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List-Decoding for the Arbitrarily Varying Channel
Under State Constraints

Anand D. Sarwate, Member, IEEE, and Michael Gastpar, Member, IEEE

Abstract—List-decoding for arbitrarily varying channels (AVCs)
under state constraints is investigated. It is shown that rates within

of the randomized coding capacity of AVCs with input-depen-
dent state can be achieved under maximal error with list-decoding
using lists of size �� �. Under the average error criterion, an
achievable rate and converse bound are given for lists of size .
These bounds are based on two different notions of symmetriz-
ability and do not coincide in general. An example is given which
shows that for list size , the capacity may be positive but strictly
smaller than the randomized coding capacity, in contrast to the sit-
uation without constraints.

Index Terms—Arbitrarily varying channels (AVCs), list-de-
coding.

I. INTRODUCTION

T HE arbitrarily varying channel (AVC) is a model for
communication subject to time-varying interference [5].

The time variation is captured by a channel state parameter
and coding schemes for these channels are required to have
small probability of error for all channel state sequences. In
an AVC, the channel state is said to be controlled by a jammer
who wishes to foil the communication between the encoder
and decoder. More details can be found in the survey paper by
Lapidoth and Narayan [17].

This paper addresses the problem of list-decoding in an AVC
when the state sequence is constrained. The constraint comes
by imposing a per-letter cost on the state sequence and
requiring the cost of the state sequence chosen by the jammer
for channel uses to be less than a total budget . The coding
schemes in this paper are deterministic; common randomness
between the encoder and decoder is not allowed. We consider
both the maximal and average error criterion. Under the max-
imal error criterion, the capacity can be smaller than under
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the average error criterion. In both cases, we will compare our
achievable rates to the capacities for randomized coding.

In list-decoding, the decoder is allowed to output a list of
messages and an error is declared only if the list does not

contain the transmitted message. For AVCs without constraints,
list-decoding capacities have been investigated under both max-
imal and average error. For maximal error, Ahlswede [2], [4]
found a quantity such that a rate is achievable
with lists of size . We extend this result to the situation
with cost constraints and define a quantity such that a
rate is achievable under list-decoding with list size

.
The average error list- capacity without constraints was

found independently by Blinovsky and colleagues [6], [7] and
Hughes [15]. These authors defined the symmetrizability
of an AVC and showed that there is a constant list size so
that for , the list- capacity is 0, and for ,
the list- capacity is equal to the randomized coding capacity

. The number is called the symmetrizability. The adver-
sary can cause “degrees” of symmetrizability, so list-de-
coding requires a list size greater than to guarantee that
the correct message is in the list with high probability.

The main result of this paper is that list-decoding under
average error is qualitatively different when the state is con-
strained. The degree to which the jammer can symmetrize the
channel depends on the input distribution and the cost con-
straint . We define two kinds of symmetrizability, weak and
strong, for list-decoding under state constraints. For list sizes

larger than the weak symmetrizability , we show
that the coding strategy of Hughes [15], which uses a codebook
of fixed type , yields an achievable rate for the channel. We
also prove an outer bound for this channel in terms of a quantity,
we call the strong symmetrizability . We construct
a jamming strategy that gives a nonvanishing probability of
error for codes of type such that .

In many cases, , which gives a gap
between our achievable region and converse. Closing this gap
seems nontrivial; we conjecture that the converse can be tight-
ened. However, our results do imply a significant difference be-
tween the constrained and unconstrained setting. Without con-
straints, the list- capacity is either 0 or equal to the random-
ized coding capacity . We show via a simple example that
under cost constraints the list- capacity may be pos-
itive but strictly smaller than the randomized coding capacity

. This parallels the result obtained in [12] for list size 1.

II. DEFINITIONS

We will use calligraphic type for sets. For an integer ,
let . Generally speaking, lower case will
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refer to nonrandom quantities and capital letters will refer to
random variables. Boldface is used for vectors. Thus, is a
vector-valued random variable, is a fixed vector, and is the
th element of . For sets and , the set is the set of

probability distributions on . We denote by the set of
all distributions such that is an integer for all ,
and is the set of all conditional distributions on con-
ditioned on . For random variables with joint distri-
bution , we will write and for the marginal distri-
butions and for the conditional distribution of given

. For a joint distribution , we will denote by
the th marginal of . The function will denote the
maximum deviation ( distance) between two probability dis-
tributions and .

A. Channel Model and Codes

An AVC is a collection of
channels from an input alphabet to an output alphabet
parameterized by a state from an alphabet . In this paper,
we assume all alphabets are finite. If ,

, and are length
vectors, the probability of given and is given by

We are interested in the case where there is a bounded cost func-
tion on the jammer. The cost of an -tuple is

The state obeys a state constraint if

Let be the set of all length-
state sequences satisfying the constraint .

An deterministic list code for the AVC is a pair of
maps where the encoding function is and
the decoding function is .
Therate of the code is . The codebook of

is the set of vectors , where . The
decoding region for message is . We will
often specify a code by the pairs , with
the encoder and decoder implicitly defined.

The maximal and average error probabilities and are
given by

(1)

(2)

A rate is called achievable under maximal (average) list-de-
coding with list size if for any , there exists a sequence
of list codes of rate at least whose maximal (av-
erage) error converges to 0. The list- capacity is the supremum
of achievable rates. We denote the list- capacities under max-
imal and average error by and , respectively. We
emphasize that in this paper, we consider deterministic codes.

B. Symmetrizability and Information Quantities

A channel is symmetric if
for any permutation on and for all

(3)

A channel symmetrizes an
AVC if the channel

(4)
is a symmetric channel. Let denote the set of channels
which symmetrize :

(5)
If , and generate symmetric channels and

according to (4), then is the channel gen-
erated from . Since and are symmetric,
so is and therefore

. Thus, is a closed, convex subset of chan-
nels defined by equality constraints in (3).

For a distribution , we define the strong sym-
metrizing cost :

(6)

This is the smallest expected cost over all symmetrizing chan-
nels , where the cost is measured over any
joint distribution with marginals equal to . The
and are justified because the operations are performed over
closed convex sets, and they can be reversed because the ex-
pected cost function is linear. We call an AVC strongly -sym-
metrizable under the constraint if . We define
the strong symmetrizability of the channel under
input and constraint to be the largest integer such that

. That is,

(7)

We also define the weak symmetrizing cost :

(8)

where is the product distribution . This is the
smallest expected cost over all symmetrizing channels
where the cost is measured over the product distribution .
Again, the minimum is attained because is closed. We
call an AVC weakly -symmetrizable under input and con-
straint if . Similarly, the weak symmetrizability

is the largest integer such that . That
is,

(9)

Because the maximization in the definition of the strong sym-
metrizing cost in (6) is over all joint distributions
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with marginals equal to , it includes in (8), and
therefore . This, in turn, implies that the
strong symmetrizability is smaller than the weak symmetriz-
ability: .

For a fixed input distribution on and channel ,
let denote the mutual information between the input
and output of the channel:

(10)
We define the following two sets of distributions:

(11)

(12)

These, in turn, yield two information quantities:

(13)

(14)

The and exist and can be reversed because the mutual
information is continuous, convex in the channel and concave
in the input distribution, and the sets of input distributions and
channels are closed and bounded. The channels in the second ar-
gument of the mutual information correspond to the convex clo-
sure and row-convex closure of the AVC as defined in [10].

III. MAIN RESULTS AND CONTEXT

Capacity results for the AVC depend on the type of codes
(randomized, deterministic, or list), error criterion (maximal or
average), and the presence of constraints. In general, the max-
imal error capacity under deterministic coding is not known; a
general solution would imply a formula for the zero-error ca-
pacity [1], [9]. When randomized coding is allowed, the ca-
pacity under maximal error is the same as average error. For
an unconstrained AVC (where ), Blackwell et
al.[5] proved that the capacity under randomized coding is

. Ahlswede [3] showed that for unconstrained
AVCs, the capacity is either 0 or equal to .

Under a state constraint , Csiszár and Narayan [11],
[12] proved that the randomized coding capacity is

, and also found the deterministic coding
capacity under average error . They showed that if the
AVC is nonsymmetrizable [14], then and, in fact,

can hold. The reason this can happen is
that the input distribution that maximizes may permit
the jammer to find a channel that symmetrizes the AVC
and satisfies the cost constraint . Therefore, certain input
distributions are “disallowed,” which lowers the rate.

The results in this paper are for the case of deterministic list
codes. Without constraints, Ahlswede [2], [4] showed that a rate

is achievable under maximal error with lists
of size . The same approach works for constrained AVCs
under maximal error.

Theorem 1 (List-Decoding for Maximal Error): Let be an
AVC with state cost function and cost constraint . Then,
for any , the rate

is achievable under maximal error using deterministic list codes
with list size

Furthermore, the capacity under maximal error using list
codes with list size is bounded:

The proof is given in Appendix A. For the converse, we ex-
hibit a strategy for the jammer that lower bounds the probability
of error. The code construction for the lower bound on the ca-
pacity proceeds in two steps. First, we show that a codebook
containing all codewords of a given type can be turned into a
list code of rate close to

We can then sample codewords from this code to show that there
exists a single codebook with constant list size whose rate is
close to .

In the absence of state constraints, our definitions
of weak and strong symmetrizability are the same, so

. De-
terministic list codes for average error without constraints were
studied independently by Blinovsky and colleagues [6], [7]
and Hughes [15]. They showed a dichotomy similar to [3]: the
list- capacity for list sizes , whereas the
list- capacity for list sizes .

Our results for list-decoding under average error are along
the lines of [12]. For each list size , we prove achievable and
converse bounds.

Theorem 2 (List-Decoding for Average Error—Converse):
Let be an AVC with state cost function and cost con-
straint . Then, we have the following upper bound on the
deterministic list-coding capacity under average error :

(15)

If for every , the strong symmetrizability satisfies
, then .

The proof of Theorem 2 can be found in Appendix B. To
prove the converse, we construct an explicit jamming strategy
and give a lower bound on the probability of error for codes
whose rate is above that in (15). For a codebook with code-
words of type , the jammer can choose a symmetrizing channel

such that the expected cost under any joint distri-
bution with marginals equal to is within the cost constraint.
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Operationally, the jammer chooses codewords from the code-
book and uses them as inputs to to generate a state sequence

which satisfies the cost constraints.

Theorem 3 (List-Decoding for Average Error—Achiev-
ability): Let be an AVC with state cost function and cost
constraint . Then, we have the following lower bound on the
deterministic list-coding capacity under average error :

If is the maximizing input distribution for , then for
list size , we have

The proof of Theorem 2 can be found in Appendix B. The
achievability proof uses the codes of Hughes [15]. The exis-
tence of a code which is list-decodable is proved in [15] by using
measure concentration to show that a random codebook with
codewords of fixed type satisfies certain properties with over-
whelming probability. However, we use a different decoding
rule that extends [15] analogously to [12]. In order to prove that
the decoding rule is successful, we require an input distribution

such that the AVC is not weakly -symmetrizable.
For average error, the achievable rate and converse do not

coincide in general, as shown in Section IV.

IV. EXAMPLE

We will now show via an example that under average error, it
is possible that . In particular, when the
jammer must satisfy a constraint, positive rates may be achiev-
able with list sizes that are smaller than the unconstrained sym-
metrizability, and for a fixed list size, the list- capacity may
be positive but strictly smaller than the randomized coding ca-
pacity. The reason for this is that the cost constraint may be such
that the distribution that achieves the randomized coding ca-
pacity may have a strong symmetrizing cost which is less than
the constraint , and therefore, the encoder cannot use that input
distribution.

Let the input alphabet , state alphabet
and the channel be defined by

(16)

with a quadratic cost function .
Without constraints, Hughes [15] has found that the random-

ized capacity is

(17)

He also showed that for unconstrained AVCs the list- capacity
obeys a strict threshold:

(18)

We are interested in the case when there is a cost constraint
on the jammer. We must calculate the minimum mutual infor-
mation for different input distributions:

The randomized-coding capacity under the cost constraint is
the max of over .

(19)

These calculations can be easily performed numerically.
To calculate the symmetrizability constraints, note that

because the channel (16) is deterministic, the symmetry con-
straints imply that any channel must also
be symmetric. Therefore, for each , the probability

is only a function of the Hamming weight
of . By letting denote this weight, we can
consider as containing channels of the form .

Channels are symmetrizing, so for we
have

from which we can see that for and
,

(20)

The only way that is if and . Similarly, the
only way is if and . Therefore

(21)

(22)

The conditions (20)–(22) characterize the linear symmetry con-
straints in .

Thus, for each input distribution , we can find

This is a simple linear program. To calculate the strong -sym-
metrizing cost, note that the set of all joint distributions
with marginals equal to is also a convex set defined by linear
equality constraints. Likewise, it is simple to numerically eval-
uate the strong symmetrizing cost

We calculated the achievable rates and converse bounds for
, and the results are shown for list sizes and
in Figs. 1 and 2. For state constraint , the randomized

coding capacity in (19) is given by the dotted line. The
achievable rate of Theorem 3 is shown by the solid line, and
the converse bound of Theorem 2 by the dashed line. These two
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Fig. 1. Randomized coding capacity � ��� and bounds on list-� capacity
�� ��� versus the state constraint � for � � �.

Fig. 2. Randomized coding capacity � ��� and bounds on list-� capacity
�� ��� versus the state constraint � for � � �.

curves are given by restricting the optimization over in the
right side of (19).

Figs. 1 and 2 show that when , positive rates are
achievable for several different list sizes. For a range of , the
randomized coding capacity is achievable using lists of size 2
or 4. Fig. 1 also illustrates the fundamental difference between
list-decoding with state constraints and list-decoding without
constraints: for a range around , the list-2 capacity
is positive but strictly smaller than the randomized coding ca-
pacity , in contrast with (18).

V. DISCUSSION

This paper provides several new results on list-decoding for
AVCs with state constraints. For maximal error, we showed that
rates within of are achievable with list codes
of list size . This result can be used together with a construc-
tion from [16] to show that is the randomized coding

capacity of AVCs with input-dependent state [20]. For average
error, we provided an achievable rate and converse which do
not coincide in general. We conjecture that the converse region
of Theorem 2 is not tight and that a stronger converse could be
shown. The strong symmetrizing cost in (6) allows optimization
over all joint distributions with the same marginals. The con-
verse proof uses a jamming strategy corresponding to taking a
random set of codewords from the codebook as inputs to a
symmetrizing channel to generate the state sequence.
The strong symmetrizing cost is a conservative bound on the
cost of such a strategy. It may be that techniques such as in [21]
could improve this bound; we leave this for future work. Our
results here establish that the behavior of list-decoding for con-
strained AVCs is fundamentally different than the unconstrained
case, analogous to the situation for list size 1.

It may be possible to extend the results in this paper to other
situations. Input constraints can be introduced by restricting the
maximization over the input distribution to the set of which
satisfy the input constraint. Extensions of the average error re-
sults to multiuser scenarios such as [19] may also be possible,
but the symmetrizability conditions may become quite baroque.
Finally, using the approach here in the Gaussian setting would
involve developing measure concentration results which could
be interesting in their own right.

APPENDIX A
MAXIMAL ERROR

Using standard typicality arguments, we can show the exis-
tence of list-decodable codes for maximal error with exponen-
tial list size. The codebook is the entire set of typical sequences

and the list is the union of -shells under the different state
sequences. The decoder observes an output sequence and out-
puts a list of all sequences such that and are jointly
typical with respect to a joint distribution induced by a channel

. Let

(23)

Proof of Theorem 1: Because we are using the maximal
error criterion, it is sufficient for the jammer to inflict a large
error probability on a single codeword. To prove the converse,
we construct a randomized strategy for the jammer for each
codeword in the code. The behavior of the AVC under this
strategy can be bounded via the behavior of an appropriately
constructed discrete memoryless channel (DMC). The converse
then follows from the strong converse for list-decoding for
the DMC [2], [18], [22]. The achievable strategy uses random
coding by sampling codewords from the set of sequences of
fixed composition to show the existence of a deterministic list
code.

Converse: Suppose that for some and
there exists an unbounded, increasing sequence of blocklengths
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and where for each there exists a de-
terministic list code where

and the maximal error of each code is less than . Let be
the number of codewords of type in . Since the number of
types is at most , there exists a type such that

and therefore, for sufficiently large , there exists a such that
the subcode of consisting of codewords of type
satisfies

Then, is an deterministic list-code with
maximal error less than .

We will now show that there exists a DMC over which the se-
quence of codes cannot achieve arbitrarily small prob-
ability of error. This DMC can be approximated by the jammer
using a randomized strategy for selecting the state sequence
based on the transmitted codeword . Because we are consid-
ering maximal error, it is sufficient for the jammer to inflict a
large error probability on a single message.

For , define the channel from to as

The minimizer is unique by the convexity of the mutual in-
formation. For any , let have distribution

. For any , there exists a sufficiently large
such that

(24)

Consider the DMC formed from the channel by
choosing according to the channel :

Because the mutual information is continuous, for any ,
there exists an such that

For sufficiently large, we have

(25)

Let be the error for codeword in the
code on the DMC . The proof of the strong con-
verse for list coding [18] over the DMC shows that for a

code with codewords of type , if (25) holds then there exist
positive constants and such that

(26)

where is the corresponds to the th message of the code
.

We now connect the DMC to the AVC. Because we
are considering maximal error, the jammer arbitrarily selects
a codeword in the code and chooses a state sequence ac-
cording to the following strategy. For a codeword , it generates

. If , then it sets equal to some fixed se-
quence such that . Otherwise, it sets .
We will now show that this strategy will result in a large error
probability when is chosen by the encoder.

Let be the error for codeword in
under this strategy. Then, from (24), we have

Therefore, using (26), we have

which gives a lower bound on the maximal error for the code
over the AVC. For sufficiently large , this lower bound

can be made larger than , which is a contradiction. Therefore,
the capacity of the AVC under maximal error and list-decoding
is upper bounded by .

Achievability: Let and denote the set of
all sequences of length of type . For any channel ,
we define a channel by

For a sequence and the channel , define to be the
distribution such that . The

-shell of typical sequences around a is

For sufficiently large, we have

where the subscript on indicates the joint distribution under
which to take the conditional entropy.

Now, for a fixed and with , define a
channel from to by

Note that . Let be generated via
from . For each , applying a Chernoff–Ho-
effding bound [13] yields

(27)
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where . Therefore, with prob-
ability , the received sequence is
jointly typical with .

For a fixed received sequence and constant , define
the set of channels:

The intersection with ensures that grows
polynomially with . Now define the following set:

The size of this set is exponential as a function of and for
sufficiently large , it can be upper bounded:

(28)
Let .

Consider an list code where the codewords are
all sequences in and the decoder outputs the list . Note
that the size of the output list depends on . We claim that for
any and , there exists an sufficiently large such
that this list code has error probability less than .

To see this, fix and and suppose that some
was transmitted and the state sequence was . From (27), there
exists an and sufficiently large such that the received

satisfies with probability .
By choosing sufficiently small and sufficiently large, with
probability over the channel we have .

To arrive at the desired code, fix . Let be
a set of codewords from uniformly at random
and set the decoder to output . We must show this
set produced by the decoder has at most code-
words with high probability. This implies that there exists a
deterministic deterministic list code with
small probability of error.

Let . For any fixed , the probability that
any codeword of is in is upper bounded by ,
so from (28), we see that for any , we can choose suffi-
ciently large such that

Because the codewords are selected independently, Sanov’s [8,
Th. 12.4.1], bounds the probability that a fraction of
the codewords end up in :

(29)

Now, we can bound the first summand in the exponent on the
right-hand side of (29) (the term ) by

(30)

We can pick such that by choosing suf-
ficiently large. Then, substituting (30) in (29), upper bounding

, and taking a union bound over all , we have

For sufficiently large , choosing makes the ex-
ponent negative, showing that with high probability the random
selection will produce an list code under maximal
error whose error can be made as small as we like. Therefore,
such a deterministic list code exists.

APPENDIX B
AVERAGE ERROR

1) Converse:

Lemma 1 (Approximating Joint Distributions): Let be a
finite set with . For any and probability distribu-
tion on , there exists a such that for any collection of
distributions satisfying

(31)

and any joint distribution with

(32)

there exists a joint distribution such that

(33)

and

(34)

2) Proof of Lemma 1: Fix and . We consider two
cases depending on whether or not.

Case 1: First suppose . Consider a
set of distributions satisfying (31) and let
be a joint distribution satisfying (32). We treat probability dis-
tributions as vectors in . We can construct a distribution

satisfying (33) and (34) in two steps: first we project onto
the set of all vectors whose entries sum to 1 and satisfy (33),
and then, we find a close to this projection which is a proper
probability distribution.
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Let be the subspace of of all probability distributions
satisfying the marginal constraints (33). We can summarize

these linear constraints in the matrix form

where and contain the coefficients corresponding to the
constraints in (33). We can assume has full row-rank by re-
moving linearly dependent constraints. Similarly, the distribu-
tion satisfies

where and contain the coefficients corresponding to the con-
straints in (32).

Let be the Euclidean projection of onto the subspace :

(35)

The error in the projection is

From (31), all elements of are in . Since the
rows of are linearly independent, the singular values of are
strictly positive and a function of and only. Therefore,
there is a positive function such that

Since is finite, there is a function such that

If the from this projection has all nonnegative entries, then we
set and choose sufficiently small so that

.
If has entries that are not in , then it is not a valid

probability distribution. However, since is a probability dis-
tribution, we know that

Let be the joint distribution on with independent
marginals :

(36)

Since , we have for all . Let

(37)

and set

(38)

Then, for all and by the triangle inequality:

Therefore, for sufficiently small, we can choose a such that
for any .

Case 2: Suppose that . Let
and . Let be the

restriction of to . Then, is a probability distribution on .
First suppose that . Then, for some .
Let

Since all the marginal distributions of satisfy
, we know that .

Now suppose . We can construct by first finding a
joint distribution that is close to and then invoking the first
case of this proof on using (35)–(38). From (31), we know
that for some , we have

Define by

Since has support only on , we can think of it either as a
distribution on or on . Note that

Let be the th marginal distributions of , so that

for all and . Then, we have for some that
.

Now, we can apply Case 1 of this proof [see (35)–(38)] using
the set and distributions , , and . For
any , we can find a such that if satisfy

, then there exists a with marginals equal

to such that . Let be the extension of

to a distribution on by setting for
and 0 elsewhere. By the triangle inequality
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We can choose sufficiently small so that and are suffi-
ciently small to guarantee that this distance is less than .

Lemma 2: Let be an AVC with state cost function
and constraint and let be a positive integer. Let be
arbitrary and suppose is a distribution with .
Then, there exists a and such that for any
list code with and whose codewords

satisfy

the average error for the code is lower bounded:

Proof: From Lemma 1, we can see that for any ,
there exists a such that for any set of codewords
with and , we can find a joint type

with marginals equal to such that the joint type
satisfies

Now let achieve the minimum in the definition of .
Since , we have

where . Now, choose so
that

and choose according to Lemma 1.
Let be the set of all subsets of of size , and let

be a random variable uniformly distributed on . Consider the
following jamming strategy. The jammer draws a subset and
for selects the state sequence according to the random
variable with distribution

The expected cost of is

We can also bound the variance of :

Chebyshev’s inequality gives the bound:

(39)

(40)

Before continuing, we need some properties of symmetrizing
channels used to generate the random variables . First, we
have for any :

(41)

Using (41), we can see that for some subset with
:

Second, because each can be decoded to a list of size at most
,

(42)

We now bound the probability of error for this jamming
strategy. The expected error, averaged over the random variable

and the randomly selected state sequence , is

Then

(43)

Now, we can rewrite the inner sum using (42):
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Finally, we can add in the bound (40) to obtain

Now, we can choose large enough such that

Lemma 3: Let be an AVC with state cost function
and constraint and let be a positive integer. For any ,
there exists a and such that for any
list code with and whose codewords

satisfy

(44)

the error must satisfy

Proof: Fix . For each from Lemma 1, we
know there is a such that any joint distribution with
marginals within of can be approximated by a with

marginals equal to such that .
Let

Then, is an open cover of . Since
is compact, there is a constant and finite subcover

. From this finite cover, we can create a
partition of such that for all .

Now consider an code whose codewords satisfy
(44). Let . We can bound the error

Since the collection partitions the codebook, for some ,
we have . From Lemma 2, the jammer can force the
error to be lower bounded by

Note that the constant is a function of , , and , so we
can set to be this lower bound. For any , we
have exhibited a jamming strategy such that the error is bounded
away from 0.

Theorem 2 follows from the preceding lemma. Suppose that
there exists a sequence of codes of rate

For each , let and
. Clearly,

or or both. In the first case, the adversary can
choose the state according to so that the channel is a DMC
with transition probabilities .
The rate of the subcode containing codewords with

is greater than the mutual information
for each , and therefore, the average error cannot

converge to 0. In the second case, Lemma 3 shows that the
average error is at least .

3) Achievability Under Average Error: Given a such
that the weak symmetrizing cost satisfies , we
can use the coding scheme of Hughes [15] modified in the nat-
ural way suggested by Csiszár and Narayan [12] for list size 1.
The technical issue is to prove that the decoding rule is unam-
biguous; that is, it should always produce a list of or fewer
codewords. The codebook consists of constant-type code-
words drawn uniformly from the codewords of type . In order
to describe the decoding rule we will use, we define the set

(45)

where

The set contains joint distributions which are close to
those generated from the AVC via independent inputs with
distribution and .

Definition 1 (Decoding Rule): Let be a
given codebook and suppose was received. Let denote
the list decoded from . Then, put if and only if there
exists an such that

1) ,
2) for every set of , other distinct codewords

such that there exists a set
with for all

we have

(46)

where is the joint type of
.

An interpretation of this rule is that the decoder outputs a
list of codewords each having a “good explanation” .
A “good explanation” is a state sequence that plausibly could
have generated the observed output (condition 1) and makes
all other -tuples of codewords seem independent of the code-
word and output (condition 2). It is clear that this decoder will
output a list containing the correct codeword with high proba-
bility. The only thing to prove is that the list size is no larger
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than . To do this, we show that no tuple of random variables
can satisfy the conditions of the decoding

rule. This in turn shows that for sufficiently large , no set of
codewords can satisfy the conditions of the decoding rule.

Therefore, for sufficiently large blocklengths, the decoding rule
will only output or fewer codewords.

For a vector , define
to be the vector with

the -the component removed.

Lemma 4: Let , be an AVC with state cost func-
tion and constraint , with and

, and . For any
and every collection of distributions

such that

(47)

for all , there exists a such that

(48)

Proof: Note that the outer sum in (48) is over all .
Define the function by

Let be the set of all permutations of and for
let be the image of under . Then

We can lower bound this by averaging over all :

(49)

Define the average

Note that for each , is a symmetric function

of .
Now, we lower bound (49) by using the convexity of to

pull the averaging inside the absolute value and substituting .
We arrive at the following expression:

(50)

The function is a continuous function on the compact
set of symmetric distributions and the set of distributions

with , so it has a minimum
for some . We will prove that by contradiction.

Suppose . Then

So

and

which implies (see [15, Lemma A3]) that for all :

Therefore

(51)
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is symmetric in . Therefore,
. From the definition of in (8), we see that

But from (47), and the definition of , we see that the must
be chosen such that

(52)

Therefore, we have a contradiction and the minimum of
must be greater than 0. Equation (48) follows.

The next lemma shows that for a sufficiently small choice
of the threshold in the decoding rule, there are no random
variables that can force the decoding rule to output a list that
is too large. The proof follows from Lemma 4 in the same way
as in [15].

Lemma 5: Let , be an AVC with state cost func-
tion and constraint , with , and

. Then, there exists an sufficiently
small such that no tuple of random variables
can simultaneously satisfy

(53)

(54)

(55)

(56)

Given Lemma 5, the following lemma shows that given an
input distribution and a list size , there
exists a list code with list size and small error probability.

Lemma 6 (see [15, Lemma 3]): Let be a type satisfying
and let . For any ,

there exists a list code of list size with codewords of constant
type such that

for all , where and depend only on , , and .
The code in Lemma 6 is a code whose codewords are all of

a constant type . This lemma is proved in [15] by selecting
codewords uniformly from the set of codewords with constant
composition and showing that with high probability, the result
codebook satisfies a set of joint typicality and conditional joint
typicality conditions universally over all state sequences .

Proof of Theorem 3: Lemma 4 implies Lemma 5, which
allows us to use Lemma 6 to show that a code exists with rate
close to and small error. Since is continuous in

, for a fixed list size , the rate is achievable for all
such that .
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