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Rateless Codes for AVC Models
Anand D. Sarwate, Member, IEEE, and Michael Gastpar, Member, IEEE

Abstract—The arbitrarily varying channel (AVC) is a channel
model whose state is selected maliciously by an adversary. Fixed-
blocklength coding assumes a worst-case bound on the adversary’s
capabilities, which leads to pessimistic results. This paper defines
a variable-length perspective on this problem, for which achiev-
able rates are shown that depend on the realized actions of the ad-
versary. Specifically, rateless codes are constructed which require
a limited amount of common randomness. These codes are con-
structed for two kinds of AVC models. In the first the channel state
cannot depend on the channel input, and in the second it can. As a
by-product, the randomized coding capacity of the AVC with state
depending on the transmitted codeword is found and shown to be
achievable with a small amount of common randomness. The re-
sults for this model are proved using a randomized strategy based
on list decoding.

Index Terms—Adversarial models, arbitrarily varying channels
(AVCs), randomization, rateless coding.

I. INTRODUCTION

M ODERN communication platforms such as sensor
networks, wireless ad hoc networks, and cognitive

radio involve communication in environments that are difficult
to model. This difficulty may stem from the cost of measuring
channel characteristics, the behavior of other users, or the
interaction of heterogeneous systems using the same resources.
These systems may use extra resources such as feedback on a
low-rate control channel or common randomness to overcome
this channel uncertainty.

Inspired by some of these challenges, we consider variable-
length coding over arbitrarily varying channels (AVCs). The
AVC is an adversarial channel model in which the channel is
governed by a time varying state controlled by a jammer who
wishes to maximize the decoding error probability. For fixed-
blocklength coding, the capacity is the worst-case over all al-
lowable actions of the jammer. However, in some cases the
worst-case may be unduly pessimistic.
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Fig. 1. Rateless communication system. The encoder and decoder share a
source of common randomness. A single bit of feedback is available every �

channel uses for the decoder to terminate transmission. Some partial informa-
tion about the channel state is available at the decoder every � channel uses in
a causal fashion.

In this paper, we study randomized coding for two different
variable-length coding models based on the AVC. In a ran-
domized code the encoder and decoder have a shared source
of common randomness unknown to the jammer which acts
as a shared key to mask the coding strategy from the jammer.
The first model we study is the AVC under maximal error
and randomized coding, in which the state sequence is chosen
independently of the transmitted codeword. The second model
is an AVC in which the jammer can choose the state sequence
based on the transmitted codeword. This may be an appropriate
model for a multi-hop network in which an internal node
becomes compromised and tampers with transmitted packets.
We call this situation an AVC with “nosy noise.” Our first result
is a formula for the randomized coding capacity of this AVC.
Our proof uses results on list decoding for AVCs [3]–[5] with a
partial derandomization technique used by Langberg [6].

The main focus of this paper is on the problem of rateless
coding for these channels using limited common randomness
and partial channel state information, as shown in Fig. 1. Rate-
less codes were first proposed for erasure channels [7], [8] and
compound channels [9], [10], and a general model is discussed
in [11]. They are strategies that allow a single-bit feedback
signal (often called an ACK/NACK for “acknowledge”/“not
acknowledge”) every channel uses to terminate transmission
based on the observed channel output and channel state
information. In our model, the partial state information takes
the form of estimates of the average channel induced by the
channel state over “chunks” of size . In practice this channel
information may come from exogenous measurements or from
training information in the forward link, as in [12].

The arbitrarily varying channel was first studied in the sem-
inal paper of Blackwell, Breiman, and Thomasian [13], who
found a formula for the capacity under randomized coding and
maximal error. Without randomized coding, the maximal-error
problem is significantly harder [14]–[17] and is related to the
zero-error capacity [18]. The AVC model was extended to in-
clude constraints on the jammer by Hughes and Narayan [19]
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Fig. 2. The nosy noise error model—the jammer knows the codeword � ���.

and Csiszár and Narayan [20]–[22]. For randomized coding,
error exponents have also been studied [23]–[25]. Ahlswede’s
landmark paper [26] showed that the average error capacity
under deterministic coding is 0 or equal to the randomized
coding capacity . This result does not hold when there is a
constraint on the channel state, but the method can be used to
show that only bits of common randomness is needed
to achieve for AVCs with cost constraint .

The “nosy noise” model, shown in Fig. 2, has been discussed
previously in the AVC literature [15], [27], where it is some-
times called the A VC [28, Problem 2.6.21]. To our knowl-
edge, for AVCs with a cost-constrained jammer the problem was
not studied until Langberg [6] found the capacity for bit-flip-
ping channels with randomized coding (see also [29]). Agarwal,
Sahai and Mitter proposed a similar model with a distortion con-
straint [30], which is different than the AVC model considered
here [5, p. 216].

II. CHANNEL MODELS AND DEFINITIONS

The time-varying channel is modeled by a set of channels
with finite input alphabet and

finite output alphabet . This is an arbitrarily varying channel
(AVC) model. If
and are length vectors, the probability
of observing the output given the input and state over the
AVC without feedback is given by

(1)

In this paper, feedback is used only to terminate transmission,
and we compare our achievable rates with those achievable
without feedback (cf. [11]). The interpretation of (1) is that the
channel state can change arbitrarily from time to time.

We will impose a cost constraint on the state sequences [20].
Let be a cost function on the state set, where

and . The cost of the
vector is the sum of the cost on the ele-
ments

(2)

In some cases, we will impose a total constraint on the average
cost, so that . If we say the state is uncon-
strained. We will define the set to be
the set of sequences with average cost less than or equal to .

Point-to-Point Channel Coding: An determin-
istic code for the AVC is a pair of maps with

and . The rate of the
code is . The decoding region for message is

. A randomized code for the
AVC is a random variable taking on values in the set of
deterministic codes. If is uniformly distributed on
a set of codes, then we call this an randomized
code with key size . Note that the realization of the code
is shared by the encoder and decoder, so the key is known
by both parties. The rate of the code is . The
decoding region is a random variable
and under key we write . For a
randomized code we require that the decoding error be small for
each message averaged over key values. Randomization allows
several different codewords to represent the same message. For
maximal error, there are two cases to consider, depending on
whether or not the state can depend on the actual codeword.

The standard maximal error for an randomized code
over an AVC with cost constraint is given by

(3)

where the expectation is over the randomized code . The
nosy maximal error for an randomized code over an AVC

with cost constraint is given by

(4)

where the expectation is over the randomized code . In
these definitions, and , and correspond to the
same key. We call an AVC under the nosy maximal error crite-
rion an AVC with nosy noise. Fig. 2 shows the channel model
under the nosy noise assumption. In the AVC with nosy noise,
the jammer’s strategies take the form of mappings

from the codeword vectors to state sequences. Under ran-
domized coding we will show that from a capacity standpoint
all that matters is whether the jammer has access to the current
input symbol.

A rate is called achievable if for every there exists a
sequence of codes of rate whose probability
of error (maximal or nosy) is at most . For a given error crite-
rion, the supremum of achievable rates is the capacity of the ar-
bitrarily varying channel. We will write for the random-
ized coding capacity under maximal error with constraint , and

for the randomized coding capacity with nosy noise and
state constraints.

Information Quantities: For a fixed input distribution
and channel , we write for the mutual informa-
tion between input and output. For a finite or closed and convex
set of channels we use the shorthand

(5)
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We define the following sets:

(6)

(7)

For an AVC with state constraint
we define two sets of channels:

(8)

(9)

We will suppress the explicit dependence on . The set in (8)
is called the convex closure of , and the set in (9) is the row-
convex closure of . In earlier works is sometimes
written as [26].

Two information quantities of interest in randomized coding
for AVCs are

(10)

(11)

Csiszár and Narayan [20] showed that the randomized coding
capacity under maximal error is equal to . In
Theorem 1 we show that the randomized coding capacity under
nosy noise is equal to .

Partial Channel State Information: In the rateless codes
we consider, the decoder selects an appropriate decoding time
based on partial channel state observation. To simplify the
analysis, we suppose that such information is available for each
so-called chunk of channel uses. Specifically, suppose that
during the th chunk of channel uses
the channel inputs were and the state was . Under
the maximal error criterion, we define the average channel
under during the th chunk by

Under the nosy noise criterion we define the average channel
under and by

(12)

A receiver with full side information would learn the channel
explicitly. We consider instead the case where the receiver

is given a set after the -th chunk, where is a subset of
channels such that .

We denote the set of possible values for by . This is a
collection of subsets of for maximal error
and of for nosy noise. We will assume a
polynomial upper bound on the size of

(13)

for some .
We consider two models for : in the first the decoder gets

an estimate of the empirical cost of the true state sequence, and
in the second the decoder gets an estimate of the mutual infor-
mation induced by the true channel. For rateless codes under
maximal error we will assume that the receiver gets an estimate

such that the true cost

(14)

satisfies . The CSI set is then

(15)

We call such CSI -cost-consistent.
For rateless codes under nosy maximal error, we will say a

CSI sequence is -consistent for input if

(16)

Our rateless codes for nosy maximal error will assume the CSI
sequence is -consistent.

Rateless Codes: Based on the partial channel state informa-
tion, the decoder selects an appropriate decoding time such as to
ensure reliable decoding. To simplify the analysis, we will as-
sume that the decoding time is an integer multiple of the chunk
size denote by . Thus, the empirical rate is simply given
by

(17)

where is the number of codewords in the codebook.
Formally, a randomized rateless code is set of maps

(18)

(19)

(20)

To encode chunk , the encoding function uses the message
in and key in to choose a vector of channel inputs.

The decision function defines a random variable, called
the decoding time of the rateless code

(21)

Let be the smallest interval con-
taining the support of . The set of possible (empirical) rates
for the rateless code are given by .
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We can define decoding regions for the rateless code at
a decoding time . Note that if we have

. For message , key and side informa-
tion vector we can define a decoding region

(22)

For a given state (for maximal error) or jammer strategy
(for nosy noise) the probability of the de-

coding regions are

The maximal and nosy noise error for a rateless code
at decoding time are, respectively

(23)

(24)

Here and is the
adversary’s strategy. Note that in these error definitions we do
not take the maximum over all or , because the rate and error
at which we decode will depend on the realized state sequence,
in contrast to the point-to-point AVC errors in (3) and (4).

III. MAIN RESULTS AND CONTRIBUTIONS

Our first main result is Theorem 1, which is a characterization
of the capacity of the AVC with nosy noise. The proof is given
in Section IV.

Theorem 1: Let be an AVC with state cost function
and cost constraint . Then is the randomized coding
capacity of the AVC with nosy noise

(25)

Furthermore, for any , there exists an suffi-
ciently large such that the sequence of rate-key size pairs

is achievable with nosy maximal error , where
and

(26)

(27)

where for .
This theorem is proved by first constructing list-decodable

codes with constant list size for cost-constrained AVCs. These
list-decodable codes can be combined with a message-authen-
tication scheme due to Langberg [6] in Lemma 2, which shows

that the a secret key can be used to disambiguate the list. Be-
cause , in general we have

. In some cases equality can hold, as in the following
example.

Example 1 (Bit-Flipping): Consider an AVC with input al-
phabet , state alphabet and output al-
phabet , with , where denotes ad-
dition modulo two and . It has been shown [6], [20]

, where is the binary en-
tropy function. Furthermore, the capacities and
are both equal to .

In general, the capacities under maximal error and nosy noise
are different.

Example 2 (Real Adder): Consider an AVC with input al-
phabet , state alphabet and output al-
phabet , with , and the addition is
taken over the real numbers. When , if
Csiszár and Narayan [20] showed that and is
achieved with . However, in the case of nosy
noise the capacity is lower when because the jammer
can see the codeword, it can selectively set the output to be 1 if

. A straightforward calculation [5] shows that
.

Theorems 2 and 3 provide achievable strategies for
rateless coding over channels with input-independent and
input-dependent state, respectively. Their proofs are given in
Sections V-A–1 and V-C. To state our results in a way that
makes the tradeoff between error probability and blocklength
clearer, we will assume

(28)

(29)

For maximum and minimum rates and the number
of messages is and .

Theorem 2: Let be an AVC with state cost function
. Fix , and input type with

. Then there is an sufficiently large such
that for all there exists a
randomized rateless code with whose decoding
time satisfies

(30)

where as . The maximal error of the code at this
decoding time satisfies

for state sequences and -cost-consistent CSI .

Theorem 3: Let be an AVC with state cost function .
Fix , input type with

. Then there is an sufficiently large such that for all
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Fig. 3. Decoding rate versus time in a rateless code. The empirical mutual in-
formation corresponding to the AVC with the true cost (solid line) varies, and the
�-consistent channel estimates (dashed line) can track it. Once the channel esti-
mates cross the decoding threshold (dotted line), the receiver terminates trans-
mission and tries to decode.

there exists a rateless code whose
decoding time satisfies

where is the average channel in (12). The nosy maximal
error at this decoding time satisfies

for , state sequences and -consistent side
information given by (16).

Theorems 2 and 3 say that if the CSI estimates “good,” then
the decoder will decode when the empirical mutual information
of the channel exceeds the empirical rate . The two models
differ in how they measure the empirical mutual information.
The channel tracking is illustrated in Fig. 3. The solid line rep-
resents the mutual information of the AVC corresponding to
the true channel as measured under the maximal error or nosy
noise criterion. The dashed line represents the mutual informa-
tion corresponding to the estimated channel. The dotted line is
the empirical rate, so once the estimate crosses the threshold
then the decoder will decode. For Theorem 2 the error decays
as , whereas it decays like in Theorem 3.

Both codebooks begin with a constant composition code that
is good and manipulate it into a rateless code with the desired
properties. The code in Theorem 2 is a fully randomized code
whose randomness is reduced by Lemma 1. In Theorem 3, the
decoder decodes each chunk of channel uses into a list of
possible messages. As more chunks are received, the list size
shrinks and the decoding time is chosen to guarantee that
the list size is bounded by a constant. Lemma 2 shows that this
code can be used as part of a randomized code in which the key
disambiguates the list at the decoder.

Example 3 [Bit-Flipping (Mod-Two Adder)]: Consider the
mod-two additive AVC described in Example 1 on page 4 where
the partial side information is an estimate of the empir-
ical Hamming weight of the state sequence . The receiver
tracks the empirical weight of the state sequence to compute
an estimate of the crossover probability. Theorems 2 and 3

both give rateless codes that can decode as soon as the estimated
empirical mutual information exceeds the size
of the message ( bits). As can be as small as we like,
these codes can work for empirical state sequences with Ham-
ming weight arbitrarily close to 1/2. The realized rate is within

of , but the two codes differ greatly in the depen-
dence of the error probability on the amount of common ran-
domness. When the bit-flips cannot depend on the transmitted
codeword, the error decays with , and when they can it de-
cays with .

Remark: For the bit-flipping example, the rates guaranteed
by both theorems are close to the capacity of the AVC with
the corresponding cost constraint. However, in general this may
not be the case. Both coding schemes use a fixed input type ,
which is is a common feature of rateless coding strategies [9],
[12], [31] but may result in some loss in rate [32] with respect
to an input distribution chosen with knowledge of the empirical
state distribution. It may be possible to adapt the channel input
distribution, perhaps using ideas from universal prediction [33]
but we leave that for future work.

This scheme can also be used with more general settings for
the parameters of the scheme beyond those in (28) and (29). It
is also possible to relax the -consistency requirement. How-
ever, in that setting it is hard to quantify how close the rate at
the decoding time is to the empirical mutual information of the
channel.

IV. TWO PARTIAL DERANDOMIZATION TECHNIQUES

We now describe two lemmas which can be used to reduce
the common randomness needed for our code constructions:
the “elimination technique” [26], and a message authentication
technique [6], [34]. The former is applied to randomized codes
[24], [25] to limit the key size, and the second to list-decodable
codes; both yield randomized codes with key sizes of
bits.

Lemma 1 (Elimination Technique [26]): Let be a positive
integer and let be an randomized code with

whose expected maximal error satisfies

for an AVC with cost function and cost constraint .
Then for all satisfying

where is the binary entropy function, with probability
exponentially small in , the randomized code uni-
formly distributed on i.i.d. copies from will have with max-
imal probability of error less than .

The proof follows directly from the arguments in [26] and
is omitted. In particular, if there is a sequence of randomized
codes whose errors decay exponentially, so ,
then a little algebra shows that we can choose the key size
and the error to satisfy . The code of [24],
[25] has exponentially decaying error probability, so Lemma 1
shows that the randomized coding capacity is achievable
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with common randomness polynomial in , which corre-
sponds to bits.

For AVCs with nosy noise, the state can depend on the
transmitted codeword. By combining these list-decodable
codes with a message authentication scheme used by Langberg
[6], we can construct randomized codes for this channel with
limited common randomness. The relationship between the key
size, list size, and error is given by the following Lemma.

Lemma 2 (Message Authentication [6]): Let be an
AVC and suppose we are given an deterministic
list-decodable code and probability of error . For key size

where is a power of a prime there exists an
randomized code with nosy maximal

error such that

(31)

By choosing the appropriate input distribution we can obtain
our first new result: a formula for the randomized coding ca-
pacity for the AVC under nosy noise.

Proof of Theorem 1: To show the converse, note that the
jammer can choose a memoryless strategy .
Choosing the worst yields a discrete memoryless channel
whose capacity is , and therefore the randomized
coding capacity for this channel is given by .

To show that rates below are achievable, we first fix
and let be the input distribution maximizing .

In [5] it is shown using methods from [3], [4] that for any ,
there is an sufficiently large and a list-decodable code with
codewords of type , rate , list size

(32)

and error , where . We can use
Lemma 2 to construct an random-
ized code with error probability

The rate of this randomized code is

For any and we can choose small
enough so that .

V. RATELESS CODES WITH LIMITED COMMON RANDOMNESS

The rateless codes for maximal error and nosy noise are very
similar and can be described by the following algorithm.

1) The encoder and decoder choose a key using
common randomness. The encoder chooses a message

to transmit and maps it into a codeword
.

2) For the encoder transmits
in the th chunk and the decoder sets the

feedback bit .

3) For , if
, the en-

coder transmits in channel uses
.

4) The decoder receives channel outputs . Under max-
imal error it also gets an estimate of the state cost in
the th chunk. Under nosy noise it gets a channel state in-
formation set . The decision function takes the form
of a threshold test comparing the empirical rate with
a mutual information calculated from the channel output
and partial CSI. If then the decoder attempts
to decode the received sequence, sets ,
and feeds back a 1 to terminate transmission. Otherwise,
the decoder feeds back a 0 and we return to step 3) to send
chunk .

Our schemes use a fixed maximum blocklength and we will
express other parameters as functions of . For a fixed minimum
rate , input distribution , and key size we will con-
struct a randomized rateless code with chunk size
and decoding time (see (28) and (29)). Our
codebooks will consist of codewords drawn uniformly from the
set

(33)

That is, the codewords are formed by concatenating constant-
composition chunks of length .

A. Rateless Codes for Maximal Error

We now prove Theorem 2 on rateless coding for AVCs under
maximal error. Our code is built up from the code of [24] and
we use Lemma 1 to partially derandomize the construction. In
this section, we will assume the CSI takes the form of (14)–(15)
and that it is -cost-consistent. Define

(34)

(35)

These are the true and estimated cost for the state sequence .
The number of possible values for is at most , which
is an upper bound on the number of types on with denominator
. Without loss of generality we can assume takes values in

the same set as .
The decision function for this code is given

by

(36)

where is given by (35).
Our code relies on the existence of a set of codewords

which, when truncated to blocklength , form a
good randomized code for an AVC satisfying a given cost
constraint. The condition checked by the decision function (36)
is sufficient to guarantee that the decoding error will be small.
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We will also use a parameter which is the minimum rate
of the code, so .

Lemma 3 (Fully Randomized Rateless Codebook): Let be
an AVC with cost function . For any and
input distribution with , for suf-
ficiently large blocklength there exists a randomized rateless
code with messages whose decoding time

satisfies (36) and whose rate at satisfies

(37)

for all and -cost-consistent partial state information se-
quences , where as . The error at decoding
time satisfies

(38)

where .
1) Proof of Theorem 2: We are now ready to prove the The-

orem 2.

Proof: Fix and . Choose
sufficiently large so that the codebook-valued random variable

that is the randomized code from Lemma 3 satisfies (38)
with under the conditions on the state and side informa-
tion in (15) and (30). For each , let be the the codebook
truncated to blocklength .

We can now draw codebooks sampled uniformly from
. Since truncated to blocklength is , this

sampling induces a sampling on for each . Each of these
truncated codebooks has error probability exponentially small
in , so by Lemma 1 we can choose sufficiently large and
chunk size so that with probability going to 1, the error
probability is at most for each of the truncated
codes. Therefore a code satisfying the conditions of the theorem
exists.

One case in which we can obtain -cost-consistent state in-
formation is in the scheme proposed by Eswaran et al. [12] for
coding over a channel with individual state sequence. The codes
from this section can be used as a component in that coding
scheme, which is an iterated rateless coding strategy using zero-
rate feedback and unlimited common randomness. One draw-
back of the scheme in [12] is that the amount of common ran-
domness needed to choose the rateless code is very large. By
using the rateless code constructed in Theorem 2 the amount of
common randomness can be reduced and can be accommodated
in the zero-rate feedback link.

B. Rateless Coding for Channels With Input-Dependent State

We now prove Theorem 3 on rateless coding for AVCs under
nosy maximal error. The idea is to build rateless codes which
are list-decodable with constant list size at the decoding time

. Lemma 2 can be used with these list decodable codes to
construct a randomized code with small key size.

We explicitly use information about the output sequence at
the decoder together with the side information . For

and distribution , given the th chunk of channel
outputs and the side information set , define

where is the total variational distance. Although
depends on , in our construction is fixed so

we do not make this dependence explicit. Define the decision
function as

(39)

Once the decision threshold is reached, the decoder list-
decodes the received codeword and produces a list of candidate
message-key pairs. From Lemma 2, with high probability there
will be only one message-key pair in the list consistent with the
key used to encode the message.

The key lemma is Lemma 4, which shows that a codebook
of concatenated constant-composition chunks can be list-de-
coded in each chunk using a channel estimate for that chunk.
The overall list size is exponential in . The decoding con-
dition (39) can be used to bound the list size at decoding. The
proof is omitted for space reasons (see [5]). The final step is to
sample codewords from . The subsampling ensures
a constant bound on the list size for all decoding times.

Lemma 4 (Concatenated Exponential List Codes): Let
be an AVC. For any and

with , there is a sufficiently large such
that the set is a list-decodable code with block-
length messages and list size
for , where

and

(40)

The maximal probability of error is

(41)

where is calculated with respect to the distribution
and for a channel the conditional entropy

is with respect to the distribution , and
.

Our codebook is constructed by sampling codewords from
the codebook . Truncating this set
to blocklength gives . We want to show that for
each the sampled codewords can be used in a list decodable
code with constant list size . We can define for each trunca-
tion , output sequence , and side information sequence

a “decoding bin”



3112 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 7, JULY 2010

which is the list given by the code in Lemma 4. The size of each
bin can be upper bounded by (40).

Lemma 5 (Constant List Size): Let be an AVC with cost
function . For any with ,
for sufficiently large blocklength there exists a set of

codewords
such that for any CSI sequence and channel
output with decoding time given by (39), the truncated
codebook is a list decodable code with list
size satisfying

and maximal probability of decoding error
, where .

C. Proof of Theorem 3

Proof: We will use the codebook from Lemma 5. Since
the set of messages is of fixed size , we use the construction
of Lemma 2. This makes the code, when decoded at after

chunks, an randomized
code with probability of error

Then we can use choose to get

Finally, we must show that the loss in rate is small, assuming
-consistent state information. But this follows because by (16),

for all

Therefore, the average of mutual information terms in (39) is
at most smaller than the averages with the true channels and
hence we get the bound on the decoding time.

VI. DISCUSSION

In this paper, we constructed rateless codes for two different
channel models with time varying state based on AVCs. In
the first model, the state cannot depend on the transmitted
codeword, and in the second model it can. By adapting previ-
ously proposed derandomization strategies, we showed that a
sublinear amount of common randomness is sufficient, which
means that a secure control channel of small rate is sufficient to
enable reliable communication. Our codes can partially deran-
domize the construction proposed in [12] for communicating
over channels with individual state sequences.

We also showed the capacity formula for
AVCs with “nosy noise” in which the jammer has knowledge of
the transmitted codeword. Although in some examples
may equal the capacity under maximal error , in general
it is smaller. It is interesting to note that the jammer’s worst
strategy for nosy noise is to make a “memoryless attack” on the

input by choosing the state according the the minimizing con-
ditional distribution in (11). In constrast, if the jammer
is given strictly causal knowledge of the input sequence, Black-
well et al. [13] showed that the capacity is given by , which
is also the capacity when the jammer has no knowledge of the
input sequence. Thus from the jammer’s perspective, causal in-
formation about is as good as no knowledge, and full knowl-
edge is as good as knowledge of the current input.

APPENDIX

A. Proof of Lemma 3

Proof: Fix and . We will prove
that for each there exists a ran-
domized codebook of blocklength with rate

. Let be defined by

(42)

The distribution of the codebook will be the same as the dis-
tribution of the codebook of blocklength truncated
to blocklength .

Standard randomized codebook. Fix and let be a
randomized codebook of codewords drawn uniformly from
the constant-composition set with maximum mutual
information (MMI) decoding. Choose such that

From Hughes and Thomas [24, Theorem 1] the following expo-
nential error bound holds for all messages and state sequences

with

(43)

Let denote this upper bound. The exponent is positive
as long as the first argument is smaller than .
Therefore

Thinning. Let be a random codebook formed by
selecting piecewise constant-composition codewords uni-
formly from . We declare an encoding
error if . We have [12]

(44)

where is a positive constant. Since is formed
by iid draws from , the event that codeword from
is also in is a Bernoulli random variable with param-
eter at least . The size of can be upper bounded using
Sanov’s Theorem [35]
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Choose . Then we can make the probability that
as small as we like and much smaller than the de-

coding error bound. Furthermore, this bound holds for all
. Therefore a subcodebook of piecewise constant-compo-

sition codewords exists with high probability.
The encoder draws and declares an error if . If

there is no error it transmits the th codeword in the codebook for
message . The average error on the fraction
of preserved codewords can be at most times the original
average error

Permutation. Define a randomized code by drawing a
permutation uniformly from all permutations on and code

according to and encoding message with the codeword
from . The maximal error of is the same as average

error for , so . For each we can
construct a randomized codebook as aforedescribed.

Nesting. Now consider the codebook of blocklength
and set the size of the codebook to to equal

. We must guarantee that the errors will
still be small. Since , the rate of the codebook

is . If we truncate to
blocklength , the resulting randomized code is identically
distributed to . The rate for the corresponding can be
bounded using (44), (28), and (29)

Therefore, we can choose sufficiently large so that the gap
between and can be made smaller than , so

. Therefore using the definition of in (42) and the
fact that we have

and the exponent in (43) is positive. Now, for such
that (37) holds, the error is less than , so we have (38).

Rate loss. The last step is to compare to
the empirical mutual information induced by the true state se-
quence. By assumption, the partial CSI is -cost-consistent, so
by (16), . Therefore

By the triangle inequality and (36)

This proves (37).

B. Proof of Lemma 5

Proof: Fix and consider the codebook .
The truncation of this codebook to blocklength for
is the codebook defined in Lemma 4. Let be

random variables distributed uniformly on

the set . The decoder will operate in two steps: first
it will decode the received sequence into the exponential size list

given by the decoder of Lemma 4, and then it
will output only those codewords in the list which match one of
the sampled codewords . Note that the decoder for Lemma
4 has error satisfying (41).

For any and we can choose sufficiently large
so that for any fixed , and that satisfy
the conditions of the decoding rule in (39) the probability that

lands in the list output by the decoder of
Lemma 4 is upper bounded

The random variable is Bernoulli
with parameter smaller than , so we can bound the prob-
ability that of the codewords land in the set

using Sanov’s Theorem [35]

We can bound the exponent by

(45)

From the rule in (39), we know that satisfies

(46)

Substituting this into (45) we see that

For large enough we have the bound . For
large enough , so we can ignore those terms as
well. This gives the following bound:

(47)

The number of decoding bins can be bounded
by . Therefore we can take a union bound over all the
decoding bins in (47) to get an upper bound of

Since for all , we can choose
and sufficiently large such that the upper bound becomes
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If then we can choose to guar-
antee that subsampling will yield a good list-decodable code
for all . Choosing and

, where is from (41), yields the result.
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