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A Little Feedback Can Simplify Sensor Network
Cooperation

Anand Sarwate, Member, IEEE, and Michael Gastpar, Member, IEEE,

Abstract—Shannon’s discovery of digital communication has
shaped the architecture of virtually all communication systems in
use today. The digital communication paradigm is built around
the notion of bits and uses careful coding to deliver bits reliably
end-to-end. It has been shown that this architectural principle
can lead to a very significant performance penalty in wireless
sensor networks. For a limited class of network scenarios, it
was shown that optimal architectures are analog in nature,
simple and scalable. In this paper, we show that more generally,
simple analog architectures crucially depend on feedback to
the sensors. Interesting questions then concern the amount of
feedback needed and the resulting trade-off with performance.
This paper provides rules-of-thumb for the selection of the
number of feedback bits.

Index Terms—joint source-channel coding, fading, sensor net-
works, data fusion, feedback

I. INTRODUCTION

TO BE SCALABLE and robust, sensor network archi-
tectures must be simple. However, they also have to

live off of very limited resources, and therefore cannot be
too wasteful. Thus, the quest is for architectures that are
simple yet have near-optimal performance guarantees. One
way to investigate questions of optimality is through the
lens of information theory, which can provide insights into
the fundamental performance limits of distributed estimation
systems such as sensor networks. In this paper we will take as
a case study the problem of estimating an underlying source
observed by sensors who must forward their observations to a
fusion center. Information-theoretic studies of sensor networks
have addressed issues such as distributed compression (see [3]
for an overview) and channel capacity [4]; a general overview
can also be found in [5]. Many of these works are focused
on the scaling law performance of these systems. That is,
how does the asymptotic distortion or capacity scale with the
number of sensors in the network?
From an information-theoretic perspective, it is well-known

that separately encoding sensor observations and then commu-
nicating them independently to a fusion center is suboptimal
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in terms of the distortion in reconstructing the source. Because
this separation principle does not hold, joint source-channel
coding strategies can yield dramatic improvements over the
best approach using separate encoding. In some cases, a very
simple analog encoding scheme is optimal. A clear example
of this was given in [6], where it was shown that uncoded
transmission is exactly optimal for a Gaussian source observed
by sensors that communicate over a Gaussian channel. More
precisely, for this model, the asymptotic distortion scales as
Θ(M−1) for the optimal scheme and like Ω(1/ log M) for a
scheme that uses separate source and channel codes. Other
works have also investigated linear processing schemes for
forwarding information in sensor networks [7]–[9], which give
some insights into the sensing performance achievable by
simple protocols.

In practical applications, the true correlation structure be-
tween the sensors’ observations may not be known prior
to deployment. There’s many a slip ’twixt design and de-
ployment1, and so the protocols we design should be able
to adapt to different correlation structures. For example, in
networks monitoring electromagnetic phenomena, the relative
phases of the sensor’s observations may be quite sensitive to
their placement. Because precise positioning may be difficult,
the underlying sensor fusion protocol should be robust to
this uncertainty. In monitoring or tracking applications the
movement of a target or source can create time variation
in the sensor field that requires periodic recalibration of the
fusion protocol. In this paper we demonstrated how a type
of observation uncertainty we call source fading can lead to
catastrophic failure in the strategy of [6]. We then show that
if very limited communication between sensors is allowed,
a simple alignment protocol can partially recover the scaling
performance. In particular, we show that K bits of feedback
can align the observations of the sensors, yielding a distortion
that scales as O(M−K/(K+2)).
The study of feedback has a long and storied history in

information theory [11], where it has beens shown to lower
error rates [12], [13], lower complexity [14]–[16], and provide
a bridge between communication and control theory [17], [18].
It can sometimes increase capacity in networks or channels
with uncertainty or memory [19]–[31]. In a sense, the method
in this paper is a way of using zero-rate feedback to combat
uncertainty in the observation model. We propose a simple
two-phase protocol that uses limited feedback or communi-
cation between the sensors: in the first phase the sensors
align their observations, and in the second they transmit their
information to the fusion center.

1Apologies to Palladas [10, X.32]).
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Fig. 1. Gaussian network with fading observations.

II. A MODEL FOR CORRELATION UNCERTAINTY

The basic model we will consider is shown in Fig-
ure 1. A source generates a vector of iid symbols S =
(S[1], S[2], . . . , S[n]). The M sensors observe the source
through the observation function A(·):

Um = Am(S) + Wm, (1)

where Wm is iid Gaussian noise with variance σ2
W , indepen-

dent across sensors m and time. The observation functions
{Am(·)} are random variables taking values in a set of
functions A according to some joint distribution PA(a). The
choice ofA depends on the specifics of the sensors’ design and
reflects the relationship between the quantities of interest and
the actual observed variables. We do not assume the sensors
know the realization of {Am(·)}, but must estimate it. We will
assume furthermore that the functions {Am(·)} do not change
over time.
For simplicity, in this paper we will assume Am(·) is

a scalar gain, and with some abuse of notation we write
Am(s) = Am · s. For more examples where Am(·) is a filter,
see [32]. A simple example is the case where each Am = 1
almost surely, in which case we recover the source observation
model studied in [6] and many other works.
We call this random observation model source fading be-

cause the coefficients {Am} act like channel gains in a fading
channel with the source as its input. We assume the following:

{Am} are iid with distribution PA(a) (2)

PA(a) = pA(−a) (3)

|Am| < ν a.s. (4)

We call this bounded real scalar fading. For much of this paper
we will further simplify to the case where {Am} are iid and
equiprobable on the set {−1, +1}, which we will refer to as
sign fading. We assume that the sensors and destination know
the distributions of the gains {Am} but not their realization.
The first question to ask for sensors observing faded obser-

vations is to what extent they can determine the fading process.
Consider the case where each sensor receives AmS + Wm,
where the Am are drawn iid from some distribution over a
finite set A. The sensors can estimate their own marginal
distribution locally. If two fading gain a1, a2 ∈ A induce
different marginal distributions on Um at sensor m, then the
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Fig. 2. Network with feedback signals.

sensor can in theory discriminate between them based on the
empirical (marginal) statistics. If the {Am} are continuous
then we can design estimators based on the empirical obser-
vations or estimate {Am} on a quantized set of values.
The problem introduced by fading observations in this

setting is from different fading functions inducing the same
marginal distribution on Um. For point-to-point systems, this
is similar to the rate-distortion problem considered in [33]. In
order to collaborate, the sensors must disambiguate between
the fading processes which could induce their local distribu-
tion. We call this problem one of alignment.
Sensor m converts its entire observation sequence S into a

codeword Xm = (Xm[1], Xm[2], . . . , Xm[n]). For simplicity
we will assume that the length of the codeword is the same
as the length of the source vector. For each m, the codeword
must satisfy a power constraint P :

E
[
‖Xm‖2

2

]
≤ P, (5)

where ‖·‖2 is the Euclidean norm. The codewords are trans-
mitted across a Gaussian multiple-access channel:

Y =
M∑

m=1

Xm + Z, (6)

where Z is iid and Gaussian with mean 0 and variance σ2
Z .

The receiver uses Y to form an estimate Ŝ that minimizes the
squared error:

D(M, P ) = ES

[∥∥∥S − Ŝ
∥∥∥2
]

. (7)

The goal of our coding scheme is to minimize the distortion
D(M, P ).

A. Feedback model

In the protocol proposed in this paper we make use of a
feedback signal to align the sensors, as shown in 2. We propose
a simple two-phase protocol. The first phase is an alignment
phase in which the sensors communicate among each other to
learn the structure of their source fading. This is analogous to
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the use of training sequences for channel estimation. In our
simplified model we do not consider localized protocols for the
sensors to align themselves. Distributed consensus procedures
(see the forthcoming [34]) may also be useful in this context.
In the transmisson phase they communicate with the central
receiver over the shared multiaccess channel. We define the
time axis so that the discovery phase is at times n ≤ 0 and the
transmission phase is at times n > 0. In the discovery phase
sensor m forms an estimate Âm of its own observation gain
Am based on its own observations and some feedback.
Consider an alignment phase of a single step, so that the dur-

ing the alignment phase sensor m observes AmS[0]+Wm[0].
For notational clarity, let S0 = S[0]. During the alignment
phase, a feedback signal f(S0) is given to all sensors. The
function f(·) may be stochastic – for example, it may be
a noisy observation of the source. Note that an estimator
with access to {Um} cannot distinguish between {Um} and
{−Um} unless it has some additional information about S.
Hence, we will assume that the signal f(S0) comes from an
observer not subject to source fading. We will consider several
different examples for f(S0):

• Perfect feedback refers to the case where f(S0) = S0.
This is clearly an unrealistic assumption but provides a
bound on how well our protocol can perform even in the
best case.

• Single-bit noisy feedback refers to the case where a single
bit sgn(AbS0 + Wb) from an extra beacon sensor is
broadcast to sensors 1, 2, . . .M . In a real system this
beacon sensor may be a chosen “leader” or may be an
feedback signal from the fusion center itself.

• Multi-bit feedback refers to quantized perfect feedback
from a longer alignment phase. TheK bits (sgn(S[−K+
1]), . . . , sgn(S[−1]), sgn(S[0])) are given to all sensors
to help them align.

The techniques we use to analyze these feedback signals can
be extended to more complex scenarios, but these simple
examples highlight the benefits of a short alignment signal
for the asymptotic distortion scaling.

B. A general protocol for alignment

We will analyze a simple protocol for alignment based on
the feedback signal. In the discovery phase sensor m forms
an estimate Âm of its own observation gain Am based on its
own observations and the feedback. In the transmisson phase
they use an uncoded transmission protocol to communicate to
the destination. Let

ηm =

√
P

Â2
mσ2

S + σ2
W

. (8)

Sensor m forwards ηÂmUm to compensate for its observation
gain. If a sufficient fraction of the sensors are aligned, the
distortion will converge to 0 rapidly as the number of sensors
increases.
The protocol is as follows:

1) Each sensor receives a common feedback signal f(S0).
2) Sensors estimate their observation gain Âm =

g(f(S0), Um) using a MAP estimation rule g.

3) For the remaining time, the sensors compensate using
Âm and forward their observations uncoded:

Xm = ηÂmUm. (9)

4) The receiver performs an MMSE estimate on the re-
ceived signal vector.

III. FULLY DIGITAL AND FULLY ANALOG ARCHITECTURES

ARE INEFFICIENT

Information theory provides a mathematical framework for
the analysis of communication systems. One of the key result
of Shannon’s landmark paper [35] is the separation principle,
which says that optimal end-to-end performance in estimation
over a single link can be obtained by concatenating an optimal
quantizer and an optimal error-correcting code. This result
nicely decouples the overall system design problem into the
separate problems of quantizer design and error-correction.
This architectural primitive is the backbone of most commu-
nication systems in use today. Indeed, the separation principle
can be extended to many other scenarios; an overview can be
found in [36].
Sensor networks present several new challenges for commu-

nications engineers. The most interesting such networks op-
erate via wireless links that are severely resource-constrained
(e.g. in terms of power or bandwidth) and unreliable. A key
challenge, therefore, is to design simple and lightweight proto-
cols that can enable cooperation between the sensors through
local communication and data processing. Shannon’s separa-
tion approach leads to some architectural simplifications: the
overall sensor network problem is split into two problems,
that of distributed data compression, and that of networked
error-correction coding. Both problems have received recent
research attention. One distributed compression problem that
has a clear connection to sensor networks, the so-called “CEO
problem,” has been studied in [37]–[40]. However, there are
several significant drawbacks to employing such an approach,
including, (i), the “separation theorem” does not hold for
typical sensor network topologies, thus using the separation
approach can and does result in severe performance penalties
(we will briefly comment on this in the sequel); and (ii),
separation-based architectures usually require high coding
complexity and delay, making them of limited value for sensor
networks.
Although many natural communication systems are inher-

ently digital (such as written language) many early engineered
systems did not employ sophisticated encoding. These point-
to-point systems were, not surprisingly, analog and to a good
extent linear [41]. The digital communication paradigm has
all but made this obsolete, but for wireless sensor networks,
the situation is fundamentally different, and indeed, no similar
separation theorem holds. Therefore, it is worth the effort to
explore other architectural paradigms, and the simplest appears
to be that of linear analog architectures. The immediate
advantage of such a simple architecture is scalability. What
is perhaps more surprising is that such architectures manage
to perform well for a number of topologies that are reminiscent
of wireless sensor networks. In [42] it was shown that a simple
linear analog scheme can achieve the optimal distortion-power
tradeoff for the example given in the previous section.



1162 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 28, NO. 7, SEPTEMBER 2010

A. Shannon’s separation principle

In a separation-based architecture, the sensors first perform
an optimal distributed source code to convert their observa-
tions {Um} into strings of bits such that a decoder with
access to all the bits can reconstruct a source estimate Ŝ. We
can lower bound the optimal distortion by assuming that the
realizations of {Am} are given to the sensors. For a target
distortion D, let RS(D) be the rate-distortion function for the
source S with distortion limit D. Note that R(D) is vector-
valued and represents a rate tuple (R1, R2, . . . , RM ). The bits
generated by this source code are then treated as independent
messages and are communicated over the multiple-access
channel with an optimal channel code. Let C(P ) be the
capacity function for the multiple-access channel under the
cost constraint P . Note that C(P ) is also a tuple of achievable
rates (R(c)

1 , . . . R
(c)
M ) for reliable communication across the

multiple-access channel.
Suppose we have a distributed source code for S with

rates r = (r1, . . . rM ). If R(D) = r and r < C(P ) then
we can compress the source and transmit the compressed
messages reliably across the channel. Thus if R(D) < C(P )
component-wise, we can achieve distortion D across the
channel. If r > C(P ) in any component, then the rate tuple
generated by the source code cannot be communicated reliably
across the channel.
Let Rtot =

∑
Rm. The source coding problem is known

as the CEO problem in the information theory literature [37].
Using a CEO source code we find that the distortion as a
function of the sum rate is given by [38, Equation (6)]:

D(Rtot, M) =
σ2

S
σ2

S

σ2
W

M(1 − exp(−2Rtot/M)) + 1
. (10)

The sum capacity of the Gaussian multiple-access channel
is upper-bounded by the case when all of the sensors can
collaborate. The total power is MP , so:

Rtot ≤ 1
2

log
(

1 +
M2P

σ2
Z

)
, (11)

Substituting, the achievable distortion is lower bounded by

D(M) ≥ σ2
Sσ2

W

σ2
W + σ2

SM

(
1 −

(
σ2

S

σ2
S+M2P

)1/M
) . (12)

Taking the limit as M → ∞ shows that D(M) =
Ω(1/ logM) behavior described in the introduction.

B. Uncoded transmission

In the uncoded transmission scheme, each sensor scales its
own observation to meet the power constraint of the channel.
Define the constant η as

η =

√
P

σ2
S + σ2

W

. (13)

Then

Xm = ηUm[i] = η(AmS + Wm). (14)

In the case without sign fading (Am = 1 almost surely) it
was shown in [6] that uncoded transmission attains the optimal
performance exactly. Specifically, the performance of uncoded
transmission is found to be

D ≥ σ2
Sσ2

W

Mσ2
S + σ2

W

⎛
⎝1 +

M(σ2
Sσ2

Z/σ2
W )

Mσ2
S+σ2

W

σ2
S+σ2

W
MP + σ2

Z

⎞
⎠ . (15)

The optimality of this performance was shown by explic-
itly bounding correlations via an argument due to Witsen-
hausen [43]. For general parameters Am it can be shown
that uncoded transmission attains the best possible distortion
scaling [42]. Our first result shows that bounded scalar fading
results in misalignment and renders uncoded transmission
useless.

Proposition 1. For the Gaussian network with fading ob-
servations satisfying (2)–(4), under the uncoded transmission
scheme the distortion scales with M as Ω(1).

Proof:We can only improve the performance of uncoded
transmission by assuming that each sensorm knows |Am|. For
sensor m, the density of Um is

pUm|Am
(um|Am)

=
1√

2π(A2
mσ2

S + σ2
W )

exp
(
− u2

m

2(A2
mσ2

S + σ2
W )

)
.

This density is identical for Am = ±am. The sensors apply
the gains

ηm =

√
P

A2
mσ2

S + σ2
W

Note that
M∑

m=1

P

σ2
SA2

m + σ2
W

+ σ2
Z ≥ M

P

σ2
Sν2 + σ2

W

+ σ2
Z ≥ Mμ2

for some μ > 0.
Thus we can lower bound the distortion by

D(M) ≥ σ2
S

B√
M

μ + 1
. (16)

Now note that B =
∑M

m=1 ηmAm, and

E[ηmAm] = E

[√
PA2

m

A2
mσ2

S + σ2
W

sgnAm

]
= 0

E[η2
mA2

m] = E

[
PA2

m

A2
mσ2

S + σ2
W

]
= σ2

B < ∞.

So by the central limit theorem [44], BM−1/2 converges in
distribution to a Gaussian random variable with mean 0 and
variance σ2

B .
We can now write the expected distortion in the limit:

lim
M→∞

E[D(M)] ≥ lim
M→∞

E

[
σ2

S

(BM−1/2μ)2 + 1

]

= E

[
lim

M→∞
σ2

S

(BM−1/2μ)2 + 1

]

=
∫

σ2
S

ξ2 + 1
1√

2πσ2
Bμ2

e−(1/2σ2
Bμ2)ξ2

> 0,
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Thus the expected distortion does not converge to 0 as M →
∞, so D(M) = Ω(1).

C. Remarks

The preceding arguments showed that under scalar source
fading, the uncoded transmission scheme fails because the
expected gain of the scheme does not grow with the number of
sensors. Therefore a fully analog scheme that does not use the
feedback cannot succeed because the signal Y at the receiver
is not strong enough to overcome the observation and channel
noises. By contrast, a fully digital architecture may still
achieve a distortion scaling likeO(1/ log M) by modifying the
CEO code appropriately. We shall see in the next section that
appropriate alignment of the sensor observations can partially
recover the performance of uncoded transmission and gives
better distortion scaling than the logarithmic scaling of the
fully digital system.

IV. ANALOG ARCHITECTURES WITH FEEDBACK

We now turn to the analysis of our protocol for handling
source fading with feedback. The overall system is shown
in Figure 2. For the following discussion we will focus on
sign fading; extensions to scalar fading are straightforward
and given leter. After receiving the common feedback f(S0),
each sensor m forms an estimate Âm = gm(f(S0), Um) of its
observation gain. Conditioned on a value S0 = s0, the sensor
observations are independent and identically distributed, so
the events of successful estimation of the observation gains
are independent from sensor to sensor. By the exchangeability
of the gains Am, each sensor should attempt to maximize
their probability of success, and will adopt the same decision
rule gm(·) = g(·). Let v(s0) denote the probability that
a sensor correctly estimates its own observation gain. Let
Âm = g(f(S0), Um).
The MMSE estimate of S given Y will depend on the

random variable B =
∑M

m=1 AmÂm. For a fixed B define

L(B, M) =
σ2

Sσ2
W

B2

M+(σ2
Z/σ2

W )η−2 σ2
S + σ2

W

, (17)

where η is given by (8). The expected distortion is then

Dunc(MP ) = EB [L(B, M)] . (18)

Let Γ denote the number of sensors for which Âm = Am.
Conditioned on the value of S0, the event of each sensor
being aligned correctly depends only on the noise value at
that sensor, and hence is an independent Bernoulli random
variable with parameter v(s0). Therefore Γ is a binomial
random variable with parameters (M, v(s0)).
The distortion achievable after the feedback is given by

E[D | f(S0)] = ES0

[
M∑

k=0

L(M − 2k, M)P (Γ = k)

]
, (19)

where the expectation is taken over S0 and

P (Γ = k) =
(

M

k

)
v(s0)k(1 − v(s0))M−k. (20)

For equation (19) to converge to 0, each term in the
summation must converge to 0 as M → ∞. The convergence
is in turn dependent on S0 and the decision rule g(·) by
which the sensors estimate their alignment. Intuitively, if S0

is close to zero, it will be difficult to determine Am and
thus the probability v(S0) that sensor m aligns correctly
will be close to 1/2. We therefore wish to find a decision
rule g(·) that minimizes the probability of error for each
sensor, or, alternately, that maximizes the probability of correct
alignment.
In order for D(M) = O(M−1), the fraction Γ/M of

sensors that are aligned must be strictly greater than half.
However, since the Γ depends on the realization of the
feedback, we cannot have Γ/M > 1/2 + ε almost surely.
Instead, we allow ε to scale withM and balance the achievable
distortion with the probability of getting Γ/M > 1/2+ε. This
balancing approach is given by the following proposition.

Proposition 2. Suppose the feedback function f(·) and deci-
sion rule g(·) are chosen such that there exist constants ε1 > 0,
ε2 > 0, and functions α(M) and β(M) such that

lim
M→∞

α(M) = 0 (21)

lim
M→∞

β(M) = 0 (22)

lim
M→∞

Mβ(M)2 = ∞, (23)

and if |S0| ≥ ε1α(M) then v(S0) ≥ 1
2 + ε2β(M). Then

as M → ∞, the feedback/decision pair (f, g) achieves a
distortion D(M) in the transmission phase satisfying

D(M) = O

(
max

{
α(M),

1
Mβ(M)2

})
(24)

for the network with sign fading.

Remark. Equation (23) says that if the source sample S0

on which we base our feedback is large enough, i.e. at least
ε1α(M), then the probability of successful alignment is larger
than 1/2 + ε2β(M).

Proof: Suppose that (21) – (23) hold. Let H be the event
(|S0| ≥ ε1α(M)). Let Γ be a binomial random variable with
parameters (M, v(s0)) so that E[Γ] = Mv(s0). We have the
following Chernoff bound:

P

(
|ΓMv(s0)| >

Mβ(M)ε2√
2

)
≤ 2 exp

(−ε22Mβ(M)2
)
.

(25)

We can also write the following bounds, using the assumptions
in (23):

P (Hc) =
1√

2πσ2
S

∫ ε1α(M)

−ε1α(M)

e−x2/2σ2
S dx (26)

≤
√

2
πσ2

S

ε1α(M) (27)

v (S0 |H ) ≥ 1
2

+ ε2β(M). (28)

We evaluate the distortion separately on the events

F1 = Hc

F2 = H ∩ (Γ > (ε2/2)Mβ(M))
F3 = H ∩ (Γ ≤ (ε2/2)Mβ(M)) .
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On Hc we upper bound the distortion by letting Γ = M/2.
On H , we have equation (28), so we can let Γ = M/2 on
F2 and Γ = 1

2 + (ε2/2)Mβ(M) on F3. Putting this together
and noting that the distortion must be less than σ2

S , we rewrite
(19) as :

ES0 [L(M − 2Γ, M)(1F1 + 1F2 + 1F3)]

≤ σ2
S (P (Hc) + P (Γ > (ε2/2) | H ))

+ L(Mε2β(M)/2, M)P ((Γ ≤ (ε2/2) | H )

≤ σ2
S

(√
2

πσ2
S

ε1α(M) + 2 exp
(−ε2Mβ(M)2

))

+ L(Mε2β(M)/2, M).

The first term converges to zero with the slower of
α(M) and exp(−Mβ(M)2). The second term converges
to zero as O(M−1β(M)−2). Since β(M)−2 is sub-linear,
we can ignore this latter term, so the distortion is
O(max{α(M), M−1β(M)−2}).
The bounds for this proof depend only one the relationship

between the values of S0 and the success probability v(S0).
The latter depends only on the noise distribution, and thus it
is possible to treat non-Gaussian noises, although in this case
the destination’s linear estimator will not necessarily be the
MMSE estimator.
1) Example: perfect feedback: To gain further insight, let

us consider an idealized case in which f(·) is the identity
function, so that the sensors get to know the source sample
exactly; we call this perfect feedback. We emphasize that this
feedback is only available during the discovery phase and not
for all time, and that we are assuming that the discovery phase
is one sample long.
Conditioned on the value of S0 = s0, each sensor is

left with the problem of detecting antipodal signals ±s0 in
the presence of Gaussian noise with a uniform prior. The
maximum a priori probability (MAP) rule for this problem
is a threshold test at 0; for s0 > 0, if Um > 0 then Âm = 1,
and for s0 < 0 if Um > 0 then Âm = −1. The probability of
success for this rule is

vp(s0) = 1 − Q

( |s0|
σW

)
, (29)

where

Q(x) =
1√
2π

∫ ∞

x

e−y2/2dy. (30)

The success probability, conditioned on H = |S0| ≥ εM , is

vp (S0 | H ) ≥ 1
2

+
εM

2
√

2πσ2
W

. (31)

Proposition 2 tells us that the distortion scales faster than
max{εM , M−1ε−2

M }. Equating these two scaling rates, we can
set εM = O(M−1/3) to yield a scaling rate of O(M−1/3).
Suppose instead that the sensors do not receive S0, but

instead a one bit quantization of S0, or f(S0) = sgn(S0).
Since the the MAP rule with full knowledge of S0 was a
threshold test at 0 for all values of S0, the MAP rule for this
case is the same. Another way to phrase the decision rule is
if f(S0) = sgn(Um) then Âm = 1, otherwise Âm = −1.
We again condition on the value of S0, which gives the the

same success probabilities as (29) and (31). Therefore the
distortion with this one bit of feedback is also O(M−1/3). It
is interesting to note that in this case the achievable distortion
scaling does not depend on the “richness” of the actual
available feedback.
2) Example: one bit of noisy feedback: Suppose instead

that each sensor is given access to the sign of the signal
received at an extra sensor b:

f(S0) = Gb = sgn(AbS0 + Wb). (32)

Sensor m must then decide if Am = Ab or Am 
= Ab. Again,
we condition on S0 = s0. The probability that Gb = Ab is
given by

P (Gb = Ab |S0 = s0 ) = 1 − Q

( |s0|
σW

)
. (33)

Since we cannot exactly know the signs Ab and Am, we
assume without loss of generality that Ab = 1 and attempt
to distinguish between the two hypotheses Am = Ab and
Am = −Ab.
Suppose we have full knowledge of Ub = AbS0+Wb. Under

the hypothesis Am = Ab, the pair (Abs0 +W0, Ams0 +Wm)
is jointly Gaussian with mean (s0, s0). Under the hypothesis
Am = −Ab they are jointly Gaussian with mean (s0,−s0).
The decision rule in this case is again a threshold test on the
line Um = 0. If Um and Ub have the same sign, then sensor
m guesses Âm = Âb = 1, and if they have different sign it
guesses Âm = −Âb = −1. This rule is again indifferent to
the value of S0, as in the perfect feedback case.
The decision rule for Am that maximizes a posteriori

probability of the observations is therefore given by

Âm =
{

g(Gb, Um) = 1 if Gb = sgn(Um)
g(Gb, Um) = −1 if Gb 
= sgn(Um), (34)

regardless of the value of S0. The probability of success is
given by

vn(s0) = 1 − 2Q

( |s0|
σW

)
Q

(−|s0|
σW

)
. (35)

So the conditional probability of success is:

vn

(
S0

∣∣∣ |S0| >
εM

2

)
≥ 1

2
+

εM√
2πσ2

W

+
ε2M

2πσ2
W

. (36)

The εM term is dominant as M → ∞ in this conditional
probability, the same as in the perfect feedback case. From
our previous analysis, we can see that D(M) = O(M−1/3).
The noisy feedback example models a situation in which

one sensor acts as a “beacon” by broadcasting the sign of
its observation to the other sensors. In a scaling sense, the
sign of the noisy observation is “as good” as knowing the
sign of the source sample exactly, although the constants in
the convergence become worse as the noise becomes more
severe.

A. Many bits of feedback

We now consider the effect of lengthening the discovery
phase by allowing the feedback involve more than one sample
of the source. Let S0 = S[0] and S−1 = S[−1] be the two
source samples on which we base our feedback f(S0, S−1).
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(−1,−1)

(1, 1)

�

�

(−s0,−s−1)

(s0, s−1)

+

(um[0], um[−1])

sign perfect

Fig. 3. MAP rules for perfect feedback and perfect sign feedback. The
plus is the noisy observation (um[0], um[−1]). Under perfect information,
Âm = 1, whereas with only sign information the expected probability of
success is maximized when Âm = −1.

Conditioned on a realization (s0, s−1) of these two samples,
the sensor observations are again independent, so each sensor
should seek to maximize its own probability of success. To
illustrate the effect of adding more feedback, we consider the
perfect feedback of Section IV-1 to simplify the expressions.
A similar analysis can be carried out for the noisy feedback
case.
Suppose our feedback is the pair (S0, S−1). Conditioned

on the values of S0 and S−1, sensor m’s observations
(Um[0], Um[−1]) are jointly Gaussian with mean (s0, s−1)
under the hypothesis Am = 1 and mean (−s0,−s−1) under
the hypothesis Am = −1. The problem is again the same as
that of detecting antipodal signals in the presence of Gaussian
noise, and the MAP rule is a threshold test shown in Figure
3. The probability of success for this rule is

vp(s0, s1) = 1 − Q

⎛
⎝
√

s2
0 + s2

−1

σW

⎞
⎠ . (37)

Let H be the event (|S0| ≤ εα(M), |S−1| ≤ εα(M)), and
Hc its complement. Then we have:

vp (S0, S−1 | Hc ) ≥ 1 − Q

(√
2εα(M)

σw

)
(38)

≥ 1
2

+ εα(M)
1

2
√

πσ2
W

. (39)

Since S0 and S−1 are independent, P (H) is proportional to
α(M)2. The analysis in Proposition 2 implies that D(M) =
O(max{α(M)2, Mα(M)−2}). Setting these two terms equal
gives α(M) = M−4 so D(M) = O(M−1/2).
Extending the above analysis in a standard way shows that

with K samples of feedback we get distortion D(M) =
O(M−K/(K+2)). By choosing K arbitrarily large, we get
closer to the optimal rate of O(M−1).

Proposition 3. Consider the observation network with sign
fading. Then the K-bit feedback scheme outlined above
achieves a distortion that scales like O(M−K/(K+2)).

Suppose we only get the signs of S0 and S−1, so that
f(S0, S−1) = (sgn(S0), sgn(S−1)). The threshold test in the

MAP rule for perfect feedback depends on the actual values
of (s0, s−1), as opposed to the threshold test when K = 1.
Thus the scaling result above does not immediately follow.
Sensor m must then determine, based on the observation pair
(Um[0], Um[−1]), whether Am = 1 or Am = −1 in a way
that maximizes its probability of making a correct decision.
We would like for the probability of success to be greater than
1/2.
Under the two hypotheses, the pair (Um[0], Um[−1]) is

jointly Gaussian with mean (s0, s−1) for Am = 1, mean
(−s0,−s−1) for Am = −1 and covariance σ2

W I . The like-
lihood of observing (Um[0], Um[−1]) is the expectation of
the conditional likelihood over all source pairs (s0, s−1) that
could have generated f(s0, s−1). Because of the symmetry in
the distribution of (S0, S−1), the likelihoods under the two
hypotheses are equal on the line orthogonal to the vector
f(s0, s−1) so the MAP estimate is a threshold on that line.
To illustrate the difference between the MAP estimate for

the case of perfect feedback versus the case of sign feedback,
consider Figure 3. For a fixed (s0, s−1), the probability of
error is given by the probability that the noise exceeds the
distance from the point (s0, s−1) to the threshold in the
direction orthogonal to the decision boundary:

vp(s0, s−1) = 1 − Q

( |s0| + |s−1|√
2σW

)
. (40)

This differs from equation (37) by a shift in the norm inside
the Q(·) function; with perfect knowledge of the samples we
have an L2 norm, and with only the sign we have an L1 norm.
This explains why the tests and errors were the same in the
case when K = 1.
Let H be the event that |S0|, |S−1| ≤ εα(M) and Hc its

complement. Then we can bound the probability of success:

vp (s0, s−1 |Hc ) ≥ 1
2

+
ε√

πσ2
W

α(M). (41)

Thus from our previous analysis, D(M) = O(M−1/2) as
in the case when we have perfect knowledge of the source
samples.
To see clearly the benefits of extending the scheme to

multiple bits of feedback, consider the simulation shown in
Figure 4. Here σ2

S = 5, σ2
W = 1, σ2

Z = 10, and P = 10.
The figure shows the asymptotic distortion for the separation
and optimal uncoded transmission schemes with no sign
fading. The three remaining curves are simulations of the
protocol with alignment phases of lengths 1, 2, and 3 under
perfect feedback. With only a single sample of feedback, the
asymptotic decay in the distortion does not appear unless the
network is very large, but with three samples the distortion
scaling is nearly optimal.

B. Feedback for bounded scalar fading

As an extension to these results on sign fading, we can
modify the scheme for bounded real scalar fading. If sensor
m estimates |Am| locally and finds that |Âm| < ε′ for some
threshold ε′, it will not transmit. Since the gains are iid this
affects at a constant fraction P (|Am| < ε′) of the sensors
almost surely asM → ∞. Consider the case of 1-bit feedback.
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Fig. 4. Plot of log(D) as a function of M for separation-based coding
(dotted), uncoded transmission with no sign fading (circles), and alignment
phases of lengths 1, 2, and 3 under perfect feedback.

Suppose a beacon sensor broadcasts the sign of its observation
Gb at time 0 to all the other sensors:

Gb = sgn(Ub[0]) = sgn(AbS0 + Wb[0]) (42)

We call this signal the feedback function f(Ub)
Sensor m then checks if Gb = Gm (defined analogously).

If so, it estimates sgn(Am) = sgn(Ab), otherwise it estimates
sgn(Am) = − sgn(Ab). Call this decision rule g(Gb, Um).
This rule is the maximum a posteriori probability (MAP)
rule for detecting the sign of Am. Denote by vm(S0) the
probability of successfully estimating sgn(Am) at sensor m
using this rule. Conditioned on S0, all the sensor observations
are independent. We have already assumed that Am > ε, so
vm(S0) > 1/2 + δ for all m. We have the same proposition
relating the scaling rate to the to the success probability:

Proposition 4. Suppose the feedback function f(·) and deci-
sion rule g(·) are chosen such that there exist constants ε1 > 0,
ε2 > 0, and functions α(M) and β(M) such that

lim
M→∞

α(M) = 0 (43)

lim
M→∞

β(M) = 0 (44)

lim
M→∞

Mβ(M)2 = ∞, (45)

and if |S0| ≥ ε1α(M) then v(S0) ≥ 1/2 + ε2β(M). Then
as M → ∞, the feedback/decision pair (f, g) achieves a
distortion D(M) in the transmission phase satisfying

D(M) = O

(
max

{
α(M),

1
Mβ(M)2

})
. (46)

for the Gaussian network with bounded real scalar fading.

We then have, by application of the previous proposition,
that a single bit of feedback in the mode we have described
biases the sum of the forwarded observations into a regime
that scales faster than

√
M , which then avoids the central-

limit behavior described in Proposition 1. It is clear from these
examples that the situations in which the fading process {Am}

is problematic are when Am is zero-mean and symmetric. In
these cases the sign of Am plays a key role. This can be
thought of as a phase uncertainty introduced by the fading
observations.

V. DISCUSSION

We have seen how uncertainty in the correlation between
sensors, or misalignment, could severely impact the perfor-
mance of a simple, information-theoretically optimal sensor
fusion strategy. We proposed a simple two-phase protocol in
which a small number of bits is broadcast to all the sensors.
This protocol partially resolves the uncertainty and regains
much of the performance. This same framework can be applied
to more complex problems that may appear in real sensor
networks. In particular, it can be modified to account for
other types of alignment uncertainty for sensor data fusion.
By using limited feedback, the sensors can apply simple tests
to align their observations. This in turn allows them to exploit
the simple and near-optimal collaboration via linear analog
communication. In this sense, a limited amount of feedback
can greatly simplify sensor data fusion in many applications.
The example given here can be extended to more sophis-

ticated mathematical models for sources and more complex
sensing scenarios. One simple extension to the protocol would
be to handle complex sources. In this case the underlying
source is a complex circularly symmetric Gaussian random
variable and the source fading could be a uniform phase shift.
The sensors can use the feedback to partially align their phase
vectors for the uncoded transmission phase. By using the same
techniques as in the real scaling case, we can find the scaling
law for the distortion. It may also be possible to adapt the
recent work on distributed beamforming [45]–[49].
Another mathematical extension to the model is to include

memory in the source observations by modeling the source
fading as FIR filters. For ensembles of real filters, the am-
biguity is at most a sign shift, as in the scalar fading case.
To help align the sensors with a given filter, we can use
the same beacon strategy described earlier. This will allow a
sufficient fraction of the sensors to align themselves with high
probability, allowing for further processing to enable coherent
communication. If the sensor correlations change dynamically
(but on a slower time scale), we can do periodic re-alignment
to maintain system performance, similar to the use of pilot
signals for slow fading wireless channels.
More challenging source misalignment problems arise when

there are multiple sources or when the source fading takes the
form of a delay. For multiple sources we may have a problem
of bandwidth mismatch which has to be addressed in the
uncoded transmission framework. There is also the interaction
of the sensor network topology with the problem of alignment.
In our case study, all sensors could communicate directly
with a centralized fusion center and the distortion scaling was
directly measured in terms of the number of sensors. Many
networks may not have these direct connections, so the linear
analog architecture described here must be modified for new
scenarios. Misalignment in an general network can be modeled
via delayed observations. As long as a fraction of sensors
are misaligned, their contributions will result in a coherent
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interference that scales as fast as the correctly aligned sensors.
One way around this problem may be to allow the amount of
feedback to scale with the number of sensors, but we leave
this for future work.
The sensor network system designer often faces challenges

in modeling the underlying phenomena to be sensed. The
standard approach of separation-based estimation and com-
munication leads to gross inefficiencies that may limit the
lifetime of the sensor network. The statistical structure of the
sensor’s correlations may depend on the actual deployment,
so simple schemes that exploit known structures may also
have poor performance. The capability for feedback is already
engineered into many communication systems for control and
synchronization purposes. We can use a small amount of
feedback to align the sensor observations and simultaneously
achieve better scaling performance by enabling simplified
collaborative protocols.
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