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Abstract— According to the cognitive radio paradigm, a ter-
minal or subsystem will opportunistically select a frequery

band for data transmission. Because the spectrum is shared Confi fi 1 INT j
cognitive system may face interference that cannot be givea onfiguration
statistical description. An adversarial interference moal may be \\N
appropriate for finding achievable rates under these condibns. j Z
In this work we investigate the benefit offered by using many TX \\I'\ RX
antennas. In addition to adding spatial diversity and multiplexing Y Y
gains, multiple antennas can allow a cognitive system to nigate
the effects of adversarial interference that is known to cora from
I. INTRODUCTION ) )
. . . Configuration 2

Cognitive radio [1] refers to a class of wireless systems
that use sensing to adapt their behavior in order to coexist
with other systems. Cognitive radios have been proposed as a Y Y|
solution for exploiting unused spectrum by adopting flexibl TX Rx
frequency-agile devices. The spectrum is licensedpdraary j INT j\]\Z

user who shares the band witecondary or “cognitive”
users. With the Federal Communication Commission’s recem@, 1. Two different configurations for a system with a sightenna
decision to allow spectrum reuse in the 700 MHz band [zi]l,tgrferer. Because the location of the interferer is umkmothe subspace in
these systems are moving ever closer to reality and ha\m:lraiglhmh the interference lies may be unknown prior to transiois
a number of interesting theoretical questions. One popmiar
formation theoretic model for cognitive radio, due to Deygp
Mitran, and Tarokh [3], modifies an interference channel pace of allowable noise matrices, which may not always.hold
give a “cognitive” user access to the other user's message ne will explicity model the number of antennas used by an
causally. The cognitive user can then optimize its own rateterfering system and demonstrate that using this knayded
subject to conditions guaranteeing minimal degradaticinéo leads to a significant rate increase when the receiver has mor
other “primary” user. Gastpar [4] has looked at coexistentkan one antenna.
from the perspective of limiting the received power at a To illustrate our problem, consider the two possible configu
primary system. These optimistic perspectives on coaxiste rations shown in Figure 1. & x 2 MIMO system is subject to
assume a high degree of coordination and cooperation betweaknown interference from a single antenna system. Because
primary and secondary or cognitive systems. the location of the interferer is not known prior to transsigs,

In this work we do not address the coexistence conditiotfee MIMO system must choose a rate and coding scheme that
posed by the cognitive radio paradigm but instead focus auill work regardless of the interferer’s location. The faloat
the issue of interference modeling. More specifically, w# withe interferer has a single antenna means that the intadere
study a model for multiple-input multiple-output (MIMO) lies in a one-dimensional subspace of the received sigmad. O
Gaussian channels [5] in which additional interference e@mapproach is to ignore this information and target a rate that
from the primary system. An isolationist approach is to tireanly takes into account a power constraint on the interiggen
the interfering signal from the primary as additional nois&Ve will see that this is a suboptimal strategy, particulanly
A game theoretic model for this problem, carried out moshe limit of large interference power.
fully by Baker and Chao [6], uses the mutual information We will examine these issues through an information the-
as a payoff between one player who can choose a transorittic model known as the arbitrarily varying channel (AVC)
covariance matrix and another who can choose the no[3& [8]. In the AVC the interference is modeled by a time
covariance matrix. This approach relies on the convexithef varying state that is subject to an average power constraint



but is otherwise arbitrary. We must guarantee reliable com(i)||> < nI" for all i in order to satisfy the input power
munication under all state realizations, so we can assuate tbonstraint. An(n, N, K') randomized code is a pair of random
the state is controlled by a maliciojEmmer whose objective variableg®, ¥) taking values in the set of deterministic codes.
is to maximize the probability of decoding error. The capaci We will assume that the paf®, ¥) is uniformly distributed on
expressions depend crucially on the error model and whetlaeset{ (¢, ¥x) : k € [K]} of K = K(n) random codes. We
the transmitter and receiver are allowed remdomize their will define the key size for a randomized code to Kén).
strategy. We will investigate two particular combinatidns The maximal probability of error for a randomized code is
this work — the maximal-error capacity under randomizegiven by

codingC;- and the average-error capacity under deterministic s
coding Cq. €= max max — ZP(wk(Y) | dr(i),s) . (4)
The class of channel models we will consider are multiple- s:|Is||2<nA i€[N] K pt

input multiple-output (MIMO) arbitrarily varying chanrel The average error for a deterministic code is given by
We will call a channel withM; transmitter antennasy/,

N
receiver antennas andlf; jammer a(M,, M., M;) MIMO 1 ZPW(Y) | 6(3),s) . (5)
=1

€= max —
AVC. For the (M, 1,1) channel we can use existing results s:Is|2<nA N -

to show how extra transmit antennas improve the capaciR/.

- rate R is said to be achievable under maximal error using
For the (M, M, M) channel, capacities have been found pyandomized coding if there exists a sequence(rafN, K)

Hughes and Narayan [9] and by Csiszar [10]. The SOIUtIcFﬁndomized codes with — 0 asn — oco. A rate R is said to

'S given b_y a m“t“"f" Waterf|_II|_ng procedure. The_jammebe achievable under average error using deterministiongodi
allocates its power via waterfilling [11] over the noise SPeGt there exists a sequence 0f, ) deterministic codes with
trum, and then the transmitter allocate power by Watergfjlliné . 0asn — oo ’
over the combined noise-plus-interference spectrum. Téie m '

e th il der i C ot hich In the case wherel/ = 1, it is well-known that if the
example that we will consider is the, 2, 1) AVC, for which  onoqqer and decoder are permitted to use joint randomieatio

we will ShOW. that the transmitter and FEcelver can _exploet ”} at the capacity is equal to the additive white Gaussiasenoi
fact that the jammer only has a single antenna to increase E Q\IGN) channel:

capacity above thé2, 2, 2) case. ) B2
II. THE (M,1,1) CHANNEL : EXTRA TRANSMIT ANTENNAS Cr(I',A) = 9 log <1 + o2 + A> 6)
As a warm-up, we turn first to thel/, 1, 1) channel model However, if common randomness is not available, the capacit

in which we augment a simple point-to-point single-inpyt zero unless the received signal power exceeds that of the
single-output (SISO) channel by adding more antennas jgierference:

the transmitter. By applying standard results from the AVC B C(h2T,A) h20 > A

literature, we can characterize the benefits of adding extra Ca(T',A) :{ 0 ’ BT < A (7)

antennas in both the randomized and deterministic codin% ) - L

settings These results extend straightforwardly to the case withtimul
Consider a channel with multiple transmit antennas andP:f transmit antennas.

single receive antenna: A. Randomized coding

Y(t) = WTX(t) + W(t) + S(t) . 1) In [12] we shpwed that the amount of common rgndomness
. _ . needed to achieve the randomized coding capacity grows at
The inputX € R" and interferences satisfy total power most logarithmically in the blocklength of the code. Thus

constraints: the amount of overhead to achiegg (h?T’, A) may be quite
N modest.
X:HX(t)H2 <nl (2 Proposition 1: For the Gaussian AVC withM transmit
t=1 antennas and a single receive antenna, full channel state
information, and power constraifit, the randomized coding
> St <nA. (3) capacity under maximal error is given by
t=1 2
The noisd¥ (t) is assumed to be iid with Gaussian distribution C.(T,A) = % log [ 1+ lgt‘r /1; (8)

N(0,0?). We will assume that the vector of channel gains P it simoly Hollows f he bo _
is known to both the transmitter and receiver. In the artilyra Proof: This result simply follows from the point-to-point
varying channel, we do not make a distributional assumpti&‘?‘uss'an AVC under randomized coding. To find the capacity,

on the interferencs, and in fact we assume that the jammer’g\’e must find the optimal power allocation to the antennass Thi
input S could be chosen arbitrarily is simply a matter of maximizing the received power

Let [N] = {1,2...,N}. An (n, N) deterministic code for M 2
this channel is a pair of maf#, ), where the encoder i : (Z hm\/l“m> (9)
[N] — R"*M and the decoder ig : R — [N]. We require m=1



subject to the constraint that®, T',, < T'. The optimal for M odd, and

allocation assignd’,, = (h2,/|h|*)T, which makes the /M2
received powet{h|’T. [ | P(M) = i (7) cos?(2m27F) (13)
B. Deterministic coding for M even. Then the following rate is achievable on the

. _ . ._complexM -antenna MISO AVC with phase fading akebits
When the transmitter and receiver can jointly rand0m|28f quantized phase information per antenna:

they can induce a random distribution on the jammer’s input
to make it similar in distribution to additional Gaussiarigeo R log (1 + P(M)) P(M) > A

. N cIStro . R+o? (14)
However, in certain situations secret key agreement paor t 0 P(M) <A

transmission may not be possible, so it is of interest to see proof: If the transmitter does a uniform power allocation
the benefits that multiple antennas can have in reducing {aeach of the antennas, the received signal power can be lowe

threshold behavior of the deterministic coding capacite Whounded byP(M). m
begin with the trivial observation that extra antennas cedu _
the threshold on the transmitter’s power. I1l. THE (2,2,1)CHANNEL : RANK-LIMITED JAMMING

Proposition 2: For the Gaussian AVC with)/ transmit ~ We saw in thg}M, 1,1) case that under randomized coding,
antennas and a single receive antenna, full CSI, and powke benefits of adding extra antennas at the transmitter were
constraintl’, the deterministic coding capacity under averagée same as in the standard Gaussian MISO channel. In
error is given by particular, the single-antenna constraint on the jammatdco
not be exploited because the receiver was also limited to a
single antenna. If we add a second antenna at the receiver,
the story changes considerably. In this section we will give
characterization for the easiest non-trivial MIMO chantieé
if I'> A/|/h|? and0 otherwise. (2,2,1) MIMO AVC.

Proof: Because the threshold for the Gaussian AvC For simplicity, we will treat our MIMO channel as a vector
depends on the received power [8], we can simply fifgaussian channel:
the thr_e_shold in the randomized coding capacity given by Y(t) = X(t) + gS(t) + W(t) |, (15)
Proposition 1. ]

The assumption of full CSI implies that the decoder couhereX, Y, and W taking values inR?, g is an arbitrary
feed back some information to the transmitter. Complet#it vector inR?, the interferences(t) is subject to the same
information about the channel gaihscould require an amount average power constraifit’;”, S(¢) < nA, and the noise
of feedback commensurate with(logn), which could also W (t) ~ (0, Xw) and s iid over ime. The transmitter is also
enable randomized communication. Feedback of dilyits ~ Subject to a power constrait,”_, [|X(¢)[|” < nI'. We can,
is sufficient to inform the transmitter of the signs fof, for ~Without loss of generality, take the noise covariance matri

eachm. It can then use an equal power allocation to make tfi@ be diagonal, s&y = diag(a?, 03). The interference is
received signal power equal to constrained to a rank-1 subspace, albeit an unknown one. We

must therefore design a coding scheme that works for all

_ 1 h|’T
Cy(T,A) = 3 log (1 + (!2 |—|l- A) (10)

r (& 2 values ofg.
i Z \haml | (11)  In the case without the rank constraint on the interference,
m=1 the jammer can also allocate power to all the degrees of

We can extend this line of reasoning to channels with input§edom in this channel. This channel is equivalent to a
and outputs inC, subject to phase fading, by looking at the/éctor Gaussian AVC [9] and the capacity for geneddl
tradeoff between the amount of feedback and the reduction4fider randomized coding is known to be given by a “mu-

the power threshold for eachl. tual waterfilling” strategy. Both the transmitter and jamrme
Consider the channel in (1) with inputs, outputs, and intef100se diagonal covariance matrices. The jammer chooses
ference taking complex values and nol§&t) ~ CA/(0, o2). a covariancediag(A1, Ao, ..., Ay) by waterfilling over the

For simplicity, leth be a vector of phase shifts, §g, — N0IS€ spectrum:

exp(j2md.,). The decoder knowsh and_ can quantize the \* :max{/\: (/\—ofn)Jr < A} (16)
phases and send them to the transmitter. Suppose that the
receiver usesM bits to uniformly quantize thé/ phases. A = (/\* — crfn)+ . a7)

The quantization errof,,, for each phase is at mogt*.

- The transmitter then chooses a covariance
Proposition 3: Let

diag(T'1,T2,...,T) based on this worst jamming strategy:

2 T 2 +
) cos?(2m27F) + i sin?(2727F) | 7" = max {’Y t(v—om = An) " < F} (18)
(12) Tp= (v =02 —An)" . (19)

' fM+1

m



4 1

Hughes and Narayan [9] showed that this allocation is a saddl
point for the mutual information and is achievable for the s o
Gaussian AVC with randomized coding. Later, Csiszar [10] ., W0
showed that the capacity for deterministic codes is alsergiv od
by this allocation ifl" > A. ! 02
In what follows we will focus on randomized coding for o - 5 3 A o - P 3 Y
. . . r r
these channels. The mutual information saddle point for the ! !
vector Gaussian AVC can be expressed in the following way: 14 4
12
. 1 Xx +Xs + Zw| 1 3
max min —1lo 08
Sxtr(Ex)<T Dsitr(Ss) <A 2 s + Zw] e o2
. 1. [Yx+%s+ Iyl 04 .
= min max —lo . 02
Ls:tr(Ss) <A Sxtr(Sx )< 2 s + Zw : .
(20) 0 1 rzl 3 4 0 5 3 10 15

Proposition 4: For the(M, M, 1) MIMO AVC, the follow-  Fig. 2. Four examples of the threshold for the jammer's atpatThe upper

ing rate is achievable using randomized coding: left plot is for (02,02,A) = (2,2,4), the upper right for(c?,03,A) =
(3,1,4), the lower left for(o?,03,A) = (3,1,8), and the lower right for
M r (0f,03,A) = (5,2,4).
Ryfn = —log 1+ —"— 21
whill Z 5 g< Aoz ) (21)

m=1

where{T',,} and{A,,} are given by the waterfilling solutions Proqf: We will prove _the_second statemen_t first. Suppose
in (16)—(19). that the input covariance is diagonal and consider the probl

Proof. By relaxing the rank constraint on the jammer@f Minimizing

we arrive at the standard vector Gaussian AVC channel F(g) = llog ISx + Sw + AgeT|

Y=X+S+W. (22) 2 w4 AggT|

; (25)

Since any coding scheme for this channel must be robust toxer all unit vectorsg = (g,+/1 — g2)T. Differentiating I’
rank-limited jammer, all rates achievable for this charemel and some algebra gives the following:
also achievable on the rank-constrained jamming chanmel.

dr (C2 —T1)+ (03 —0t) (03 —0%)
A. Optimizing for the rank-constrained jammer dg |Xx + Xw + Agg?| [Zw + AggT|
However, the rank constraint on the jammer should admit  _ A (FW%(Fl +0f+A)—Ti03(l2 + 03 + A))
rates higher thamR.a;, since in many cases the jammer’s |Ex +Xw + Agg”| - [Zw + Agg?|
waterfilling strategy does not satisfy its rank constrdinthe 26)

transmitter fixes a covariance matdxy first, we can achieve

a rate (using the results of [9]): Note that the only point where the derivative (isis when

g = 0. However, this point may be a maximum or a minimum,
) 11 ILx +Xw + AggT| (23) depending on the sign in the numerator. This yields the

St )<rglelet 2 2 [Sw + Aggl| threshold in (24). . |

Suppose that the transmitter chooses a non-diagbral

Unfortunately, even the inner minimization is not convex "ﬁ%egardless of the actual value of the transmit covariagee
general, so standard optimization techniques are diffigult (1,0)T andg = (0,1)” are possible channel realizations. For

apply. In what follows we will characterizc_e the above quanti hese two choices of, the input covarianc&, created by
for the casel = 2 and show that rates higher th@li.an aré  ;er6ing the off-diagonal elements B¢ yields a larger mutual

achievable. _ information. Therefore the max-min in (23) is maximized by
Proposition 5: For the (2,2,1) MIMO AVC, the optimal 4 diagonal® . -

input distribution is diagonal. IEx = diag(I';,I'2), then the

g m|n|m|2|nthhe mutual information betweeX and Y i qyariance matrix, the jammer's optimal strategy is to jame o

equal to(1,0)" if of the subchannels. Figure 2 shows the the boundary given by
/02 (D1 +02+A) the threshold for different values of the parametefs o3,
Tyj02 " T2t 02+ A)’ (24) T, Iy, and A. The region above each curve correqunds to

g = (1,0)T, and below tog = (0,1)7. Within each region,

and is equal to(0,1)7 if the reverse inequality holds. If the transmitter covariance can be optimized to maximize the

equality holds in (24), then all values @f yield the same mutual information, as in the following proposition.

mutual information. Proposition 6: Supposer? > o3. Let 3 be the value of’;

The previous proposition says that for a given diagonal




for which equality holds in (24) witi'y =T —T';, and let

a= %(I‘—l—(cr% — o)+ A(1—247%)) . (27)

Then the transmitter can maximize the mutual information by

choosing

'y = min{a, 8} . (28)

Furthermore, for this power allocation the the worst jammer

allocation isg = (0,1)7.
Proof: Lete; = (1,0)7 andey = (0,1)T. If we set
T'y =T —T'; we can rewrite the threshold in (24) as:
o2 + A

24 A
U%(1+02+ )—U%(?—i— T )>0.
1

-1,y
Differentiating the left side with respect 16, we obtain
o[ o5+ A

2
o+ A o (01 +A
#Hre) ot ()

which is strictly positive, so the left side of the threshiddin
increasing function of’;. Thus for smalll’; the worst jammer
direction isg = e and for largd’; the worst jammer direction
isg =e.

Suppose that? > o3 and look at the poinf; = T'y = T'/2.
The threshold (24) is clearly not satisfied, so the wgrss
equal toe; only forI'y > I'/2. Let ¥x = diag(I';,I' — T'y)
and

(29)

(30)

1 |Zx—|—zw+AeieT|
Fi(I'1)==1 L
( 1) Og |EW+Aele,LT|

2 . @Y

Ratevs./\forci:& cizl, r=4

= = = Waterfilling allocation
= Optimal allocation

o o
% ©
T T

Rate (bits/channel use)
°
3

061

0.4
0

1 2 3 4 5 6 7 8
A (interference power)

Fig. 3. An example of the capacity region versus the interfee powerA
foro? =3,02 =1, =4.

B. Examples and comparison

We will now discuss some examples comparing the optimal
strategies for the rank deficient adversarial model to the
waterfilling strategy and show that in some cases the rank
constraint increases the achievable rates over those biyen
waterfilling. Figure 3 shows the waterfilling and optimalest
as the interference powek is varied. The curves are equal
until the point where\ = 0% —03, at which point the jammer’s
waterfilling strategy cannot be realized by allocating allver
to a single channel. For large interference powers, the rank
constraint allows the transmitter and receiver to commateic
at rates strictly superior to those guaranteed by the rdlaxe
waterfilling allocation.

As a second example, we can examine the asymptotic

for i = 1,2. We claim thatFy (I';) is a decreasing function of behavior of the capacity a4 — oco. The optimal jamming

T';. Differentiating with respect td@'; gives:

dFl_ F—2F1+0’%—0’%—A

dly ~ 2-(T1 4+ 02+ A) (T —T; +02)

(32)

Since the worstg is e; for I'y > TI'/2, the derivative

strategy is still to jam the less noisy channel, so the nplas-
interference spectrum becomes more and more unbalanced.
Clearly the subchannel with noisg + A contributes no rate

to the capacity in the limit. However, any power in the first
subchannel will still contribute. A4 — oo the expression in

(34) increases without bound, so the limiting behavior iegi

is negative, which shows thak:(I'y) decreases from the py the threshold (24). The right side of (24) goesl®o the

threshold point of (24). Thus the transmitter will choose
covariance such that the wogst= e, to maximize the mutual
information.

Turning to F>(T"1), we can again differentiate:

dFy T -2I+05—of+A (33)
dly  2-(T1+03) (T =Ty +03+A)
The maximum is at
1

8ptimal power allocation reduces to

2
01

I

5o (35)

Corollary 1: For the(2,2,1) MIMO AVC with o% > o3,
the randomized coding capacity in the limit &s— oo is
given by

1
CT(F) = 5 log (1 + m (36)
We can also take the limit as bothand A go to co while
keeping the ratigpp = T'/A fixed.

unless this point exceeds the threshold in (24). In this,caseCorollary 2: For the(2,2,1) MIMO AVC with o7 > o3,

we choosd™; such that equality holds in (24). ]

the randomized coding capacity in the limitlAsA — oo with



For example, the hierarchical MIMO approach ©&gir,
Lévéque and Tse [13] uses MIMO cooperation on a local level
to communicate on a long-haul link in an large ad-hoc network
with many nodes. If this network coexists in an environment
with a few powerful interferers comprising another system,

fixed p = T'/A scales according to

1
Cy(p,T) = O(logT) + 5 log (1 + g 37)
Proof: Equation (34) shows that the optimia] goes to
T'/2, which gives:

1 r 1 T/2 naive “sum power” approach to channel modeling may result
Cr(T,A) = = log (1 + —2) + = log (1 + = ) in a pessimistic estimate of the MIMO link's capacity. By
2 207 2 o3 +4A ag) Explicitly accounting for the density of the interferingssym,
(38) additional gains may be possible.
Taking the limit yields the result. [ ] One weakness of our model is that it assumes the gains from

For the MIMO AVC, the previous two corollaries show thathe jammer to the receiver are fixed over time. If we adopt a
the signal-to-interference ratio is not a good measure én tfast-fading model, the rank constraints will no longer braeo
case of rank-deficient interference. operative and the approach via mutual information games may
be more appropriate. However, for quasistatic channels our
results point to an important and hitherto unexploited aspe
of interference modeling. In future work we will clarify the

IV. THE (M,M,1) CHANNEL
We now turn to the more general channel

Y(t) = X(t) +85(t) + W(t) ,

where all vectors are iR, W (t) is iid with distribution
N(0,Zw) whereXy, = diag(o?,03,...,0%,). The coding
definitions extend from the earlier definitions. We will agai

(39)

investigate the more gener@h, M, .J) case for which we
hope to find analogous results to tfiz 2, 1) case.
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As in the(2,2,1) case, the inner minimization for a fixétly
iS not convex.

Let e; denote thej-th elementary vector, i.e. the unit [2]
vector with 1 in the j-th entry and0 elsewhere. These
vectors correspond to the jammer choosing to jam one of
the subchannels defined By . We believe that the behavior
seen in thg2,2,1) case extends to th@/, M, 1) case in the
following sense:

1) If the input covariance matriX x is diagonal, then the [l

g minimizing the mutual information is equal t; for
somej. The optimal input covariance is diagonal.

2) If 02 > 02 > > o32,, then the optimal input

covariancex y forces the minimizingz to beey,.

(40)

. 1
max min —log
Sxtr(Sx)<T g:llgll=1 2

(1]

(3]

(5]

(6]
V. DISTRIBUTIVE AND COOPERATIVE IMPLEMENTATIONS 7]
Multiple antennas can lead to significant gains in capacity
(see e.g. Telatar [5]). This, in turn, has fueled the develept [g)
of cooperative techniques where multiple separate telmina
jointly appear as a virtual MIMO array than can partially
capitalize on these gains [13]. Our results show that MIM
can also lead to significant gains in robustness, partigular
when the transmitter and receiver have additional knowéedBo]
of how the interfering signals are generated. In the context of
cognitive radio, this interference could come from a priynaif11]
system, legacy system, or other cognitive systems in the s

9]

like to acknowledge useful discussions with P. Venkitaaubr
maniam and H. Palaiyanur.
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