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Abstract— According to the cognitive radio paradigm, a ter-
minal or subsystem will opportunistically select a frequency
band for data transmission. Because the spectrum is shared,a
cognitive system may face interference that cannot be givena
statistical description. An adversarial interference model may be
appropriate for finding achievable rates under these conditions.
In this work we investigate the benefit offered by using many
antennas. In addition to adding spatial diversity and multiplexing
gains, multiple antennas can allow a cognitive system to mitigate
the effects of adversarial interference that is known to come from
a system with fewer antennas.

I. I NTRODUCTION

Cognitive radio [1] refers to a class of wireless systems
that use sensing to adapt their behavior in order to coexist
with other systems. Cognitive radios have been proposed as a
solution for exploiting unused spectrum by adopting flexible,
frequency-agile devices. The spectrum is licensed to aprimary
user who shares the band withsecondary or “cognitive”
users. With the Federal Communication Commission’s recent
decision to allow spectrum reuse in the 700 MHz band [2],
these systems are moving ever closer to reality and have raised
a number of interesting theoretical questions. One popularin-
formation theoretic model for cognitive radio, due to Devroye,
Mitran, and Tarokh [3], modifies an interference channel to
give a “cognitive” user access to the other user’s message non-
causally. The cognitive user can then optimize its own rate
subject to conditions guaranteeing minimal degradation tothe
other “primary” user. Gastpar [4] has looked at coexistence
from the perspective of limiting the received power at a
primary system. These optimistic perspectives on coexistence
assume a high degree of coordination and cooperation between
primary and secondary or cognitive systems.

In this work we do not address the coexistence conditions
posed by the cognitive radio paradigm but instead focus on
the issue of interference modeling. More specifically, we will
study a model for multiple-input multiple-output (MIMO)
Gaussian channels [5] in which additional interference comes
from the primary system. An isolationist approach is to treat
the interfering signal from the primary as additional noise.
A game theoretic model for this problem, carried out most
fully by Baker and Chao [6], uses the mutual information
as a payoff between one player who can choose a transmit
covariance matrix and another who can choose the noise
covariance matrix. This approach relies on the convexity ofthe
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Fig. 1. Two different configurations for a system with a single-antenna
interferer. Because the location of the interferer is unknown, the subspace in
which the interference lies may be unknown prior to transmission.

space of allowable noise matrices, which may not always hold.
We will explicitly model the number of antennas used by an
interfering system and demonstrate that using this knowledge
leads to a significant rate increase when the receiver has more
than one antenna.

To illustrate our problem, consider the two possible configu-
rations shown in Figure 1. A2×2 MIMO system is subject to
unknown interference from a single antenna system. Because
the location of the interferer is not known prior to transmission,
the MIMO system must choose a rate and coding scheme that
will work regardless of the interferer’s location. The factthat
the interferer has a single antenna means that the interference
lies in a one-dimensional subspace of the received signal. One
approach is to ignore this information and target a rate that
only takes into account a power constraint on the interference.
We will see that this is a suboptimal strategy, particularlyin
the limit of large interference power.

We will examine these issues through an information the-
oretic model known as the arbitrarily varying channel (AVC)
[7], [8]. In the AVC the interference is modeled by a time
varying state that is subject to an average power constraint



but is otherwise arbitrary. We must guarantee reliable com-
munication under all state realizations, so we can assume that
the state is controlled by a maliciousjammer whose objective
is to maximize the probability of decoding error. The capacity
expressions depend crucially on the error model and whether
the transmitter and receiver are allowed torandomize their
strategy. We will investigate two particular combinationsin
this work – the maximal-error capacity under randomized
codingCr and the average-error capacity under deterministic
codingC̄d.

The class of channel models we will consider are multiple-
input multiple-output (MIMO) arbitrarily varying channels.
We will call a channel withMt transmitter antennas,Mr

receiver antennas andMj jammer a (Mt,Mr,Mk) MIMO
AVC. For the (M, 1, 1) channel we can use existing results
to show how extra transmit antennas improve the capacity.
For the (M,M,M) channel, capacities have been found by
Hughes and Narayan [9] and by Csiszár [10]. The solution
is given by a “mutual waterfilling” procedure. The jammer
allocates its power via waterfilling [11] over the noise spec-
trum, and then the transmitter allocate power by waterfilling
over the combined noise-plus-interference spectrum. The main
example that we will consider is the(2, 2, 1) AVC, for which
we will show that the transmitter and receiver can exploit the
fact that the jammer only has a single antenna to increase the
capacity above the(2, 2, 2) case.

II. T HE (M,1,1) CHANNEL : EXTRA TRANSMIT ANTENNAS

As a warm-up, we turn first to the(M, 1, 1) channel model
in which we augment a simple point-to-point single-input
single-output (SISO) channel by adding more antennas at
the transmitter. By applying standard results from the AVC
literature, we can characterize the benefits of adding extra
antennas in both the randomized and deterministic coding
settings.

Consider a channel with multiple transmit antennas and a
single receive antenna:

Y (t) = hTX(t) +W (t) + S(t) . (1)

The inputX ∈ RM and interferenceS satisfy total power
constraints:

N
∑

t=1

‖X(t)‖2 ≤ nΓ (2)

N
∑

t=1

S(t)2 ≤ nΛ . (3)

The noiseW (t) is assumed to be iid with Gaussian distribution
N (0, σ2). We will assume that the vector of channel gainsh

is known to both the transmitter and receiver. In the arbitrarily
varying channel, we do not make a distributional assumption
on the interferenceS, and in fact we assume that the jammer’s
input S could be chosen arbitrarily.

Let [N ] = {1, 2 . . . , N}. An (n,N) deterministic code for
this channel is a pair of maps(φ, ψ), where the encoder isφ :
[N ] → Rn×M and the decoder isψ : Rn → [N ]. We require

‖φ(i)‖2 ≤ nΓ for all i in order to satisfy the input power
constraint. An(n,N,K) randomized code is a pair of random
variables(Φ,Ψ) taking values in the set of deterministic codes.
We will assume that the pair(Φ,Ψ) is uniformly distributed on
a set{(φk, ψk) : k ∈ [K]} of K = K(n) random codes. We
will define the key size for a randomized code to beK(n).
The maximal probability of error for a randomized code is
given by

ε = max
s:‖s‖2≤nΛ

max
i∈[N ]

1

K

K
∑

k=1

P (ψk(Y) | φk(i), s) . (4)

The average error for a deterministic code is given by

ε̄ = max
s:‖s‖2≤nΛ

1

N

N
∑

i=1

P (ψ(Y) | φ(i), s) . (5)

A rateR is said to be achievable under maximal error using
randomized coding if there exists a sequence of(n,N,K)
randomized codes withε→ 0 asn→ ∞. A rateR is said to
be achievable under average error using deterministic coding
if there exists a sequence of(n,N) deterministic codes with
ε̄→ 0 asn→ ∞.

In the case whereM = 1, it is well-known that if the
encoder and decoder are permitted to use joint randomization
that the capacity is equal to the additive white Gaussian noise
(AWGN) channel:

Cr(Γ,Λ) =
1

2
log

(

1 +
h2Γ

σ2 + Λ

)

(6)

However, if common randomness is not available, the capacity
is zero unless the received signal power exceeds that of the
interference:

C̄d(Γ,Λ) =

{

Cr(h
2Γ,Λ) h2Γ > Λ

0 h2Γ ≤ Λ
(7)

These results extend straightforwardly to the case with multi-
ple transmit antennas.

A. Randomized coding

In [12] we showed that the amount of common randomness
needed to achieve the randomized coding capacity grows at
most logarithmically in the blocklengthn of the code. Thus
the amount of overhead to achieveCr(h

2Γ,Λ) may be quite
modest.

Proposition 1: For the Gaussian AVC withM transmit
antennas and a single receive antenna, full channel state
information, and power constraintΓ, the randomized coding
capacity under maximal error is given by

Cr(Γ,Λ) =
1

2
log

(

1 +
‖h‖2

Γ

σ2 + Λ

)

. (8)

Proof: This result simply follows from the point-to-point
Gaussian AVC under randomized coding. To find the capacity,
we must find the optimal power allocation to the antennas. This
is simply a matter of maximizing the received power

(

M
∑

m=1

hm

√

Γm

)2

(9)



subject to the constraint that
∑

m Γm ≤ Γ. The optimal
allocation assignsΓm = (h2

m/ ‖h‖
2
)Γ, which makes the

received power‖h‖2
Γ.

B. Deterministic coding

When the transmitter and receiver can jointly randomize,
they can induce a random distribution on the jammer’s input
to make it similar in distribution to additional Gaussian noise.
However, in certain situations secret key agreement prior to
transmission may not be possible, so it is of interest to see
the benefits that multiple antennas can have in reducing the
threshold behavior of the deterministic coding capacity. We
begin with the trivial observation that extra antennas reduces
the threshold on the transmitter’s power.

Proposition 2: For the Gaussian AVC withM transmit
antennas and a single receive antenna, full CSI, and power
constraintΓ, the deterministic coding capacity under average
error is given by

C̄d(Γ,Λ) =
1

2
log

(

1 +
‖h‖2

Γ

σ2 + Λ

)

(10)

if Γ > Λ/ ‖h‖2, and0 otherwise.
Proof: Because the threshold for the Gaussian AVC

depends on the received power [8], we can simply find
the threshold in the randomized coding capacity given by
Proposition 1.

The assumption of full CSI implies that the decoder could
feed back some information to the transmitter. Complete
information about the channel gainsh could require an amount
of feedback commensurate withO(log n), which could also
enable randomized communication. Feedback of onlyM bits
is sufficient to inform the transmitter of the signs ofhm for
eachm. It can then use an equal power allocation to make the
received signal power equal to

Γ

M

(

M
∑

m=1

|hm|

)2

. (11)

We can extend this line of reasoning to channels with inputs
and outputs inC, subject to phase fading, by looking at the
tradeoff between the amount of feedback and the reduction in
the power threshold for eachM .

Consider the channel in (1) with inputs, outputs, and inter-
ference taking complex values and noiseW (t) ∼ CN (0, σ2).
For simplicity, let h be a vector of phase shifts, sohm =
exp(j2πφm). The decoder knowsh and can quantize the
phases and send them to the transmitter. Suppose that the
receiver useskM bits to uniformly quantize theM phases.
The quantization errorδm for each phase is at most2−k.

Proposition 3: Let

P (M) =
Γ

M

(

M + 1

2

)2

cos2(2π2−k) +
Γ

M
sin2(2π2−k) ,

(12)

for M odd, and

P (M) =
Γ

M

(

M

2

)2

cos2(2π2−k) (13)

for M even. Then the following rate is achievable on the
complexM -antenna MISO AVC with phase fading andk-bits
of quantized phase information per antenna:

R =

{

log
(

1 + P (M)
Λ+σ2

)

P (M) > Λ

0 P (M) ≤ Λ
(14)

Proof: If the transmitter does a uniform power allocation
to each of the antennas, the received signal power can be lower
bounded byP (M).

III. T HE (2,2,1)CHANNEL : RANK-LIMITED JAMMING

We saw in the(M, 1, 1) case that under randomized coding,
the benefits of adding extra antennas at the transmitter were
the same as in the standard Gaussian MISO channel. In
particular, the single-antenna constraint on the jammer could
not be exploited because the receiver was also limited to a
single antenna. If we add a second antenna at the receiver,
the story changes considerably. In this section we will givea
characterization for the easiest non-trivial MIMO channel, the
(2, 2, 1) MIMO AVC.

For simplicity, we will treat our MIMO channel as a vector
Gaussian channel:

Y(t) = X(t) + gS(t) + W(t) , (15)

whereX, Y, andW taking values inR2, g is an arbitrary
unit vector inR2, the interferenceS(t) is subject to the same
average power constraint

∑n

t=1 S(t) ≤ nΛ, and the noise
W(t) ∼ N (0,ΣW ) and is iid over time. The transmitter is also
subject to a power constraint

∑n

t=1 ‖X(t)‖2 ≤ nΓ. We can,
without loss of generality, take the noise covariance matrix
to be diagonal, soΣW = diag(σ2

1 , σ
2
2). The interference is

constrained to a rank-1 subspace, albeit an unknown one. We
must therefore design a coding scheme that works for all
values ofg.

In the case without the rank constraint on the interference,
the jammer can also allocate power to all the degrees of
freedom in this channel. This channel is equivalent to a
vector Gaussian AVC [9] and the capacity for generalM
under randomized coding is known to be given by a “mu-
tual waterfilling” strategy. Both the transmitter and jammer
choose diagonal covariance matrices. The jammer chooses
a covariancediag(Λ1,Λ2, . . . ,ΛM ) by waterfilling over the
noise spectrum:

λ∗ = max
{

λ :
(

λ− σ2
m

)+
≤ Λ

}

(16)

Λm =
(

λ∗ − σ2
m

)+
. (17)

The transmitter then chooses a covariance
diag(Γ1,Γ2, . . . ,ΓM ) based on this worst jamming strategy:

γ∗ = max
{

γ :
(

γ − σ2
m − Λm

)+
≤ Γ

}

(18)

Γm =
(

γ∗ − σ2
m − Λm

)+
. (19)



Hughes and Narayan [9] showed that this allocation is a saddle
point for the mutual information and is achievable for the
Gaussian AVC with randomized coding. Later, Csiszár [10]
showed that the capacity for deterministic codes is also given
by this allocation ifΓ > Λ.

In what follows we will focus on randomized coding for
these channels. The mutual information saddle point for the
vector Gaussian AVC can be expressed in the following way:

max
ΣX :tr(ΣX )≤Γ

min
ΣS :tr(ΣS)≤Λ

1

2
log

|ΣX + ΣS + ΣW |

|ΣS + ΣW |

= min
ΣS :tr(ΣS)≤Λ

max
ΣX :tr(ΣX )≤Γ

1

2
log

|ΣX + ΣS + ΣW |

|ΣS + ΣW |
.

(20)

Proposition 4: For the(M,M, 1) MIMO AVC, the follow-
ing rate is achievable using randomized coding:

Rwfill =
M
∑

m=1

1

2
log

(

1 +
Γm

Λm + σ2
m

)

, (21)

where{Γm} and{Λm} are given by the waterfilling solutions
in (16)–(19).

Proof: By relaxing the rank constraint on the jammer,
we arrive at the standard vector Gaussian AVC channel

Y = X + S + W . (22)

Since any coding scheme for this channel must be robust to a
rank-limited jammer, all rates achievable for this channelare
also achievable on the rank-constrained jamming channel.

A. Optimizing for the rank-constrained jammer

However, the rank constraint on the jammer should admit
rates higher thanRwfill, since in many cases the jammer’s
waterfilling strategy does not satisfy its rank constraint.If the
transmitter fixes a covariance matrixΣX first, we can achieve
a rate (using the results of [9]):

max
ΣX :tr(ΣX)≤Γ

min
g:‖g‖=1

1

2
log

|ΣX + ΣW + ΛggT |

|ΣW + ΛggT |
. (23)

Unfortunately, even the inner minimization is not convex in
general, so standard optimization techniques are difficultto
apply. In what follows we will characterize the above quantity
for the caseM = 2 and show that rates higher thanRwfill are
achievable.

Proposition 5: For the (2, 2, 1) MIMO AVC, the optimal
input distribution is diagonal. IfΣX = diag(Γ1,Γ2), then the
g minimizing the mutual information betweenX and Y is
equal to(1, 0)T if

Γ1/σ
2
1

Γ2/σ2
2

>
(Γ1 + σ2

1 + Λ)

(Γ2 + σ2
2 + Λ)

, (24)

and is equal to(0, 1)T if the reverse inequality holds. If
equality holds in (24), then all values ofg yield the same
mutual information.
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Proof: We will prove the second statement first. Suppose
that the input covariance is diagonal and consider the problem
of minimizing

F (g) =
1

2
log

|ΣX + ΣW + ΛggT |

|ΣW + ΛggT |
, (25)

over all unit vectorsg = (g,
√

1 − g2)T . DifferentiatingF
and some algebra gives the following:

dF

dg
= gΛ

(

(Γ2 − Γ1) + (σ2
2 − σ2

1)

|ΣX + ΣW + ΛggT |
−

(σ2
2 − σ2

1)

|ΣW + ΛggT |

)

= gΛ

(

Γ2σ
2
1(Γ1 + σ2

1 + Λ) − Γ1σ
2
2(Γ2 + σ2

2 + Λ)

|ΣX + ΣW + ΛggT | · |ΣW + ΛggT |

)

.

(26)

Note that the only point where the derivative is0 is when
g = 0. However, this point may be a maximum or a minimum,
depending on the sign in the numerator. This yields the
threshold in (24).

Suppose that the transmitter chooses a non-diagonalΣX .
Regardless of the actual value of the transmit covariance,g =
(1, 0)T andg = (0, 1)T are possible channel realizations. For
these two choices ofg, the input covarianceΣ′

X created by
zeroing the off-diagonal elements ofΣX yields a larger mutual
information. Therefore the max-min in (23) is maximized by
a diagonalΣX .

The previous proposition says that for a given diagonal
covariance matrix, the jammer’s optimal strategy is to jam one
of the subchannels. Figure 2 shows the the boundary given by
the threshold for different values of the parametersσ2

1 , σ2
2 ,

Γ1, Γ2, andΛ. The region above each curve corresponds to
g = (1, 0)T , and below tog = (0, 1)T . Within each region,
the transmitter covariance can be optimized to maximize the
mutual information, as in the following proposition.

Proposition 6: Supposeσ2
1 > σ2

2 . Let β be the value ofΓ1



for which equality holds in (24) withΓ2 = Γ − Γ1, and let

α =
1

2
(Γ + (σ2

2 − σ2
1) + Λ(1 − 2g2)) . (27)

Then the transmitter can maximize the mutual information by
choosing

Γ1 = min {α, β} . (28)

Furthermore, for this power allocation the the worst jammer
allocation isg = (0, 1)T .

Proof: Let e1 = (1, 0)T and e2 = (0, 1)T . If we set
Γ2 = Γ − Γ1 we can rewrite the threshold in (24) as:

σ2
2

(

1 +
σ2

2 + Λ

Γ − Γ1

)

− σ2
1

(

2 +
σ2

1 + Λ

Γ1

)

> 0 . (29)

Differentiating the left side with respect toΓ1 we obtain

σ2
2

(

σ2
2 + Λ

(Γ − Γ1)2

)

+ σ2
1

(

σ2
1 + Λ

Γ2
1

)

, (30)

which is strictly positive, so the left side of the thresholdis an
increasing function ofΓ1. Thus for smallΓ1 the worst jammer
direction isg = e2 and for largeΓ1 the worst jammer direction
is g = e1.

Suppose thatσ2
1 > σ2

2 and look at the pointΓ1 = Γ2 = Γ/2.
The threshold (24) is clearly not satisfied, so the worstg is
equal toe1 only for Γ1 > Γ/2. Let ΣX = diag(Γ1,Γ − Γ1)
and

Fi(Γ1) =
1

2
log

|ΣX + ΣW + Λeie
T
i |

|ΣW + Λeie
T
i |

, (31)

for i = 1, 2. We claim thatF1(Γ1) is a decreasing function of
Γ1. Differentiating with respect toΓ1 gives:

dF1

dΓ1
=

Γ − 2Γ1 + σ2
2 − σ2

1 − Λ

2 · (Γ1 + σ2
1 + Λ)(Γ − Γ1 + σ2

2)
(32)

Since the worstg is e1 for Γ1 > Γ/2, the derivative
is negative, which shows thatF1(Γ1) decreases from the
threshold point of (24). Thus the transmitter will choose a
covariance such that the worstg = e2 to maximize the mutual
information.

Turning toF2(Γ1), we can again differentiate:

dF2

dΓ1
=

Γ − 2Γ1 + σ2
2 − σ2

1 + Λ

2 · (Γ1 + σ2
1)(Γ − Γ1 + σ2

2 + Λ)
(33)

The maximum is at

Γ1 =
1

2

(

Γ + σ2
2 − σ2

1 + Λ
)

, (34)

unless this point exceeds the threshold in (24). In this case,
we chooseΓ1 such that equality holds in (24).
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B. Examples and comparison

We will now discuss some examples comparing the optimal
strategies for the rank deficient adversarial model to the
waterfilling strategy and show that in some cases the rank
constraint increases the achievable rates over those givenby
waterfilling. Figure 3 shows the waterfilling and optimal rates
as the interference powerΛ is varied. The curves are equal
until the point whereΛ = σ2

1−σ
2
2 , at which point the jammer’s

waterfilling strategy cannot be realized by allocating all power
to a single channel. For large interference powers, the rank
constraint allows the transmitter and receiver to communicate
at rates strictly superior to those guaranteed by the relaxed
waterfilling allocation.

As a second example, we can examine the asymptotic
behavior of the capacity asΛ → ∞. The optimal jamming
strategy is still to jam the less noisy channel, so the noise-plus-
interference spectrum becomes more and more unbalanced.
Clearly the subchannel with noiseσ2

2 + Λ contributes no rate
to the capacity in the limit. However, any power in the first
subchannel will still contribute. AsΛ → ∞ the expression in
(34) increases without bound, so the limiting behavior is given
by the threshold (24). The right side of (24) goes to1, so the
optimal power allocation reduces to

Γ1

Γ2
=
σ2

1

σ2
2

. (35)

Corollary 1: For the (2, 2, 1) MIMO AVC with σ2
1 > σ2

2 ,
the randomized coding capacity in the limit asΛ → ∞ is
given by

Cr(Γ) =
1

2
log

(

1 +
Γ

σ2
1 + σ2

2

)

. (36)

We can also take the limit as bothΓ andΛ go to∞ while
keeping the ratioρ = Γ/Λ fixed.

Corollary 2: For the (2, 2, 1) MIMO AVC with σ2
1 > σ2

2 ,
the randomized coding capacity in the limit asΓ,Λ → ∞ with



fixed ρ = Γ/Λ scales according to

Cr(ρ,Γ) = O(log Γ) +
1

2
log
(

1 +
ρ

2

)

. (37)
Proof: Equation (34) shows that the optimalΓ1 goes to

Γ/2, which gives:

Cr(Γ,Λ) =
1

2
log

(

1 +
Γ

2σ2
1

)

+
1

2
log

(

1 +
Γ/2

σ2
2 + Λ

)

.

(38)

Taking the limit yields the result.
For the MIMO AVC, the previous two corollaries show that

the signal-to-interference ratio is not a good measure in the
case of rank-deficient interference.

IV. T HE (M,M,1) CHANNEL

We now turn to the more general channel

Y(t) = X(t) + gS(t) + W(t) , (39)

where all vectors are inRM , W(t) is iid with distribution
N (0,ΣW ) whereΣW = diag(σ2

1 , σ
2
2 , . . . , σ

2
M ). The coding

definitions extend from the earlier definitions. We will again
consider randomized coding for these channels and so we can
focus on the mutual information

max
ΣX :tr(ΣX)≤Γ

min
g:‖g‖=1

1

2
log

|ΣX + ΣW + ΛggT |

|ΣW + ΛggT |
. (40)

As in the(2, 2, 1) case, the inner minimization for a fixedΣX

is not convex.
Let ej denote thej-th elementary vector, i.e. the unit

vector with 1 in the j-th entry and 0 elsewhere. These
vectors correspond to the jammer choosing to jam one of
the subchannels defined byΣW . We believe that the behavior
seen in the(2, 2, 1) case extends to the(M,M, 1) case in the
following sense:

1) If the input covariance matrixΣX is diagonal, then the
g minimizing the mutual information is equal toej for
somej. The optimal input covariance is diagonal.

2) If σ2
1 > σ2

2 > · · · > σ2
M , then the optimal input

covarianceΣX forces the minimizingg to beeM .

V. D ISTRIBUTIVE AND COOPERATIVE IMPLEMENTATIONS

Multiple antennas can lead to significant gains in capacity
(see e.g. Telatar [5]). This, in turn, has fueled the development
of cooperative techniques where multiple separate terminals
jointly appear as a virtual MIMO array than can partially
capitalize on these gains [13]. Our results show that MIMO
can also lead to significant gains in robustness, particularly
when the transmitter and receiver have additional knowledge
of how the interfering signals are generated. In the context of
cognitive radio, this interference could come from a primary
system, legacy system, or other cognitive systems in the same
space. Our results say that the presence of extra antennas
at the receiver can lead to an increase in rates over a rank-
deficient but adversarial interferer. Future work will determine
the exact degree to which our gains carry over to distributive
and cooperative implementations.

For example, the hierarchical MIMO approach ofÖzgür,
Lévêque and Tse [13] uses MIMO cooperation on a local level
to communicate on a long-haul link in an large ad-hoc network
with many nodes. If this network coexists in an environment
with a few powerful interferers comprising another system,a
naive “sum power” approach to channel modeling may result
in a pessimistic estimate of the MIMO link’s capacity. By
explicitly accounting for the density of the interfering system,
additional gains may be possible.

One weakness of our model is that it assumes the gains from
the jammer to the receiver are fixed over time. If we adopt a
fast-fading model, the rank constraints will no longer become
operative and the approach via mutual information games may
be more appropriate. However, for quasistatic channels our
results point to an important and hitherto unexploited aspect
of interference modeling. In future work we will clarify the
investigate the more general(M,M, J) case for which we
hope to find analogous results to the(2, 2, 1) case.
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