessor 7‡ 3 312,771 **
2008 Pierce County council, dist. 2 4‡ 3 43,661 **
2008 Pierce County executive 5‡ 3 312,771 **
2009 Aspen city council† 11§ 9 2,544 **
2009 Aspen mayor† 5‡ 4 2,544 **
2009 Burlington mayor 6‡ 5 8,984
2009 Pierce County auditor 4‡ 3 159,987 **
2010 Berkeley auditor 2‡ 3 45,986 **
2010 Berkeley city council, dist. 1 5‡ 3 6,426 **
2010 Berkeley city council, dist. 4 5‡ 3 5,708 **
2010 Berkeley city council, dist. 7 4‡ 3 4,862 **
2010 Berkeley city council, dist. 8 4‡ 3 5,333 **
2010 Oakland auditor 3‡ 3 122,268 **
2010 Oakland city council, dist. 2 3‡ 3 15,243 **
2010 Oakland city council, dist. 4 8‡ 3 23,884 **
2010 Oakland city council, dist. 6 4‡ 3 14,040 **
2010 Oakland mayor 11‡ 3 122,268 **
2010 Oakland school board director, dist. 2 2‡ 3 15,243 **
2010 Oakland school board director, dist. 4 3‡ 3 23,884 **
2010 Oakland school board director, dist. 6 2‡ 3 14,040 **
2010 San Francisco board of supervisors, dist. 2 7‡ 3 28,911 **
2010 San Francisco board of supervisors, dist. 6 15‡ 3 25,057 **
2010 San Francisco board of supervisors, dist. 8 5‡ 3 38,551 **
2010 San Francisco board of supervisors, dist. 10 22‡ 3 20,550 **
2010 San Leandro city council, dist. 1 4‡ 3 23,494 **
2010 San Leandro city council, dist. 3 2‡ 3 23,494 **
2010 San Leandro city council, dist. 5 3‡ 3 23,494 **
2010 San Leandro mayor 7‡ 3 23,494 **
2011 San Francisco district attorney 6‡ 3 197,242 **
2011 San Francisco mayor 25‡ 3 197,242 **
2011 San Francisco sheriff 5‡ 3 197,242 **

Table 1: Election data.
*Multiseat STV elections that have been treated as IRV. †IRV-like rules that have been treated 
as IRV. ‡Includes a single combined write-in candidate. §Includes two combined write-in candi-
dates. The Ranks co
lumn denotes how many candidates a voter was allowed to rank on the ballot. There is a ** 
in the Condorcet winner column if the IRV procedure elects the Condorcet winner.
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tabulating the results from these elections we were surprised to note that they 
share a more interesting common feature: The winner according to the IRV count 
was also a Condorcet winner for the election in every case except for the 2009 
Burlington mayoral election. In Appendix B.2 we show that the IRV margin may 
be smaller than the Condorcet margin lower bound, even when both methods 
elect the same candidate.

Algorithm 1:  Lower bound on IRV margin

inputs: candidates A, ballots B
outputs: lower bound on margin lb
Enqueue(∞, (A,B))
while true do
 p, (A,B)← Dequeue( )
 if |A| = 1 then
  lb←p
  return
 ESets←ValidElimSets   (A,B)
 foreach E ∈ ESets do
  A′← A\E

  
( )( ) ( )( )

1 1
, 1 1 1 1

n n

i ic A i i
p p y c y E

∈ ′

 
′← = − ∈ 

 
∑ ∑min min   
= =  

  B′← EliminateCandidates (B, E)
  Enqueue    (p′, (A′,B′))

Computing the IRV margins exactly can be a computationally difficult task 
for real elections that contain large numbers of candidates or allow voters to 
rank many candidates on the ballot (Magrino et al. 2011). Therefore, in the rest 
of this section we present lower and upper bounds on the margin and examine 
the bounds for the 34 elections. We implement a slightly modified version of the 
exact margin calculation from Magrino et al. (2011) which takes the difference in 
margin definitions into account and additionally uses knowledge of the margin 
upper bound to speed up the calculation.13 Where we are able to compute the 
exact margin in under 24 hours, we compare the bounds with the margin.

6.2  Lower bounds on the margin

One obvious lower bound on the margin in an IRV election is the difference in 
votes between the two candidates with the fewest top-choice votes in each round. 

13 All of our code is available at https://www.cs.jhu.edu/∼s/elections/irv.html.

Brought to you by | Rutgers University
Authenticated | asarwate@alum.mit.edu author's copy

Download Date | 12/9/14 6:22 PM

https://www.cs.jhu.edu/~s/elections/irv.html


Risk-limiting Audits and Nonplurality Elections      49

Certainly if the number of ballots which are modified is not enough to change any 
elimination decision, then the outcome must be correct. However, it is trivial to 
show that this lower bound is arbitrarily bad by considering an election in which 
there are two candidates who each receive exactly one vote.

The example of the 2010 Oakland Mayoral race mentioned in Section 5.3 
shows that different choices of elimination sets can lead to different margins 
in the constructed plurality elections used for the audit. Instead of auditing the 
elimination order by considering the actual elimination sets dictated by the elec-
tion rules as described in Section 5.3, one can choose different, valid elimination 
sets satisfying (18) for each round in such a way as to maximize the margin of 
the constructed plurality elections. This also provides a lower bound on the IRV 
margin that can be used to provide a conservative estimate for auditing by error 
detection. In the 2010 Oakland Mayoral election, if the 7 lowest candidates are 
eliminated in the first round instead of the 8 chosen by the SF RCV rule, then the 
smallest margin used in the audit rises to 2,025 from 1,627.

The idea to pick the best elimination sets to use comes directly from David 
Cary’s IRV lower bound computation in simultaneous, independent work (Cary 
2011). For concreteness, we describe the lower bound algorithm and its correct-
ness below but refer the interested reader to Cary’s work for a more complete 
treatment as well as an alternative implementation.

The obvious lower bound is the number of ballot errors necessary to change 
the order that candidates are eliminated. However, by definition of the elimination 
set, in any round, any valid choice of elimination set can be chosen and those can-
didates eliminated without changing the ultimate winner of the election (this is the 
basis of the SF RCV elimination rule). This is a relaxation on the order in which can-
didates must be eliminated to ensure the correct outcome. In the Oakland Mayoral 
election, since the 8 candidates with the fewest top-choice votes in the first round 
can be eliminated without changing the winner, it is immaterial in which order 
those candidates are eliminated so long as they are eliminated before any others.

Any sequence of valid elimination sets satisfying (18) thus gives a lower bound 
on the margin: if E = (E1,E2, …,EM) is a valid sequence of elimination sets, then

	
( )( ) ( )( )
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min min 1 1
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i iE c E i i
lb y c y E

∈ ∈

 
= = − ∈  ∑ ∑1 1 E E = = �

(19)

is a lower bound. If each Er ∈ E consists of a single candidate, then lbE is the 
obvious lower bound. Algorithm 5 in Appendix A calculates the valid elimination 
sets of a single stage of the algorithm.

Since each valid lbE is a lower bound, we can take the maximum over all valid 
E to arrive at the bound
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	 valid 
=max lblb .EE �

(20)

The bound lb can be efficiently computed by using a priority queue14 whose ele-
ments are pairs of sets of candidates and sets of ballots. The queue initially contains 
the pair (A,B) – where A is the set of candidates in the election and B is the set of 
ballots – with an infinite priority as its only element. The main loop removes the pair 
of candidates and ballots with the highest priority p. If all but one of the candidates 
have been eliminated, then the priority is returned as the lower bound. Otherwise, 
all valid elimination sets are computed. For each valid elimination set, a copy of the 
ballots is constructed, the candidates in the set are eliminated, and the new ballots 
are placed into the queue with priority p′ where p′ is the minimum of p and the dif-
ference in votes between the sum of top-choice votes for candidates in the elimina-
tion set and the top-choice votes for the continuing candidate with the fewest votes. 
This procedure is given in Algorithm 1. Since we are using a priority queue, once we 
reach a set of ballots for which all candidates but one have been eliminated, every 
other sequence of elimination sets leads to a lower bound that is no better.

Note that the sequence of elimination sets used to construct the lower bound 
in Algorithm 1 is the optimal set to use when performing an audit of an IRV elec-
tion by considering plurality elections for each round as described in Section 5.3. 
It is trivial to modify Algorithm 1 to return the sequence of eliminations used.

The weakness in the lower bound is that it considers the slimmest margin in 
any elimination decision. However, the margin between two candidates in a given 
round can be quite low but the candidates together have too many votes to be 
grouped into an elimination set. For example, in the 2010 Oakland City Council, 
District 4 election, in round 5 – using the base IRV elimination rule – Melanie 
Helby had 3,017 top-choice votes and Daniel Afford had 2,886. Neither can be 
eliminated in an earlier round using a larger elimination set and they cannot be 
eliminated together leading to a lower bound of 133 which is about 0.5% of the 
total number of ballots cast in the election. By contrast, the exact margin is 5,657 
or about 19.5% of the ballots cast.

6.3  Algorithmic upper bound on the margin

In this section we develop an algorithm that takes a set of CVRs and constructs 
a set of ballot errors that changes the winner of the IRV election. This gives an 

14 A priority queue is an abstract data type which is conceptually a set of elements each of 
which has an associated priority. Common implementations of priority queues support fast 
insertion of a new element with arbitrary priority and fast removal of the element with the  
highest priority.
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upper bound on the margin of the election. This upper bound, which is efficiently 
computable, is useful to bound how far the lower bound described in the previ-
ous section is from the exact value if the exact value is not known.

Our method, Algorithm 2, is based on calculating an upper bound on the 
margin for each possible alternative winner of the election. For a given alternative 
winner j, we calculate a sufficient number of errors required to make j the winner 
of the election. Because our algorithm is “greedy” in a sense, the total number of 
errors we calculate may be quite a bit larger than the minimum number of mate-
rial errors needed to change the outcome.

The algorithm proceeds as follows: for each alternative j, we tabulate the IRV 
election round by round until j is eliminated. Let E be the elimination set such 
that j∈E; we can calculate elimination sets using the SF RCV rule or the base rule. 
At the point during tabulation when the candidates in E are eliminated, let k be 
the candidate with the fewest top choice votes such that k∉E. Let t be the total 
number of top-choice votes for candidates in E and s be the total number of top-
choice votes for k and let μ = s-t.

Algorithm 2: Greedy upper bound on IRV margin

inputs: candidates A, ballots ( ){ } =
= ∈Π 1

n
i iB Ay  

outputs: upper bound on margin m̂  
 〈  underscore _ means the corresponding output of IRV is not used  〉 
Winner, ElimOrder,_ ←IRV(A, |A|, B)
foreach j ∈ A\{Winner} do
 (Winner′,A′,B′,ElimOrder′)← (Winner,A,B,ElimOrder)
 ej = 0
 while Winner′ = Winner do
  l← index of E in ElimOrder′ such that j∈E
  _,_,B′←IRV(A′, l-1, B′)  〈  tabulate up to when j is eliminated  〉  
  foreach E ∈ ElimOrder′(1 : l-1) do
   A′←A′ \E  〈  remove eliminated candidates  〉 
  k←argminc∈A′\ElimOrder′(l)Σy′∈B′ 1(y′(1) = c)
  s←∑y′∈B′ 1(y′(1) = k)
  μ ←s–Σc∈ElimOrder′(l)Σy′∈B′ 1(y′(1) = c)
  if |ElimOrder′(l)|  >  1 then
   μ←s–1
  B′, e ←ModifyMargin(B′, μ, j, k, ElimOrder′(l : end), Winner)
  ej←ej+e
Winner′,ElimOrder′,_← IRV(A′, |A′|, B′)

}{ˆ 2minj jm e←
 

Now, the goal is to change enough votes so that j will not be in the elimina-
tion set. There are two cases. If E is a singleton (E = {j}), then the only way to 
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prevent j from being eliminated is for j to receive more top-choice votes than k, 
so the margin of this decision is μ and shifting  2

μ
+1 votes from k to j will give 

j enough votes to not be eliminated in this round. If E has more than one candi-
date, then due to the strict inequality in (18), shifting  s

2
( −1) +1 votes from k to 

j is enough to remove j from the elimination set. To see this, first note that this 
case arises only in the SF RCV rule. If B′ is the set of partially tabulated ballots, 
then from (18), 

}{( )
}{

( )
y

1 min 1 = ,
c E kB B

E k c
∉ ∪

∈ ′∈ ′′ ′

∈ ∪ >′ ′∑ ∑y y
y

Algorithm 3: ModifyMargin – choosing errors to decrease the margin

inputs: ballots ( ){ } ,n
iB A == ∈Πy 1i  margin m, recipient j, victim k, ElimOrder, Winner

outputs: �modified {yi} such that the margin between j and k has decreased by more 
than m, number of ballots changed c

c← m+2˩+1
σ←(ElimOrder(2 : end) || Winner || ElimOrder(1)\{j}|| j)  〈  σ is an ordered list  〉 
σ←(k)|| σ\{k}  〈  Move k to beginning of σ  〉 
Sort {yi} lexicographically according to σ, where longer matches appear before 
shorter matches; e.g., 
 (σ(1),σ(2),σ(3)) precedes (σ(1),σ(2))
Change the first c of the sorted yi into votes with j as the only choice

so the new elimination set after shifting ballots is a strict subset of E∪{k}. Fur-
thermore, s-1 is an upper bound on the difference in top-choice votes between j  
and any other candidate in E ∪{k}, so by adding   s

2
( −1) +1 votes to j from k, can-

didate j will become the winner of a plurality election between the candidates in 
E ∪{k} and therefore will not be in the new elimination set.

Once we have manipulated the ballots to prevent j from being eliminated, 
we tabulate the IRV election with the modified votes and find the next point 
where j appears in an elimination set. We repeat the margin modification 
process until a different candidate than wr is elected. Note that it need not be j 
who is elected, since it is sufficient that any candidate other than the reported 
winner win.

The greedy part of the algorithm comes from how we choose the ballots for k 
that are switched to ballots for j. The selection heuristic is given in Algorithm 3. 
The method changes ballots of the form (k, …) to ballots with first-choice equal 
to j. We can write the elimination order E = (E1,E2, …,ER). The intuition is that for 
j to win, she must defeat the other candidates in each of the sets E1,E2,E3, …,ER 
and finally wr. The heuristic is to preferentially change ballots closest to the 
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elimination order of the election. This corresponds to lexicographically ordering 
the cast vote records as a function of E (see the definition of σ in Algorithm 3).

There are other heuristics possible for selecting which ballots to shift. For 
example, since j must eventually defeat the reported winner wr, it may be better 
to change preferentially ballots of the form (k, wr, …), thereby greedily reducing 
the margin between j and wr. Another set of heuristics can be derived by looking 
at the Condorcet graph of the ballots in round r and greedily ordering the ballots 
to be changed by the Condorcet margin. Since any heuristic generating a set of 
errors that alter the outcome of the election is a valid upper bound on the margin, 
we could take the minimum of margins generated by Algorithm 2 with each ballot 
ordering.

6.4  Revisiting margins for real elections

Table 2 shows the results of margin calculations for the 32 elections in Table 1. 
We show four margin calculations: the lower bound of Section 6.2, exact margins 
(when possible), the upper bound of 6.3, and the margin lower bound corre-
sponding to treating the election as a Condorcet election.

In some elections, the lower bound produces a margin which is less than 
0.5%, which is the threshold for a recount in many jurisdictions.15 Because the 
three 2002 Dáil Éireann elections were for multiple-winner STV elections, the 
small values for the lower bound may not be representative. However, for two of 
the San Francisco Board of Supervisors elections, the lower bound produced a 
margin that is essentially zero whereas the upper bound is a significant fraction 
of the number of ballots cast.

For those elections where the exact margin was computable in 24 hours, our 
upper bound is frequently within two ballots of the exact margin. The difference 
is because our upper bound produces a set of errors that cause a different can-
didate to win outright whereas the exact calculation produces a tie. The tight-
ness of our upper bound suggests that the heuristic that we used is a good one. 
For most of these elections, the exact margin is just the margin in the last round 
and in nearly every case is the Condorcet margin lower bound. This suggests that 
these elections had at most two viable candidates and in the end, the election 
came down to the difference in their popularity. In such cases, we suspect that the 
winner of an IRV election will be the Condorcet winner and that the margin will 
be the Condorcet margin lower bound.

15 Cf., Ala. Code §17-16-20 (2010) or Fla. Stat. §102.141 (2010).
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Many of the elections studied have margins which are quite large, which 
suggests that these elections should be efficiently auditable. However, these 
are not, in many cases, hotly contested elections, e.g., the 2010 Oakland School 
Board Director for District 6 was the only candidate on the ballot. For larger 
or more competitive elections, it is unclear if the IRV margin would still be so 
large.

7  Conclusions
Alternatives to plurality voting like instant-runoff voting, if deployed, should be 
accompanied by risk-limiting audits. In this paper, we have initiated the study 
of risk-limiting audit procedures for these alternative single-winner election 
systems. For scored systems we generalized a plurality auditing technique, and 
for Condorcet elections with a Condorcet winner we can audit a set of plurality 
elections. The method we describe is adapted from Stark (2010) and contains 
many simplifications which could have an impact on the statistical efficiency of 
this auditing procedure.

For instant-runoff voting, the question appears to be more complicated, and 
we propose two methods for auditing IRV elections. Auditing the elimination 
order constructs a set of multi-winner plurality elections based on the elimina-
tion sets used to eliminate candidates in each round and audits each of those. 
Auditing by error detection involves making an initial calculation or bound on 
the margin of the election and then assumes all ballot errors increase the margin. 
Except for auditing by error detection – which is essentially the original ballot-
level method for auditing plurality election – knowledge of the margin for an IRV 
election is not sufficient for auditing.

An important question is whether the effects seen in the relatively small elec-
tions for which we have data will be present in larger state or national elections. 
Analyzing data from such elections (or polling data) could be quite valuable. As 
with plurality elections, there is a dearth of information on the nature and dis-
tribution of real ballot errors. Such data could be used to optimize the statistical 
efficiency of an auditing procedure.

We do not believe that our proposed auditing procedures are the last word on 
risk-limiting audits of alternative election systems; we hope that future work will 
provide simpler and more efficient audits. As things stand now, however, some 
voting systems (e.g., the Borda count and range voting) appear to be substantially 
easier to audit than others (e.g., IRV). We believe that ease and efficiency of audit-
ing should be criteria when adopting a voting system.
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Appendix

A IRV tabulation algorithm
One way to perform IRV tabulation is described in Algorithm 4. It takes as input 
the set of candidates A, the maximum number of rounds of the algorithm to 

Algorithm 4: IRV – tabulating IRV results

inputs: candidates A, rounds ρ, ballots ( ){ } ,n
iB A == ∈Πy 1i

outputs: Winner, ElimOrder, modified {yi}
Winner ← 0
ElimOrder ← ( )
r←0
while r  <  ρ do
 r←r+1
 foreach c∈ A do

   ( ) ( )( )1=←∑ =y1 1n
i iQ c c  

 If maxc{Q(c)} > ½∑cQ(c) then
  Winner ←argmaxc{Q(c)}
  Append A\{Winner} to ElimOrder
  break
 else
  E←EliminationSet(A, yi)
  Append E to ElimOrder  
  A←A\E  
  foreach yi do
   yi ←yi \E
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perform ρ, and the set of ballots ( ){ } =
∈Π 1 .n
i iAy  It iteratively eliminates the candi-

dates with the fewest top choice votes – yi(1) is the top, continuing candidate on 
ballot i – by removing the candidates from every ballot on which they appear. 
As output, it produces the winner, if any, after p rounds, the set of candidates 
eliminated in each round, and the modified set of ballots after candidates have 
been eliminated.

As discussed in Section 5.3, there several rules for choosing which candidates 
to eliminate in each round. By abstracting the choice of the elimination set, all 
varieties of IRV can be described at once. The function EliminationSet(A, B) 
takes the set of candidates A and the set of ballots B and returns the set of can-
didates to be eliminated next. For example, using the base IRV elimination rule, 
EliminationSet (A, B) returns a singleton set consisting of the candidate with 
the fewest top-choice votes. The SF RCV elimination rule returns largest set of 
candidates E such that the sum of the top-choice votes for all candidates in E is 
less than the number of top-choice votes for all of the candidates not in E, S.F., 
Cal., Charter art. XIII, § 13.102(e) (2002).

Algorithm 5: ValidElimSets – return valid elimination sets

inputs: candidates A, ballots ( ){ } ,n
iB A == ∈Πy 1i  

outputs: ElimSets
ElimSets ← ( )
E ← ( )
r←0

( )( )∈ =←∑ =∑ 1 1 1n
c A i is y c  

while r  <  s-r do

  ( )( )1argmin 1 1n
c A i id y c∈ =← =∑  

  ( )( )1 1 1n
i ir r y d=← + =∑  

 if r  <  s-r then
  Append d to E
  Append E to ElimSets

Rather than iterating over each ballot every time, one can pick smarter rep-
resentations such as keeping track of how many ballots with each particular can-
didate ranking exist or using tree data structure in which paths from the root to a 
node correspond to candidate rankings (O’Neill 2006). Using a tree, eliminating 
a candidate involves recursively removing nodes corresponding to that candidate 
and merging their children.

The function ValidElimSets (A, B) in Algorithm 5 takes a set of candidates 
A and a set of ballots B and returns all sets of candidates E that satisfy (18). This 
function is used in the construction of the IRV lower bound in Section 6.2 as well 
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as auditing the elimination order in Section 5.3. Under the base IRV elimination 
rule, EliminationSet (A, B) returns the smallest element of ValidElimSets 
(A, B) whereas under the SF RCV rule, it returns the largest.

B Examples for IRV margins
In this appendix we give some toy examples of IRV elections that illustrate two 
points. First, a small number of errors can dramatically change the outcome of an 
IRV election, even when the final round margin between the final two candidates 
is quite large. Secondly, the IRV margin can be smaller than the Condorcet margin 
lower bound, even when IRV elects the Condorcet winner.

B.1 IRV can be sensitive to small errors

IRV is sensitive to errors, in the following sense: switching even a single vote from 
one losing candidate to another (or fabricating a vote for a losing candidate) may 
be enough to change the winner of an election.16 We illustrate this via a simple 
example. Consider the six candidate, 1000 ballot election in Table 3. Zoë has the 
fewest votes of any candidate. She is eliminated in the first round and ultimately 
Velma wins with 496 votes. Ulric comes in second with 379 votes. Naively, one 
might say that Velma won with a margin greater than 10% (either 11.7% or about 
13.4% depending on whether the denominator is 1000 or 379+496 = 876).

If an adversary is able to arrange for a single Y X V ballot to be counted as 
a Z Y ballot, then we get the election in Table 4. Here, the small error cascades 
through the rest of the rounds and Ulric, who previously came in second, is the 
winner with 379 votes. The correct winner, Velma, does not even make it to the 
final round. Instead, Xavier, who was previously eliminated in the second round 
makes it all the way to the final round to lose with 295 votes. Again, naively, the 
margin appears to be quite large (either 8.4% or about 12.5%). This example 
shows that intuition about margin calculations in plurality elections may not be 
applicable to IRV elections.

16 I. D. Hill describes a slightly different example of instability in a real Single Transferable 
Vote election—the multiseat analogue of instant-runoff voting. Hill points out that a change in a 
single ballot’s 15th choice (out of 23) would result in a different winner. In this case, it was the 
difference between voting for one of the (eventual) winners and the closest runner up rather 
than between two losers (Hill 2004).
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B.2 Margins for Condorcet versus IRV

The margin for IRV may be smaller than the Condorcet margin. Consider an elec-
tion between Xavier, Yolanda, and Zoë. Only 36 ballots were cast in this election, 
and the results are summarized in Table 5.

Candidate Round 1 Final

Xavier 6: X Y Z 6: X Y Z
5: X Z Y 5: X Z Y

10: Z X Y
Yolanda 10: Y X Z 10: Y X Z

5: Y Z X 5: Y Z X
Zoë 10: Z X Y –

Table 5: IRV election where the IRV margin is smaller than the Condorcet margin.

Candidate Round 1 Round 2 Round 3 Round 4 Final

Ulric 199: U 199: U 199: U 199: U 199: U
180: W  U 180: W  U

Velma 200: V 200: V 200: V 200: V 200: V
170: X  V 170: X  V 170: X  V

126:  Y  X  V
Wilard 180: W U 180: W U 180: W U – –
Xavier 170: X V 170: X V – – –
Yolanda 126: Y X V 126: Y X V 126: Y X  V 126: Y X  V –

125: Z Y 125: Z Y 125:Z  Y
Zoë 125: Z Y – – – –

Table 3: Unmodified six candidate, 1000 ballot IRV election.

Candidate Round 1 Round 2 Round 3 Round 4 Final

Ulric 199: U 199: U 199: U 199: U 199: U
180: W  U 180: W  U

Velma 200: V 200: V 200: V 200: V –
Wilard 180: W U 180: W U 180: W U – –
Xavier 170: X V 170: X V 170: X V 170: X V 170: X V

125: Y  X V 125: Y  X V 125: Y  X V 125: Y  X V
Yolanda 125: Y X V – – – –
Zoë 126: Z Y 126: Z Y – – –

Table 4: IRV election in Table 3 with a single Y X V ballot changed to Z Y.
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Under IRV, in the first round Xavier gets 11 votes, Yolanda 15 votes, and Zoë 
10 votes, so Zoë is eliminated. However, the supporters of Zoë break unanimously 
for Xavier over Yolanda, so in the final round Xavier defeats Yolanda 21 votes to 
15 and Xavier is the IRV winner. The simple lower bound for the margin of this 
election is one vote, the gap between Xavier and Zoë in the first round. Note that 
Xavier is also the Condorcet winner of this election – voters prefer Xavier to both 
Yolanda and Zoë by 21 to 15. The Condorcet margin is therefore six votes. Further, 
voters also prefer Yolanda to Zoë 21 to 15 so the minimum difference in preference 
between candidates is also six. However, the IRV margin really is two since one 
ballot shifted from Xavier to Zoë will cause Xavier to be eliminated in the first 
round and Yolanda to win.
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