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The Impact of Mobility on Gossip Algorithms
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Abstract—The influence of node mobility on the convergence
time of averaging gossip algorithms in networks is studied. It
is shown that a small number of fully mobile nodes can yield a
significant decrease in convergence time. A method is developed
for deriving lower bounds on the convergence time by merging
nodes according to their mobility pattern. This method is used to
show that if the agents have 1-D mobility in the same direction, the
convergence time is improved by at most a constant. Upper bounds
on the convergence time are obtained using techniques from the
theory of Markov chains and show that simple models of mobility
can dramatically accelerate gossip as long as the mobility paths
overlap significantly. Simulations verify that different mobility
patterns can have significantly different effects on the convergence
of distributed algorithms.

Index Terms—Consensus protocols, distributed algorithms,
distributed averaging, distributed processing, gossip protocols,
Markov chains, mobility, peer-to-peer networks, wireless sensor
networks.

1. INTRODUCTION

OSSIP algorithms are distributed message passing
G schemes that are used to disseminate and process in-
formation in networks [1]. Average consensus [2]-[4] and
averaging gossip algorithms [5], [6] form an important special
case of schemes that can compute linear functions of the data
in a robust and distributed way. Such schemes have found
numerous uses for distributed estimation, localization, and
optimization [7]-[9] and also for compressive sensing of sensor
measurements and field estimation [11]. In this paper, we study
gossip algorithms that compute linear functions and will not
discuss related problems such as information dissemination
(see, e.g., [12] and [13] and references therein).

Gossip algorithms are a natural fit for wireless ad hoc and
sensor network applications because of their distributed and ro-
bust nature. Recently, the broadcast nature of wireless commu-
nication has been exploited to improve convergence [10], [14],
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[15]. Another key feature of some wireless networks is node
mobility; to the best of our knowledge, the impact of mobility
on gossip algorithms has not been significantly investigated. In
this paper, we attempt to analyze how mobility can (or cannot)
help the convergence of gossip algorithms. For fixed nodes in
a random geometric graph (RGG) or grid (both popular model
topologies for large wireless ad hoc and sensor networks), stan-
dard gossip is extremely wasteful in terms of communication
requirements; even optimized standard gossip algorithms on a
grid converge very slowly, requiring ©(n?loge~!) messages
[6], [16] to compute the average within accuracy e. Observe that
this is of the same order as requiring every node to flood its esti-
mate to all other nodes. The obvious solution of averaging num-
bers on a spanning tree and flooding back the average to all the
nodes requires only O(n) messages. Clearly, constructing and
maintaining a spanning tree in dynamic and ad hoc networks
introduces significant overhead and complexity, but a quadratic
number of messages is a high price to pay for fault tolerance. In
this context, what kind of mobility patterns are beneficial and
how many mobile agents are needed to boost the convergence
speed? Our results suggest that certain kinds of mobility can,
in some cases, significantly accelerate convergence. This study
is a first step to understand how mobility can impact the con-
vergence of iterative message-passing schemes, at least for the
special case of pairwise averaging where the convergence be-
havior is better understood.

A. Main Results

Our first result is that if m nodes have full mobility and
the others are fixed in a grid, the convergence time drops to
©(n?/mloge~1). Therefore, even a vanishingly small fraction
of mobile nodes can change the order of messages required for
convergence. In particular, if any constant fraction of nodes
have full mobility, the convergence time drops to ©(n loge™1),
the same order as a fully connected graph.

Our second result is that some mobility patterns might not be
beneficial. We show that even if all the nodes of the network
have 1-D mobility in the same direction (e.g., horizontal), this
yields no benefit in the convergence time, up to constants. Intu-
itively, this is because the information must still diffuse across
the other direction (e.g., vertical). Finally, we show that 1-D
mobility with a randomly selected direction is as good as full
mobility.

In order to obtain these results, we develop a novel method
for deriving lower bounds on the convergence time of gossip
algorithms with mobile nodes by merging nodes with similar
mobility regions. This method is based on a characterization
of the convergence time of Markov chains in terms of a func-
tional called the Dirichlet form [17]. Our upper bounds are de-
rived using the so-called Poincaré inequality [18] and the re-
lated canonical path method [19]; a version of this technique
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has also been previously used to study gossip algorithms [20].
Our techniques are fairly general; while we illustrate applica-
tions to grid networks and RGGs, the methods can be applied to
other topologies.

II. NETWORK MODEL AND PRELIMINARIES

A. Time Model

We use the asynchronous time model [6], [21], which is well
matched to the distributed nature of wireless networks. In par-
ticular, we assume that each sensor has an independent clock
whose “ticks” are distributed as a rate A Poisson process. Our
analysis is based on measuring time in terms of the number
of ticks of an equivalent single virtual global clock ticking ac-
cording to a rate n\ Poisson process. An exact analysis of the
time model can be found in [6]. We will refer to the time between
two consecutive clock ticks as one time slot. This modeling as-
sumption results in a discrete-time system in which one sensor
is selected uniformly in each time slot.

Throughout this paper we will be analyzing the number of re-
quired messages without worrying about delay. We can, there-
fore, adjust the length of the time slots relative to the commu-
nication time so that only one packet exists in the network at
each time slot with high probability. Note that this assumption
is made only for analytical convenience; in a practical imple-
mentation, several packets might coexist in the network, but the
associated issues are beyond the scope of this paper.

B. Network and Mobility Model

Suppose we have a collection of n agents .A. At the first time
slot, each agent ¢ starts at some initial location with a scalar
x;(0). We will denote the vector of their initial values by x(0).
The objective of our algorithm is for every agent to estimate the
average

In order to accomplish this goal, the agents pass messages be-
tween each other to communicate their estimates. We assume
that this communication always succeeds. We also assume that
the messages are real numbers; the effects of message quanti-
zation in gossip and consensus algorithms is an active area of
research [22]-[29].

The n agents can move in an area G. For example, we may
take G to be a graph with vertex set V and edge set £. Agents
at locations v and v’ can communicate if either v = v’ or
(v,v") € E. Another example is taking G to be the unit square
and allowing agents at v and v’ to communicate if the distance
d(v,v") is less than some radius 7(n). For each location [ in G,
there is a set of locations A(I) C G such that an agent at [ can
communicate with agents in N'(1). If I’ € N'(I) thenl € N (I').

In this paper, we will use two networks to illustrate our re-
sults. However, the methods we describe can be used for more
general networks with bidirectional communication.

1) Our first example is the v/n X +/n discrete lattice on the
torus. The set of locations V is {0,2,...,/n — 1}? and
there are edges between (4,7) and (¢/,7') if &/ = (i +
1) mod v/n and j' = (5 £ 1) mod \/n. There are n agents,
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one for each location in V, and at time O they each occupy
distinct locations in V. For a location (i, 7), we call the 4
the row coordinate and j the column coordinate.

2) The second example is the RGG model on the unit torus.
The unit torus is formed from the unit square by “glueing”
opposite edges together. The agent locations are in [0, 1]
and the initial positions of the agents are chosen uniformly
in [0, 1]2. Agents can communicate with each other if the
distance between them on the torus is less than r(n) =

5010%, where ¢ > 10 ensures some useful regularity
properties [20] discussed subsequently. Again, for an agent
at (7, 7), we call the ¢ the row coordinate and j the column
coordinate.

Under agent-based mobility, at each time step, agent ¢ moves
to a new location in G chosen according to a fixed probability
distribution p;. Therefore, the sequence of agent locations
1;(1),15(¢),...,1;(t) is independent and identically distributed
(i.i.d.) according to the distribution y;. We call the collection of
distributions {y; : ¢ € A} an agent-based mobility pattern. Our
theoretical results in this paper are for agent-based mobility. In
particular, we study a few simple examples of mobility.

1) A simple example of agent-based mobility is full uniform
mobility. In this model, y; is the uniform distribution on G
for each 7 € A. This corresponds to the case where each
agent is equiprobably at any location in the G at time ¢. This
is similar to the model proposed by Grossglauser and Tse
[30]. We will also consider a static network with m fully
mobile agents added to the network.

2) In the horizontal mobility model, each agent selects a
new horizontal location uniformly at each time. For the
torus, it selects a new column coordinate uniformly from

coordinate uniformly from [0, 1].

3) Inthe bidirectional model, each agent selects equiprobably
whether it will move horizontally or vertically for all time.
At each time step, the horizontal agents select a new hori-
zontal coordinate uniformly, and the vertical agents select
a new vertical coordinate uniformly.

4) In a local model for the torus, an agent that starts ini-
tially at location (i, j) chooses a new location uniformly
in the square of size (2m + 1)? centered at (i, j). That
is, the horizontal coordinate is uniformly distributed in
{i—m,...,i+m} mod /n and the vertical coordinate is
chosen uniformly in {j — m,...,j + m} mod \/n. Once
the new coordinates are chosen, an agent can communicate
with other agents in the same or adjacent locations in the
VI X \/m torus.

The key assumption in all our mobility models is that in each
gossip time slot, the positions of the mobile agents are selected
independently from some distribution supported on a subregion
of the space, similarly to Grossglauser and Tse [30]. Popular
mobility models like the random walk model [31], [32], random
waypoint model [33], and random direction model [34] have
time dependences. If, however, the duration of one gossip time
slot is comparable or larger than the mixing time of the mobility
model, the positions of the agents will be approximately inde-
pendent (see also [35]). If delay is not an issue, we can always
set the duration of the gossip time slot to have that property,
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and in simulations we show that if we do not allow the mobility
model to mix, mobility is not as helpful. We believe that our
analytic results could be used to bound these more realistic mo-
bility models, but we leave this for future work.

III. ALGORITHM AND MAIN RESULTS

A. Algorithm

The gossip algorithm that we will consider is a simple exten-
sion of the standard nearest-neighbor gossip of Boyd ef al. [6]
that includes the mobility model in a natural way. At each time
step, the agents move independently to new locations. One agent
is selected at random, chooses one of its neighbors according to
the graph G, and performs a pairwise average with that neighbor.
More precisely, at each time ¢ = 1,2, ... the following events
occur.
1) Each agent i € A chooses a new location /;(t) according
to the mobility distribution ;.

2) An agent ¢ is selected at random and selects a neighbor
J uniformly from the set A(I;(¢)). For example, if G is a
graph, then

N(Li(t) = {k €V (i(t), lu(t)) € £}

3) The agents ¢ and j exchange values and update their esti-
mates

s(zi(t— 1)+ a;(t — 1

k=1,
k#1i,j.

Since the algorithm is randomized, we are interested in pro-
viding probabilistic bounds on its running time. Given € > 0,
the e-averaging time [6] is the earliest time at which the vector
x(t) is € close to the normalized true average with probability
greater than 1 — €

e
Tave(n7 6) = ithI)) t:éfllf,‘Q... P

ey

where ||-|| denotes the Euclidean norm. Note that this is essen-
tially measuring a rate of convergence in probability. The anal-
ysis of Denantes et al. [36] shows that bounds on the spectral
gap yield an asymptotic deterministic rate of vanishing error.
Our bounds can be used to bound both the rate of convergence
in probability and to show that the averaging error decays expo-
nentially asymptotically almost surely.

B. Main Results

Our main results characterize the benefit (or lack thereof) of
mobility in speeding up the convergence of gossip algorithms.
For the network on the grid or torus with no mobility, the aver-
aging time is 742" (1, €) = O(n2log e 1). For the net-
work on the RGG with the connectivity radius chosen as de-
scribed previously, the averaging time is Tl o) (n, €)

O( n? loge™1).

logn
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1) For horizontal mobility on the RGG and the torus, the av-
eraging time improves by at best a constant factor over the
case where the agents are not mobile at all

T(torus,horiz) (’I’L, 6) — Q(’I’L2 IOg 671)

ave

TRGG borin) (1, () — ) <M> .

ave logn

2) For bidirectional mobility where each agent initially se-
lects whether to move vertically or horizontally, the con-
vergence time is within a constant factor of full mobility

T(torus,hi) (n7 6) -0 (n IOg 6_1)

ave

TRGEGP) () =0 (nloge™).

ave

3) For n nonmobile agents on a \/n X y/n torus with m < n
agents having full mobility, the convergence time is

ave

n2
T(torus plus m,2D) (n7 6) -0 <_ 10g6_1> )
m

4) For the local mobility model with each agent moving in a
square of size (2m + 1)?

2]
T(torus,local)(nq 6) =0 (w 10g 6_1> .
m

ave 2

IV. UPPER AND LOWER BOUNDS ON CONVERGENCE TIME

A. Convergence Analysis

At each step of the algorithm, the agents update their esti-
mates of the average T. Let x(¢) denote the average estimates at
time . For agents i and j define the matrix T/ (%7)

1
=1—-;(ei—ej)(ei—e;)"

W (@.d)

where e; is the vector with 1 in the ¢th coordinate and 0’s else-
where. If the pair (4, j) average at time ¢, then the new vector of
averages is given by

x(t) = WDx(t — 1).

The randomness in the mobility and in the agent selection in-
duces a probability distribution on the matrices {W (7 : i, j €
A}. Since the mobility and selection are i.i.d. across time, we
can write the update as

x(t) = <H W(s)> x(0)

where {WW(s)} are i.i.d. random matrices. Denote the expected
value of this random matrix by W = E[W(s)]. It is not hard
to see that W is a (symmetric) stochastic matrix and, therefore,
corresponds to a Markov chain. Let P;; be the probability that
agent ¢ is selected in step 2 of the algorithm and it selects agent
4 in its neighbor set. Then, it is clear that P(W (s) = W(59)) =
]_)1;_7' + P]ﬂi, and that

- 1
Wi; = §(Pij + Pji). 2)
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The pioneering work of Boyd et al. [6] showed that the con-
vergence time of a randomized gossip algorithm is dictated by
the mixing time of the Markov chain associated with 1. Mathe-
matically, our problem is how to analyze the mixing time of the
new graph induced by the new feature (in this case mobility)
and, then, compare it to the old graph without mobility. For a
Markov chain M with transition matrix W, the convergence
rate to the stationary distribution is given by Ao (W), the second
largest eigenvalue of W. Note that the largest eigenvalue A; (W)
is 1. Define the relaxation time 7}.j.x to be the reciprocal of the
spectral gap

1
L= (W)
The following theorem is implicit in [6] (see also [1]).

Theorem 1 (Convergence With Tielax [1], [6]): 1f
W = (W,;) is symmetric and n is sufficiently large, then
Tove(n, €) is bounded by

Trelax (W) =

Tave(n7 6) =0 ( relax(W) IOg 6_1) .

B. Lower Bounds

In this section, we provide a general method for constructing
lower bounds on the convergence time for pairwise gossip algo-
rithms under agent-based mobility. The main intuition is to par-
tition the set of vertices in the graph and merge all agents whose
mobility is supported in the same element of the partition. This
induces a transformation on the Markov chain associated with
the gossip algorithm. By using an extremal characterization of
the relaxation time for Markov chains, we can lower bound the
relaxation time Tyerax (W) in the original gossip algorithm by
that for the induced Markov chain. The only remaining issue is
to choose a partition that yields a tight lower bound, which must
be done by inspection. We can use this technique to show that
horizontal mobility cannot improve the convergence of gossip
for the torus or the RGG.

Theorem 2: Let {U, } be any partition of the set of locations
G, and let W be the transition matrix of the chain induced by
merging all agents whose mobility is restricted to a single set in
the partition. Then

Tove(n,€) = Q(Tretax(W) log e ™).

Proof: We begin with the set G on which the agents in A
canmove. Let {U,. : = 1,2,..., M} be a partition of G. Given
an agent-based mobility pattern {y;}, let

Cr={veA:pu,(U.)=1}
be the set of agents whose mobility is restricted to U,.. We can

create a map F on the state set A of the Markov chain corre-
sponding to the gossip algorithm

F(a):{'r lfaecr
a otherwise.
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The map F’ merges agents whose mobility is restricted to U/, and
leaves the other agents invariant. Let B denote the image of F'.
For a Markov chain on A with transition probabilities W;; and
stationary distribution 7(+), we can define a new Markov chain
on B with transitions Wkl

Wi = 3)

eI

ZZF(”) i:F(i)=k j:F(j)=1

This is the induced chain from the function £ [17, Ch.
4, p. 37]. The stationary distribution of this chain is
(k) = 2 ip(iy=k 7(1)-

We can express the relaxation time of a Markov chain in terms
of the Dirichlet form [17]. Given a real-valued function g on the
state space of the Markov chain with transition matrix W and
stationary distribution 7r(-), the Dirichlet form is given by

ZW Wii(g(k) = g(1))*.

}- “
k

The relaxation time is then given by

Trelax (W) =sup { Zk Z T

g

The following contraction principle shows that T}e1.x for an in-
duced chain is at most that of the original chain. This result is
claimed in [17, Ch. 4, p. 37], and here we provide a brief proof.

Claim 1: Let M be a Markov chain on a finite state space A
with transition matrix W and let /' : A — B be an arbitrary
mapping. Then, the relaxation time of the chain M on B with
transition matrix W given by (3) induced by F' lower bounds
the relaxation time of the original chain

Trelax(W) S Trelax(W)~ (5)

We use the extremal property of the relaxation time in (4). Let
g achieve the supremum in (4) for the induced chain given by w.
We can create a function g from ¢ to lower bound T}ejax (M).
LetU, = {i : F(i) = k} for each k € B. Simply set g(i) =
g(k) for i € Uy. Then

S w(i)gli)? = 3 #(k)a(k)2.
i€ A keB

Note that {U}, : k € B} forms a disjoint partition of .A. For this
function g, using (3) yields

Dig.g) =5 3 wi)Wis(o(i) — o))
i,jEA
= S w02
kleB \ i€l jeuU,
=5 3wy
kleB

and therefore the Dirichlet form D(g, g) = D(g, ). Therefore,
the supremum of (4) for the original chain is at least as large as
that for the induced chain, proving (5). |
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Note that while the mixing time of a Markov chain decreases
when states are merged, the same is not true for other quanti-
ties like the expected time to go from one state to another. The
preceding lemma and Theorem 1 give a lower bound on the ben-
efit on the convergence speed of gossip in a network of mobile
nodes. In theory, we could optimize the lower bound over all
partitions {U,.}, but for our examples there are “obvious” par-
titions that yield meaningful lower bounds. We turn first to the

Vn X \/n torus.

Corollary 1 (Torus With Horizontal Mobility): Let
G = (V,€) be the \/n x +/n torus and suppose that the
set of agents A = ). Let the mobility pattern for the (z, j)th
agent be uniformly distributed on the set U, {(i, k) : k < \/n},
which corresponds to mobility only in the horizontal direction.
Then

Tave(n,€) = Q (n2 log 6_1) . 6)

Proof LetU; = {(i,) : j = 1,2,...,/n} be the ith
row of the torus, so {U;} partitions V. Consider two agents,
one starting at (4,5) and the other at (k,l), where k = i +
1 mod +/n. Then, the probability in the algorithm that (7, j) and
(k, 1) average with each other is the chance that (¢, 7) is selected
times the probability (over the mobility) that (4, j) and (k, 1) are
adjacent to each other times the chance that (4, j) selects (k, )
out of its neighbors. We can upper bound this probability

1 1
Wi;=0(-x—].

The chain induced from this partition is a cycle with \/n
states, where each state corresponds to a row in the original
Markov chain. The transitions from row & to row [ = (k
1) mod /7 are given by (3)

A 1
Wi =

> w(@)Wi

2ier ()= () #:F(i)=k j:F(j)=l
1 1 1
:\/ﬁ-\/ﬁ-\/ﬁ-—-0<— « _>
n

n  \/n
1
o(2)
n
Therefore the self-transition for each state is 1 — O(1/n). Let
o = Wy, and note thqt Wi, is the same for each pair of adja-
cent rows. The matrix W is circulant and generated by the vector

(a,1 — 2a,,0,...,0). The eigenvalues are given by the dis-
crete Fourier transform of the vector (cf. [16])

Me(W) =1 =20+ 2acos <%) .

In particular, the second-largest eigenvalue can be bounded
using the Taylor expansion of the cosine

1472 1

M(W)>1-2a42a(1l-=—)=1-0(—=).
e i G F Y R G
Therefore, the relaxation time is

Trelax = Q(’I”LQ)

and the averaging time is bounded by Theorem 1. |
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The preceding theorem shows that allowing nodes to move in
only one direction gives the same order convergence time as the
torus without any node mobility. That is, sometimes mobility
can yield no significant benefits in terms of convergence. In the
case where we add a single agent moving in the vertical direc-
tion, we still do not gain anything. The proof follows from the
same arguments as Corollary 1.

Corollary 2 (A Single Vertical Mover Does Not Help): Let
G = (V, ) be the /n x /n torus and suppose that the set of
agents A = V U {e}. Let the mobility pattern for the (7, j)th
agent in V be uniformly distributed on the set {(i,k) : k <
\/n}, which corresponds to mobility only in the horizontal di-
rection. Let the mobility pattern for e be uniformon {(i,1) : ¢ €
v/n}. Then, for this gossip algorithm

Tove(n,e) = Q (n2 log 671) .

We could prove in a similar way that adding a constant
number of agents in the vertical direction does provide better
than constant improvement in the convergence time. In the
next section, we use this approach to show that 1-D unidi-
rectional mobility cannot help speed up the convergence time
of gossip on RGGs as well. Boyd et al. [6] have shown that
the averaging time for standard pairwise gossip on the RGG
is ©(nr~2loge=1), which for r(n) = ©O(y/n=1logn) is
O((n?/logn)loge™1).

C. Upper Bounds

For our upper bounds, we use the canonical path method [19],
which we summarize here for completeness. For any ergodic
and reversible Markov chain on a state space €2, for each pair
i, j of states define the capacity of a directed edge e = (4, 7) to
be

C(e) = T(i)Wij.

For each pair of states, we define a demand D(3, j) = (i) (j).
A flow is any way of routing D(4, ) units of “liquid” from i to j
for all pairs 4, j simultaneously. Formally, a flow F' : P — R*
is a function on the set P of all simple paths on the transition
graph of the Markov chain that satisfies the demand

> F(p) = D(i, j)
PEP;;

where P;; denotes all the paths from 7 to j.
For a flow F', we can define the load on an edge e to be total
flow routed across that edge

=% > F.

1,JEQPEP;j:e€p

The cost of a flow F' is the maximum overload of any edge

p(F) = max é((ee)) .

Finally, define the length of a flow [(f) to be longest flow-car-
rying path, i.e., the longest p for which F(p) # 0.
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Using these definitions, we can use the following Poincaré
inequality [19] to yield an upper bound on the inverse spectral
gap (relaxation time) of the Markov chain

—— < p(PI(F).

g AN

Intuitively, if there are no “bottlenecks” on the transitions for
every pair of states, the relaxation time of the chain will be very
small. Any flow F' gives an upper bound that depends on the
cost p(F') of its most congested edge.

Corollary 3 (Full Mobility Is Optimal): Let the area in which
the agents move be given by the graph G = (V,&) corre-
sponding to the \/n X \/n discrete lattice on the torus. Let the
set of agents A = {1,2,...,/n}? with initial locations equal
to V. Suppose the mobility pattern of every agent in A is the
uniform distribution on the set of all locations V), which corre-
sponds to full mobility. Then, for this gossip algorithm

Tove(n,e) = O (n log 671) .

Proof: The stationary distribution is uniform, so 7 (i) =
1/n for all 5 and the demand D(i, j) = 1/n? for all pairs (i, j).
Furthermore, the probability of 7 and j averaging is Q2(1/n?), so
the state diagram of the Markov chain is the complete graph with
edge capacities €2(1/n?). The simplest flow is to route directly
the demand 1/7n2 on the edge from 4 to j, which gives a cost of
O(n) with a flow of length 1, so the relaxation time is O(n). B

A slightly less simple example is a cycle with one fully
mobile agent. The cycle has averaging time ©(n®loge™!)
(see [16]). With one mobile agent the averaging time drops to
O(n?loge™1).

Corollary 4 (Cycle With One Fully Mobile Agent): Let the
area in which the agents move be given by the graph G = (V, €)
corresponding to the cycle of length n and let there be n + 1
agents A = BU {v'}, where B = V = {1,2,...n}. The
initial locations of the agents in B are the locations of V and the
agents in B cannot move. The agent v has mobility uniformly
distributed on V with initial location 1. Then, for this gossip
algorithm

Toave(n,e) =0 (712 log 671) .

Proof: The stationary distribution for this chain is uniform,
som(i) = 1/(n + 1) for all  in A. The probability that ¢ and j
average for ¢, 7 € 1V is O unless 7 and 7 are neighbors. Otherwise,
with probability % the mobile node v’ is a neighbor of 4, so

1 3 1 31 1 1
Pij=—((1-=) c+=—5)=—|1——].
/ n(( n> 2+n 3) 2n< n>

Fori € Aand j = v/, we have
1 3 1 1
n n 3 n%
Thus, the capacities are
el ey j=v'.

The demand is just D(i, j) = 1/(n + 1)? between each pair of
nodes.
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To construct a flow F', we just route all flow through the
mobile agent v'. An edge (i,v') for ¢ € B carries n flows
to all agents j # i, each of size 1/(n + 1)? for a total of
f@i,v") = n/(n + 1)2. Similarly, any edge (v’,4) carries the
same total flow. All flows are of length 2, so {(F) = 2. The
overload is
_onf(n+ 1)? B n3
1/(n?*(n+1)  (n+1)

And thus for large n, we get an upper bound of O(n?) for the
relaxation time of the chain. The averaging time, then, follows
from Theorem 1. |

p(F)

V. EXAMPLES REVISITED

We now turn to our examples of mobility and derive scaling
results for gossip with mobility. For the torus, we will show
that local mobility in a square of area > cuts the convergence
time by m? and adding m fully mobile agents cuts the conver-
gence time by m. For the RGG, we will prove the same result
for bidirectional mobility and a lower bound for unidirectional
mobility.

A. Torus

1) Local Mobility: An important step in bridging the mo-
bility model here with more reasonable mobility models is to
consider local mobility, in which an agent moves uniformly in
a square of side length (2m + 1) centered at its initial location.

Theorem 3: Consider gossip with n agents on the /n X \/n
torus G. Let the agent initially at a location 7 have mobility uni-
form in a square of side-length 2m + 1 centered at 7. Then, the
averaging time is ,

Tove(n,e) = O (nlﬂ log €1> .
m

Proof: Divide the grid into squares of side length m. Ini-
tially, each square contains m? agents. Let a; refer to the agent
whose initial location is ¢ and let s(a;) refer to the square con-
taining 7. The mobility of agent a; covers s(a;) and intersects
the squares adjacent to it. For each pair of agents, we must route
D(i,j) = 1/n? units of flow. We will do this by routing flows
in L-shaped paths, as shown in Figs. 1 and 2. Since a;’s mobility
intersects the squares adjacent to s(a; ), there is a nonzero prob-
ability that agent a; will communicate with an agent a;; whose
square s(a; ) is adjacent to s(a;).

Assign the 1/(m?n?) units of flow to each agent a;; whose
initial location is in the square adjacent to s(a;). There are m?
such agents. Each agent then routes 1/(m*n?) units of flow
to each agent a;~ in the next square along the L-shaped path.
The flow is routed only along edges (7, j’) such that s(a;) and
s(aj) are different. Each left-to-right edge carries flow from
the O(y/n/m) squares to the left of it. These flows are routed
to the O(n/m?) squares to the right and above it for a total of
O(n?®/? /m?) pairs (i, ) that are routed through each square.
Each square has m? agents so there are O(n/2/m) flows car-
rying 1/(n?m?) per flow, so the load on the edge is

fi.j) =0 (ﬁ) .

The same bound holds for down-to-up edges.
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Fig. 1. Routing flow in the local mobility model. Nodes route flows along
L-shaped paths through the squares.
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Fig. 2. Routing flow in the local mobility model. As illustrated on top, for node
1 to send to node j, it evenly divides the flow and sends it to all node in the
adjacent square in the L-shaped path. Each node in the adjacent square routes
that flow uniformly to every node in the next square in the path. At the end of
the route, as illustrated on the bottom, the nodes in the square adjacent to the
destination j transmit their received flows directly to ;.

To find the capacity of these edges, we calculate the proba-
bility that agents ¢ and k in adjacent squares average with each
other. The probability is 1/n to select agent ¢ and the overlap
in agent i and k’s mobility area is Q(m?), so the chance i and
k are adjacent after moving is (1/m?). With high probability,
there will be no more than O(log m) nodes for i to choose from,
so the chance of selecting k is at worst £2(1/logm). Thus

. 1
i k) =9 (m)

The maximum length of any flow is O(y/n/m), so the Poincaré
inequality gives

1 _0 n?logm
L= (W) m?2 ’

2) Adding Mobile Agents: The question motivating this work
is this : how much can agent mobility improve the convergence
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speed of gossip or consensus algorithms? Put another way, how
much mobility is needed to gain a certain factor improvement
in the convergence? A simple model for which we can answer
this question is the following: consider n static agents in the
\/n X \/n torus together with m mobile agents whose mobility
t; is uniform on the torus. We use our techniques from ear-
lier sections in the following to show that the averaging time
of gossip in this model is ©(n?/m log 1), which for m = n®
is ©(n?>~?). For example, adding \/n mobile nodes can speed
convergence by a factor of /7.

Theorem 4: Let the set of locations be given by the \/n X v/n
discrete lattice on the torus G = (V, ). Let there be n + m
agents A = S U M where the n static agents S are positioned
on the n nodes of the torus and do not move. and the 7 mobile
agents M have mobility that is uniform on V, where m < n.
Then, the averaging time is given by

n2
Tave(n,€) = O <— log e_1> )
m

Proof: We first show that for i € S and 7 € M, the
probability P;; that agent ¢ contacts agent j and averages is
O(1/n(m+n)). Agent i is selected with probability 1/(m+n)
and agent 7 is in the neighborhood of agent ¢ with probability
5/n. Therefore

m—1

2 5-1HP(L:I)

=0

5

Py =
7 n(m+n)

where L is the number of agents in M that land in the neigh-
borhood of . The summation is just

T %HP(L — ) = E[1/(5 + L)]
=0

which is clearly upper bounded by 1, so

Since 1/(5 4+ L) is convex, Jensen’s inequality can be used to
obtain a lower bound

E[1/(5+ L)] > 1/E[5+ L] = 1/(5 + 5m/n).

Therefore, P;; = Q(1/n(m + n)). By symmetry, we have the
same bound on Pj;.

To get the lower bound, consider the function G : SUM —
S U {M} that is the identity on S and merges M into a single
state M. We can bound the transition probabilities of the new

chain using (3)
5 1 Pi; + Pj;
Wyi==——= w(j) —L——=
ZjeM m(J) jgj\:/t 2

=6 (srm)

. 1 Py + Pj;
Wing = —— ) AL )
M=) Z ()=
JEM

m

:®<m)'

For i,k € S we have Wzk = Wig.
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Fig. 3. RGG example with bidirectional 1-D mobility.

The new chain is a torus plus an additional central node M.
The probability of transitioning from the torus to the central
node is ©((m/n)/(m + n)) and for transitioning back it is
©((1/n)/(m + n)). It can be seen (see the Appendix) that the
relaxation time for this chain is ©(n?/m) via the extremal char-

acterization in (4). Thus Thye(n,€) = Q2 -1

2
(% log e
We now turn to the upper bound. As before, we construct a
flow on the chain. The demand between any two agents (4, j) is

1/(n + m)?. Since P;; = ©(1/n(n + m)), the capacity
Ce) = ©(1/n(n +m)?)
for e = (7, 7). We must now construct a flow that will yield an

upper bound on the relaxation time of 72 /m. For a pair of states
i € Sandj € M, weassign 1/(n+m)? to the direct path (4, ).
Forapairi € Sand j € S, we split 1/(n+m)? equally into the
m paths (i, k, j) for k € M. Finally, fori € Mandj € MUS
we again route 1/(n + m)? directly on (i, 5). Then

G i.j € M
F((5)) =40 ijEeS
(m+n)2+ (m+n)2 1€8,jeSUM.

Therefore, p(F) = ©(n?/m). Since all paths are ©(1), the
Poincaré inequality implies that Theax(W) = O (n?/m), so
). m

Theorem 1 gives Toye(n,€) = O (% log e

B. RGGs

1) Bidirectional Mobility: We now turn to the case where
some agents move horizontally and some vertically. We will
prove our results for the RGG model, where n nodes are ini-
tially placed uniformly in the unit square G. In the bidirectional
mobility model, before the gossip algorithm starts, each node
flips a fair coin and is assigned to move horizontally or verti-
cally throughout the process. Note that this is a 1-D mobility
model since each node is moving only horizontally or verti-
cally throughout the execution of the gossip algorithm, never
changing direction (see Fig. 3). Our result is that this mobility
model is as good as complete node connectivity.
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Theorem 5: Consider the gossip algorithm with n agents
under the RGG model and bidirectional mobility. We can
- o(y=2)

choose a connectivity radius r(n) such that

the gossip averaging time

Tove(n,€) = O(nloge 1).

Proof: We start by partitioning the space into a grid of
squares of size c; log" . Let B; denote the number of agents
whose initial posrtron was in square 7.

It is well known [20], [37]-[40] that a combination of a Cher-

noff and a union bound yields uniform bounds on the maximum
and minimum occupancy of all the squares

P (c—llogn < B; <2cilogn Vi) >1- nl_"‘/si.
2 c1logn

By selecting ¢; > 10, we can show that all the squares have
O(logn) agents with probability at least 1 — W’ ) square
occupancies are balanced even if the experiment is repeated n>
times. We set the transmission radius to 7(n) = 4/5¢; log" to
guarantee that an agent in a square can always communlcate
with any agent in the four adjacent squares.

Recall that, initially, each agent is assigned to be a horizon-
tally moving or vertically moving node by flipping a coin and
keeps this directionality throughout the process. Denote by H;
the set of nodes that move horizontally and whose initial posi-
tion was in the ith row of squares. These agents always stay in
the th row. Similarly, let V; be the set of agents who move ver-
tically in the 7th column of squares.

Each square contains in expectation ¢; log n nodes and there
are m squares in each row and column. Since each node
flips a fair coin and is assigned in a vertically or horizontally
moving class, the expected cardinalities will be

1
E|H;| = E|V;| = 3¢ logn, | L ©(y/nlogn). (7)
c1logn

Using standard Chernoff bounds, we can show that the cardinal-
ities of | H;|, |V;| are sharply concentrated near their expectation.

Theorem 1 shows that the averaging time of the gossip algo-
rithm is bounded by the inverse spectral gap (relaxation time) of
the average matrix W, where the expected matrix W = EW (s)
is computed over mobility of the nodes and random selection of
which nodes are gossiping.

We now proceed to bound the spectral gap using a canon-
ical flow and we need to select paths for every pair of states for
the Markov chain defined by W . The state space is the set of n
agents and 7 () = 1/n for each agent i since W is doubly sto-
chastic. The capacities of the edges will be proportional to the
entries of W (see (2), where W; ; s the average of the probabili-
ties P;; and Pj;, measuring how often agents 7 and j are pairwise
averaged. For each pair of agents (i, j), we must specify how to
satisfy the demand D(i,j) = n~2 by assigning flows to some
(appropriately chosen) paths in P;;.
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Fig. 4. Routing flow from a node in H; to a node in set H 3. The flow is routed
from the node in H; to all nodes in the sets {V;} and then back to the node
in H;.

Our flow construction uses four different cases depending on
whether ¢ and j move horizontally or vertically

1) Case 1: Suppose ¢ € Hk and 7 € H;. To satisfy the
demand 7 =2 node i assigns ©(n~?) units to each path (i, v, 7),
where v € V. for some r. There are ©(n) agents who move
vertically, so the total flow that reaches j can be made equal to
n~? (see Fig. 4).

2) Case 2: Suppose ¢ € V}, and j € V;. This is the same
as the previous case, except that ©(n~3) units are assigned to
each path (i, h, j) for h € H,.

3) Case 3: Suppose ¢ € Hj, and 53 € V;. To satisfy the
demand n~2 assign n =2 to the direct path (4, j).

4) Case 4: Suppose ¢ € V}, and j € H;. We again assign
n~2 to the direct path (i, j).

Our construction, therefore, only uses the edges in the graph
between H sets and V' sets. In other words, it is averaging be-
tween nodes that move vertically with nodes that move horizon-
tally that allows information to spread quickly in the network.
The averaging between two nodes in H or V' could be omitted
and still the bound would not change in order. The total load
on an edge e = (h, v) between a horizontal moving agent and
a vertical moving agent is the sum of the direct flow (h, v), the
sum of the flows (h, v, j) for all horizontal moving ¢ and (7, h, v)
for all vertical moving ¢

fo =m0 () S mire () Ll

-0 ()

The same bound holds for e = (v, h).

Finally, we calculate the capacity for the edges (v, h). It is
sufficient to calculate a lower bound on the probability that
agents v € Vi and h € H,; average. Agent v is selected with
probability 1/n. Based on our assumptions on the communi-
cation radius, v can communicate with ©(logn) neighbors.
The probability that v lands in a row within r(n) of row [ is
©(y/n~1logn) and the probability that i lands within 7(n) of

row k is also ©(y/n~1logn). Therefore, we have

oo (G5 ) o )
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The capacity of each edge (v, h) is then C(e) =
symmetry, the same formulae hold for (h, v).

We can now calculate the overload for this flow on any edge
e = (v,h)

Q(n=3). By

Since this holds for all edges, we have p(F') = O(n). The max-
imum length of any path used in the flow is 2, so by the Poincaré
inequality we have

Trelax(W) = TZ(W/) -

Theorem 1 gives the result. ]

One intuition for this result is that bidirectional mobility en-
ables the construction of “short” routes between all pairs of
agents. We can derive the identical result for the torus using
the same arguments. Under bidirectional mobility, the averaging
time for the torus is O(nloge=1), which is the same as full
mobility.

2) Unidirectional Mobility: We now show that unidirectional
mobility does not improve the scaling performance for RGGs.
This is proved in the same way as the analogous result for the
torus.

Corollary 5 (RGG With 1-D Mobility): Consider gossip on
the RGG with n agents with the 1-D unidirectional mobility
model. Then, for this gossip algorithm

n? log e_1>

Proof: We first divide the unit square into subsquares

Toe(n, €) = Q <

logn

of side length cu/k‘% for some constant c¢;. This creates

) (‘ /logn) X © (‘ /logn) torus on which the mobility
can be defined. We must first characterize the Markov chain
corresponding to the gossip algorithm under the 1-D unidi-
rectional mobility model. If we set the communication radius

to co IOg" , then an agent in the ith row of subsquares can

commumcate with agents in rows {i — c3,...,7 + c3}, where
c3 is again a constant. Moreover, each subsquare will have
O (log n) agents with high probability. Therefore, we can upper
bound the probability that an agent in row ¢ will average with
an agent in one of the rows {i —c3,...,i—1,i+1,... i+ c3}

1 log 1
ﬂij:O(—X\/Ognx )
n n logn

Thus, the chance a given agent averages with someone not in
their row of subsquares is O(1/4/n3logn).

As in the torus, we apply the induced chain method using
the partition that merges each row of subsquares. This creates
a new Markov chain with y/n/logn states that is a kind of
cycle where there are positive transition probabilities from state
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Error vs.rounds for horizontal and no mobility on the torus

Iogm normalized estimation error

—>— none
—E— horizontal
-9 1

| | |
0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2
Number of iterations

Fig. 5. Log average error versus number of iterations of the gossip algorithm
for the torus with no mobility and with horizontal mobility. As the graph size
increases, the gap between the two algorithms vanishes.

k (corresponding to the kthrow) to states | € {i—cs, ..., i+c3}.
From the analysis of the torus, we can see that from row k to [

! = 1 Z Z W(i)Wi]’

Zi:F(i)zk ™)(0) i:F(i)=k j:F(j)=l

_ n 1 1 o 1

~\ logn A n3/2\/logn
1

o)
n

Let § denote this transition probability. The matrix of this new
chain is still circulant and generated by the vector

8, ...

The DFT and Taylor expansion again gives the bound on the
second-largest eigenvalue

Ao(W)=1-4-0 (log”)

B.1—2c3B,8,...,3,0...0).

n

_1_0 <10g2n> '
n

Therefore, Trelax (W) = Q(n2/logn). [ ]

VI. EXPERIMENTS AND SIMULATIONS

We can gain some intuition about the benefits of mobility
via simulations. All simulations are for a torus with a linearly
varying field. Our first main result was a lower bound that shows
horizontal mobility is as bad as no mobility in terms of conver-
gence. This is illustrated in Fig. 5, where we can see that, for
a range of network sizes, the error under horizontal mobility is
close to that of the torus with no mobility. Indeed, as the net-
work size gets larger, the gap vanishes, which suggests that our
analysis is tight for this example. Our second major result was
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Error vs.rounds for bidirectional and full mobility on the torus
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Fig. 6. Log average error versus number of iterations of the gossip algorithm
for the torus with full mobility and with bidirectional mobility. As the graph
size increases, the gap between the two algorithms shrinks.
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Fig. 7. Adding a few mobile nodes to a static grid can exponentially decrease
the estimation error for a fixed number of iterations (20 000).

a positive one; the bidirectional mobility model was nearly as
good as full mobility. This is illustrated in Fig. 6. Although there
is a gap between the error decay under the two mobility models,
for a fixed error, the number of iterations needed to achieve that
error is at most a constant factor more for the bidirectional mo-
bility model.

Our final result was that adding m mobile agents to
a static grid with n agents gives a convergence time of
O(n%/mloge~1). Fig. 7 shows how adding only a few addi-
tional mobile agents can dramatically improve the speed of
convergence. As we add more nodes, log e decreases linearly,
which corresponds to an exponential decay in the average
error. This suggests that even in large networks, investing in
a small number of mobile agents can yield a major benefit in
convergence time.
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Error vs. number of nodes for torus and grid, horizontal mobility
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Fig. 8. Gap between the torus and grid versus grid size after 5000 pairwise it-
erations, averaged over 100 trials, using the uniform horizontal mobility model.

The examples that we consider in this paper are simplifica-
tions of real network topologies and real mobility models. It is
important to understand how unrealistic these models are. We
simulated the difference between the lattice on the torus versus
a/n x \/n grid. Fig. 8 shows the error after a fixed number of
iterations for increasing grid sizes. Although the algorithm con-
verges faster on the torus, the gap decreases with larger network
size. A second question is how the random walk mobility model
[31], [32] relates to the mobility model in this paper. In order
to analyze gossip under such a mobility model, we would need
to prove new convergence result for the iterated random matrix
products that characterize the evolution of the agents’ estimates.
It is clear that if each agent moves according to a random walk
and the number of steps taken between each gossip iteration is
longer than the mixing time of the random walk, then random
walk mobility is equivalent to the mobility models considered
here. However, for a smaller number of steps, the simulations of
the speed of convergence of the algorithm are inconclusive, as
there appears to be a dependence on the initial configuration of
agents’ values. We leave as an open question how to bound the
performance Markov random walk models

VII. DISCUSSION AND FUTURE DIRECTIONS

In this paper, we investigated how agent mobility impacts the
convergence speed of distributed averaging algorithms by devel-
oping new analytical tools derived from the theory of Markov
chains. Using these tools, we could show that different mobility
patterns can have dramatically different effects depending on the
overlap of the mobility paths. Perhaps surprisingly, even a sub-
linear number of mobile nodes can change the order of gossip
messages required for convergence. We note that “mobility” in
our model is a variety of time-varying network topology that in
practical implementations need not come from the physical mo-
bility of the agents, but can be induced by structured variations
in the topology.

The class of mobility models that are amenable to our analysis
makes a strong assumption on the speed of the mobility or delay
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tolerance of the gossip algorithm. One interesting direction for
future research involves understanding more realistic mobility
models. General mobility models based on Markov chains could
be analytically tractable since they would integrate naturally
with the Markov structure of the averaging process. Proving that
these systems reach a consensus could follow from more general
results about the corresponding stochastic process [41]. We con-
jecture that random walk models with slower mixing times will
yield smaller benefits, and that our independent (fast mixing)
model is an upper bound. For these models, modifying the pair-
wise gossip paradigm (cf. [20]) may yield a greater benefit than
relying on mobility alone. The impact of node mobility on dis-
tributed optimization and general message-passing algorithms
on probabilistic graphical models would also be a very inter-
esting research direction.

Another interesting direction is understanding the impact of
mobility for more general message-passing algorithms such as
distributed convex optimization. The analysis of [42] obtains a
convergence theorem similar to the spectral gap and it would
be interesting to investigate the scaling behavior of the number
of required iterations for the min-sum algorithm to optimize a
convex function under out node mobility models.

APPENDIX

We will construct a g in (4) to show that the mixing
time of a torus plus an additional central node M with
transition probabilities O((m/n)/(m + n)) to M and
O((1/n)/(m + n)) away from M along with transitions
©(1/n) between neighbors in the torus has relaxation time
Q(n%/m), where m < n. The stationary distribution for this
chain has probability 7(i) = ©(1/(m + n)) on the nodes
i = 1,2,...,n of the torus and 7(M) = O(m/(m + n))
on M. Let g(M) = 0 and g be constant on each
column of the torus with the values on the columns being
{-a,—a+1,...0,1,2,...,0,c,a — 1,...,—a + 1,—a}
for \/n even and {—a,—a + 1,...,a,0,a,a — 1,...,—a}
for \/n odd, where & = ©(y/n). Then clearly > 7 (i)g(7) = 0.
We can calculate the numerator and denominator in (4)
1

Do w(k)g(h)? = ———/nd Yy i

k =0

-0 ()
m-+n

D(g,9) = %\/MZ;F + %x/ﬂi} 1
Lo (L) i
m+mn
Dividing gives the result.
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