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Distributed Learning of Distributions via Social
Sampling

Anand D. Sarwate, Member, IEEE, and Tara Javidi, Senior Member, IEEE,

Abstract—A protocol for distributed estimation of discrete
distributions is proposed. Each agent begins with a single sample
from the distribution, and the goal is to learn the empirical
distribution of the samples. The protocol is based on a simple
message-passing model motivated by communication in social
networks. Agents sample a message randomly from their current
estimates of the distribution, resulting in a protocol with quan-
tized messages. Using tools from stochastic approximation, the
algorithm is shown to converge almost surely. Examples illustrate
three regimes with different consensus phenomena. Simulations
demonstrate this convergence and give some insight into the effect
of network topology.

I. INTRODUCTION

The emergence of large-network paradigms for commu-
nications and the widespread adoption of social networking
technologies has resurrected interest in classical models of
opinion formation and distributed computation as well as new
approaches to distributed learning and inference. In this paper
we propose a simple message passing protocol inspired by
social communication and show how it allows a network of
individuals can learn about global phenomena. In particular,
we study a situation wherein each node or agent in a network
holds an initial opinion and the agents communicate with
each other to infer the distribution of their initial opinions.
Our model of messaging is a simple abstraction of social
communication in which individuals exchange single opinions.
This model is a randomized approximation of consensus
procedures. Because agents collect samples of the opinions
of their neighbors, we call our model social sampling.

In our protocol agents merge the sampled opinions of their
neighbors with their own estimates using a weighted average.
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Averaging has been used to model opinion formation for
decades, starting with the early work of French [3], Harary
[4], and DeGroot [5]. These works focused on averaging as a
means to an end – averaging the local opinions of a group of
peers was a simple way to model the process of negotiation
and compromise of opinions represented as scalar variables.
A natural extension of the above work is that where all agents
are interested in the local reconstruction of the empirical
distribution of discrete opinions. Such locally constructed
empirical distributions not only provide richer information
about global network properties (such as the outcome of a
vote, the confidence interval around the mean, etc), but from
a statistical estimation perspective provide estimates of local
sufficient statistics when the agents’ opinions are independent
and identically distributed (i.i.d.) samples from a common
distribution.

For opinions taking value in a finite, discrete set, we
can compute the empirical distribution of opinions across a
network by running an average consensus algorithm for each
possible value of the opinion. This can even be done in parallel
so that at each time agents exchange their entire histogram of
opinions and compute weighted averages of their neighbors’
histograms to update their estimate. In a social network, this
would correspond to modeling the interaction of two agents as
a complete exchange of their entire beliefs in every opinion,
which is not realistic. In particular, if the number of possible
opinions is large (corresponding to a large number of bins or
elements in the histogram), communicating information about
all opinions may be very inefficient, especially if the true
distribution of opinions is far from uniform.

In contrast, this paper considers a novel model in which
agents’ information is disseminated through randomly selected
samples of locally constructed histograms [2]. The use of
random samples results in a much lower overhead because
it accounts for the popularity/frequency of histogram bins
and naturally enables finite-precision communication among
neighboring nodes. It is not hard to guarantee that the ex-
pectation of the node estimates converges to the true his-
togram when the mean of any given (randomized and noisy)
shared sample is exactly the local estimate of the histogram.
However, to ensure convergence in an almost sure sense we
use techniques from stochastic approximation. We identify
three interesting regimes of behavior. In the first, studied by
Narayanan and Niyogi [6], agents converge to atomic distri-
butions on a common single opinion. In the second, agents
converge to a common consensus estimate which in general
is not equal to the true histogram. Finally, we demonstrate a
randomized protocol which, under mild technical assumptions,
ensures convergence of agents’ local estimates to the global
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histogram almost surely. The stochastic approximation point
of view suggests that a set of decaying weights can control
the accumulation of noise along time and still compute the
average histogram.

Related work

In addition to the work in mathematical modeling of opinion
formation [3]–[5], there has been a large body of work on con-
sensus in terms of decision making initiated by Aumann [7].
Borkar and Varaiya [8] studied distributed agreement protocols
in which agents are trying to estimate a common parameter.
The agents randomly broadcast conditional expectations based
on all of the information they have seen so far, and they find
general conditions under which the agents would reach an
asymptotic agreement. If the network is sufficiently connected
(in a certain sense), the estimates converge to the centralized
estimate of the parameter, even when the agents’ memory
is limited [9]. In these works the questions are more about
whether agreement is possible at all, given the probability
structure of the observation and communication.

There is a significant body of work on consensus and
information aggregation in sensor networks [10]–[18]. From
the protocol perspective, many authors have studied the effect
of network topology on the rate of convergence of consensus
protocols [10]–[12], [16]–[21]. For communication networks
the speed can be accelerated by exploiting network properties
[22]–[25] (see surveys in [19], [26] for more references).
Others have studied how quantization constraints impact con-
vergence [27]–[34]. However, in all of these works the agents
are assumed to be some sort of computational devices like
robotic networks or sensor networks. A comprehensive view
of this topic is beyond the scope of this paper. Instead,
we focus on a few papers most relevant to our model and
study: consensus with quantized messages and consensus via
stochastic approximation. However, it is important to note
that in contrast to all the studies discussed below, our work
primarily deals with an extension of the classic consensus
(linear combination of private values) in that we are inter-
ested in ensuring agreement over the space of distributions
(histograms).

Our goal in this paper is to ensure the convergence of each
agent’s local estimate to a true and global discrete distribution
via a low-overhead algorithm in which messages are chosen
in a discrete set. Our work is therefore related to the extensive
recent literature on quantized consensus [28], [30], [31], [33].
In these works, as in ours, the communication between nodes
is discretized (and in some cases the storage/computation
at nodes as well [30]) and the question is how to ensure
consensus (within a bin) to the average. This is in sharp
contrast to our model which uses discrete messages to con-
vey and ensure consensus on the network-wide histogram of
discrete values. As a result, in contrast to the prior work on
quantization noise [27], [31], [35], the “noise” is manufactured
by our randomized sample selection scheme and hence plays
a significantly different role.

Our analysis uses similar tools from stochastic approxima-
tion as recent studies of consensus protocols [34], [36], [37].

However, these works use stochastic approximation to address
the effect of random noise in network topology, message
transmission, and computation for a scalar consensus problem,
while our use of standard theorems in stochastic approximation
is to handle the impact of the noise that comes from the
sampling scheme that generates our random messages. In other
words, our noise is introduced by design even though our
technique to control its cumulative effect is similar.

II. MODEL AND ALGORITHMS

Let [n] denote the set {1, 2, . . . , n} and let ei ∈ RM denote
the i-th elementary row vector in which the i-th coordinate is
1 and all other coordinates are 0. Let 1(·) denote the indicator
function and 1 the column vector whose elements are all equal
to 1. Let ‖·‖ denote the Euclidean norm for vectors and the
Frobenius norm for matrices. We will represent probability
distributions on finite sets as row vectors, and denote the set
of probability distributions on a countable set A by P(A).

A. Problem setup

Time is discrete and indexed by t ∈ {0, 1, 2, . . .}. The
system contains n agents or “nodes.” At time t the agents
can communicate with each other according to an undirected
graph G(t) with vertex set [n] and edge set E(t). Let Ni(t) =
{j : (i, j) ∈ E(t)} be the set of neighbors of node i. If
(i, j) ∈ E(t) then nodes i and j can communicate at time
t. Let G(t) denote the adjacency matrix of G(t) and let D(t)
be the diagonal matrix of node degrees. The Laplacian of G(t)
is L(t) = D(t)−G(t).

At time 0 every node starts with a single discrete sample
Xi ∈ X = [M ]. The goal of the network is for each node to
estimate the empirical distribution, or normalized histogram,
of the observations {Xi : i ∈ [n]}:

Π(x) =
1

n

n∑
i=1

1(Xi = x) · ex ∀x ∈ [M ].

To make it simpler to characterize the overall communica-
tion overhead, we assume that
• Agents can exchange messages Yi(t) lying in a finite set
Y .

• At each time t = 1, 2, . . . agents can transmit a single
message to all of their neighbors.

At each time t = 0, 1, 2, . . ., each node i maintains an internal
estimate Qi(t) of the distribution Π, and we take Qi(0) = eXi .
Every node i generates its message Yi(t) ∈ Y as a function of
this internal estimate Qi(t). Furthermore, each node i receives
the messages {Yj(t) : j ∈ Ni} from its neighbors and use
these messages to perform an update of its estimate Qi(t+ 1)
using Qi(t), {Yj(t) : j ∈ Ni}.

Since in a single time t there are potentially 2|E(t)| mes-
sages transmitted in the network, a first approximation for the
communication overhead of this class of schemes is simply
proportional to the number of edges in the network multiplied
by the logarithm of the cardinality of set Y .

We are interested in the properties of the estimates Qi(t) as
t→∞. In particular, we are interested in the case where every
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element in the set {Qi(t) : i ∈ n} converges almost surely to a
common random variable q∗. In this case, we call the random
vector q∗ the consensus variable. Different algorithms that we
consider will result in different properties of this consensus
variable. For example, the we will consider the support of the
distribution of q∗ as well as its expectation.

B. Social sampling and linear updates

In this paper we assume that Y = {0, e1, e1, . . . eM},
with the convention that node i transmits nothing (or remains
silent) when Yi(t) = 0. Furthermore, we consider the class of
schemes where the random message Yi(t) ∈ Y of node i at
time t is generated according to a distribution Pi(t) ∈ P(Y)
which itself is a function of the estimate Qi(t). In other
words, Pi(t) is a row vector of length M where P(Yi(t) =
em) = Pi,m(t). We frequently refer to the random messages
Yi(t) ∈ Y, i ∈ [n], t = 0, 1, . . . as social samples because
they correspond to nodes obtaining random samples of their
neighbor’s opinions. Note that although the random variable
Yi(t) takes values in RM , it is supported only on the finite set
Y and hence requires communicating log |Y| information bits.

For simplicity in this paper, we often rely on matrix
representation across the network. Accordingly, let Y(t) be
the n × M matrix whose i-th row is Yi(t). Then we have
E[Y(t)] = P(t).

Let {W (t) : t = 0, 1, 2, . . .} be a sequence of n×n matrices
with nonnegative entries, such that Wij(t) = 0 for all (i, j) 6=
E(t). We study linear updates of the form

Qi(t+ 1) = (1− δ(t)Aii(t))Qi(t)− δ(t)Bii(t)Yi(t)

+
∑

j∈Ni(t)

δ(t)Wij(t)Yj(t). (1)

Here the parameter δ(t) is a step size for the algorithm. Let
Q(t) be the n ×M matrix whose i-th row is Qi(t). We can
write the iterates more compactly as

Q(t+ 1) = (I − δ(t)A(t))Q(t)− δ(t)B(t)Y(t)

+ δ(t)W (t)Y(t),

where A(t) and B(t) are diagonal matrices.
In the next section we will analyze this update and identify

conditions under which the estimates Qi(t) converge to a
common q∗ ∈ P(Y) and additional conditions under which
q∗ = Π. To provide a unified analysis of these different
algorithms, we transform the update equation into a stochastic
iteration

Q(t+ 1) = Q(t) + δ(t)
[
H̄(t)Q(t) + C(t) + M(t)

]
. (2)

In this form of the update, the matrix H̄(t) represents the
mean effect of the network connectivity, M(t) is a martingale
difference term related to the randomness in the network
topology and social sampling, and C(t) is a correction term
associated with the difference between the estimate Q(t) and
the sampling distribution P(t).

Lemma 1. The iteration in (1) can be rewritten as (2), where

H̄(t)
4
= W̄ (t)− B̄(t)− Ā(t) (3)

C(t)
4
= (W (t)−B(t)) (P(t)−Q(t))

+
(
W (t)−B(t)− W̄ (t) + B̄(t)

)
Y(t) (4)

M(t)
4
=
(
W (t)−B(t)−A(t)− W̄ (t) + B̄(t) + Ā(t)

)
Q(t)

+
(
W̄ (t)− B̄(t)

)
(Y(t)−P(t))

+
(
W̄ (t)− B̄(t)−W (t) +B(t)

)
P(t). (5)

and the term M(t) is a martingale difference sequence:

E[M(t)|Ft] = 0.

Proof. Rewriting the iterates, we see that

Q(t+ 1) = Q(t) + δ(t)
[
−A(t)Q(t)

+ (W (t)−B(t))Y(t)
]
, (6)

and the term multiplied by δ(t) can be expanded:

−A(t)Q(t)+(W (t)−B(t))Y(t)

=
(
W̄ (t)− B̄(t)− Ā(t)

)
Q(t)

+
(
W (t)−B(t)−A(t)

− W̄ (t) + B̄(t) + Ā(t)
)
Q(t)

+ (W (t)−B(t)) (Y(t)−Q(t))

=
(
W̄ (t)− B̄(t)− Ā(t)

)
Q(t)

+
(
W (t)−B(t)−A(t)

− W̄ (t) + B̄(t) + Ā(t)
)
Q(t)

+ (W (t)−B(t)) (P(t)−Q(t))

+ (W (t)−B(t)) (Y(t)−P(t))

=
(
W̄ (t)− B̄(t)− Ā(t)

)
Q(t)

+
(
W (t)−B(t)−A(t)

− W̄ (t) + B̄(t) + Ā(t)
)
Q(t)

+ (W (t)−B(t)) (P(t)−Q(t))

+
(
W̄ (t)− B̄(t)

)
(Y(t)−P(t))

+
(
W̄ (t)− B̄(t)−W (t) +B(t)

)
P(t)

+
(
W (t)−B(t)− W̄ (t) + B̄(t)

)
Y(t)

]
. (7)

Define H̄ , C, and M(t) as in (3), (4) and (5). Furthermore,
define

M(t) =
(
W (t)−B(t)−A(t)

− W̄ (t) + B̄(t) + Ā(t)
)
Q(t)

+
(
W̄ (t)− B̄(t)

)
(Y(t)−P(t))

+
(
W̄ (t)− B̄(t)−W (t) +B(t)

)
P(t).

Taking conditional expectation of both sides of (6) and noting
that E[Y(t)|Ft] = P(t), we have the result.

Loosely speaking, the term C(t) will be asymptotically
vanishing if P(t) → Q(t) and the matrices W (t) and B(t)
are asymptotically independent of Y(t). In the next section,
we show that this stochastic approximation scheme converges
under certain conditions on update rule.
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Fig. 1. Trace of estimate of Qi(t) for a single node i and M = 4, using the
algorithm in (8) on a 5 × 5 grid graph. The four lines correspond to the 4
entries of the vector Qi(t). The estimates of all nodes converge to a random
elementary vector q∗ ∈ Y; furthermore, E[q∗] = Π.

C. Example Algorithms

There are many algorithms which have the general form of
the update rule (1). Before we proceed with the analysis of
(1), however, we look at three examples in which we can see
interesting regimes of consensus-like behavior stemming from
the update rule. In these numerical examples, the graph G(t) is
a 5 grid, so the maximum degree of any node is dmax = 4. The
initial values in the grid were drawn i.i.d. from the distribution
(0.4, 0.3, 0.2, 0.1) on M = 4 elements.

1) Averaging with social samples: Suppose P(t) = Q(t)
for all t and consider the update

Qi(t+ 1) =
dmax + 1− di
dmax + 1

Qi(t) +
∑

j∈Ni(t)

1

dmax + 1
Yj(t).

(8)

This corresponds to δ(t) = 1, Aii(t) = di
dmax+1 , Bii(t) = 0,

and Wij(t) = 1
dmax+1 . A trace of a single node’s estimates for

M = 4 is shown in Figure 1. The four lines correspond to the
4 elements of Qi(t). As shown in [6], this procedure results
in all Qi(t) converging to a consensus value that is a random
singleton q∗ in {e1, e2, . . . , eM} such that E[q∗] = Π.

2) Averaging with social samples and decaying step size:
Suppose P(t) = Q(t) for all t and consider the update

Qi(t+ 1) = Qi(t)−
di

dmax + 1
δ(t)Qi(t)

+ δ(t)
∑

j∈Ni(t)

1

dmax + 1
Yj(t), (9)

with δ(t) = 10/(t+ 1). This corresponds to Aii(t) = di
dmax+1 ,

Bii(t) = 0, and Wij(t) = 1
dmax+1 . Figure 2 shows the

estimates of all agents in a 5 × 5 grid tracking the estimate
of Π(m) for a single m. The estimates of the agents converge
to a consensus q∗ which is not equal to the true value Π but
E[q∗] = Π. More generally, we will show that under standard
assumptions on the step size and weights, if P(t) = Q(t)
then the iteration (1) converges to a consensus state whose
expectation is Π.

3) Exchange with social samples and censoring: Let δ(t) =
1/t and suppose that for each (i,m), m 6= 0, we set

Pi,m(t) =

{
0 Qi,m(t) < dmaxδ(t)
Qi,m(t) otherwise
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Fig. 2. Trace of estimate of Qi,m(t) over all i ∈ [n] for a single m ∈ [M ]
with M = 4, using the algorithm in (9) on a 5× 5 grid graph. The estimates
of all nodes converge to a common random distribution q∗ ∈ P(Y) whose
expectation is equal to the true distribution Π.
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Fig. 3. Trace of Qi,m(t) for a few different i and a single m ∈ M with
M = 4, using the algorithm in (10) on a 5 × 5 grid graph. For this update
rule, the estimates of all nodes converge almost surely to Π.

That is, under P(t) node i sends random messages cor-
responding to those elements of Q(t) that are larger than
dmaxδ(t) while it remains silent with probability Pi,0(t) =
1−

∑
m 6=0 Pi,m(t). Let Ni(t) =

∑
j∈Ni

1(Yj(t) 6= 0) denote
the total number of neighbors of node i which did not remain
silent at time t. Node i updates its local estimate of the global
histogram according to the following rule:

Qi(t+ 1) =


Qi(t) Yi(t) = 0
Qi(t)− δ(t)Ni(t)Yi(t)

+δ(t)
∑
j∈Ni

Yj(t) Yi(t) 6= 0
.

(10)

The behavior of (10), when δ(t) = 10
t+1 is illustrated in Figure

3. The estimates Qi(t) of all agents converge to Π almost
surely under this update rule. More generally, we show that
given certain technical conditions, the mean across the agents
of the sample paths Q(t) is always equal to Π and the estimate
of each agent converges almost surely to Π. In this case we
show that the rate of convergence is on the order of 1/t.

These examples illustrate that the algorithms can display
different qualitative behaviors depending on the choice of the
step size δ(t) as well as the choice of P. In the first case,
all agent estimates converge to a common random singleton,
whereas under the second scenario they seem to converge to
a common estimated histogram, even though this common
estimated histogram might be far from the true histogram
of the given initial values. Finally, in the case where agents
“censor” their low values and follow update rule (10), Figure 3
suggests an almost sure convergence to Π. In the next section,
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we analytically confirm these empirical findings in with a
unified analysis.

III. ANALYSIS

We now turn to the analysis of the general protocol in
(1). We will need a number of additional conditions on the
iterates in order to guarantee convergence. Condition 1 is
that the agents compute convex combinations of their current
estimates and the messages at time t. This guarantees that
the estimated distributions of the agents Qi(t) are proper
probability distributions on [M ].

A. Mean preservation

Let Ft be the σ-algebra generated by

{Qi(s) : s < t} ∪ {G(s) : s < t},

so Q(t+ 1) is measurable with respect to Ft.

Condition 1 (Mixing coefficients). For all t > 0 and all i ∈
[n], ∑

j∈Ni

Wij(t)−Aii(t)−Bii(t) = 0. (11)

Let

Ā(t) = E[A(t)|Ft]
B̄(t) = E[B(t)|Ft]
W̄ (t) = E[W (t)|Ft].

Note that the coefficient W (t) and A(t) can, in general,
depend on the messages Y(t) as well as the graph G(t).

Our first result is a trivial consequence of the linearity of
the update rule, and does not require any conditions beyond
the fact that the estimate Q is itself a distribution.

Lemma 2. Suppose Condition 1 holds. If P(t) = Q(t) and
W(t) and B(t) are independent of Y(t), then for all t,

E[1>Q(t)] = 1>Q(0) = nΠ.

Proof. Given Condition 1,

E[Q(t+ 1)|Ft] = (I − δ(t)Ā(t))Q(t)− δ(t)B̄(t)Q(t)

+ δ(t)W̄ (t)Q(t).

And therefore

E[1>Q(t+ 1)|Ft] = 1>Q(t). (12)

On the other hand, since 1>Q(0) = nΠ, the proof is complete.

This result is simple to see – if the expected message Yi(t)
is equal to Qi(t), then the mean of the dynamics are just those
of average consensus. However, it is not necessarily the case
that the nodes converge to a consensus state, and if they do
converge to a consensus state, that state may not be equal
to Π on almost every sample path. The expected average of
the node estimates will be equal to Π, and if they do reach a
consensus the expected consensus value will be Π. In this latter
case it is sometimes possible to characterize the consensus

value more explicitly. For example, Narayanan and Niyogi [6]
show that in one version of this update rule, for all i ∈ [n],
Qi(t)→ q∗ ∈ Y − {0} and E[q∗] = Π.

Lemma 3 (Singleton convergence [6]). Suppose Condition 1
holds. If P(t) = Q(t) and W (t) = W and B(t) = B are
independent of time t and (random) social samples Y(t), then

P
{

lim
t→∞

Q(t) = 1q∗,q∗ ∈ Y − {0}
}

= 1.

B. Almost sure convergence

The main result of this paper is obtaining sufficient con-
ditions under which the update rule in (1) converges to a
state in which all agents have the same estimate of the
histogram Π. In general, the limiting state need not equal Π,
but in some cases the process does converge almost surely
to Π. To show almost sure convergence we will need some
additional conditions. Condition 2 is a standard assumption
from stochastic approximation on the step size used in the
iteration. A typical choice of step size is δ(t) = Θ(1/t) which
we used in the examples earlier.

Condition 2 (Decreasing step size). The sequence δ(t) → 0
with δ(t) ≥ 0 satisfies

∞∑
t=1

δ(t) =∞ and
∞∑
t=1

δ(t)2 <∞.

Condition 3 states that the expected weight matrices H̄(t)
at each time are perturbations around a fixed time-invariant
contraction matrix H̄ . This condition is satisfied in all three
examples of interest above. Furthermore, it allows us to sim-
plify the analysis. Note that it seems to us that this condition
is rather technical and can be relaxed at the cost of more
cumbersome notation and complicated analysis. As a result,
relaxing this assumption remains an area of future work.

Condition 3 (Limiting dynamics). There exists a symmetric
matrix H̄ such that

H̄(t) = H̄ + H̃(t),

where H̃ij(t) = O(δ(t)). Furthermore, if λ is an eigenvalue
of H̄ then we have |λ| < 1 and in particular H̄1 = 0. That
is, H̄ is a contraction.

Condition 4 implies that the perturbation term C(t) in (2)
vanishes as the step size decreases. This condition guarantees
that the mean dynamics given by H̄ govern the convergence
to the final consensus state.

Condition 4 (Bounded perturbation). We have

‖E[C(t)|Ft]‖ = O(δ(t)).

Given these three conditions and the conditions on the
coefficients we can show that the agent estimates in (1)
converge almost surely to a random common consensus state
whose expected value, by Lemma 2, is equal to Π. Thus for
almost every sample path of the update rule, the estimates
converge to a common value, but that value may differ across
sample paths. The expectation of the random consensus state
is the true average.
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Theorem 1. Suppose Conditions 1, 2, 3, and 4 hold. Then
the estimate of each node i governed by the update rule (1)
converges almost surely to a random variable q∗ ∈ P(Y)
which is a consensus state. That is, Q(t)→ Q∗ = 1q∗ where
E[Q∗] = 1Π.

Proof. The result follows from a general convergence theorem
for stochastic approximation algorithms [38, Theorem 5.2.1].
Define

V(t) = H̄(t)Q(t) + C(t) + M(t).

Several additional conditions are needed to guarantee proper-
ties of V(t) which ensure convergence of the update in (2).
Condition 2 guarantees that the step sizes decay slowly enough
to take advantage of the almost sure convergence of stochastic
approximation procedures. The limit point is a fixed point of
the matrix map H̄ and Conditions 1 and 3 show that this map
is a contraction so the limit points are consensus states. The
final condition is that the noise in the updates can be “averaged
out.” This follows in part because the process is bounded, and
in part because Condition 4 shows that the perturbation must
be decaying sufficiently fast.

We must verify a number of conditions [38, p.126] to use
this theorem.

1) Condition 2 shows that the step sizes not summable but
are square summable [38, (5.1.1) and (A2.4)].

2) The iterates are bounded in the sense that
supt E[‖V(t)‖2] < ∞. This follows because Qi(t) is
a probability distribution for all t, so the updates must
also be bounded [38, (A2.1)].

3) If we take the expected update

E[V(t)|Ft] = H̄(t)Q(t) + E[C(t)|Ft]
= H̄Q(t) + H̃(t)Q(t) + E[C(t)|Ft],

so we can write this conditional expectation as the
sum of a measurable function H̄Q(t) and a random
yet diminishing perturbation H̃(t)Q(t) + E[C(t)|Ft].
Furthermore, from Condition 3, the map H̄ is contin-
uous [38, (A2.2)-(A2.3)].

4) The final thing to check [38, (A2.5)] is that the random
perturbation in the expected update decays sufficiently
quickly:
∞∑
t=1

δ(t)
∥∥∥H̃(t)Q(t) + E[C(t)|Ft]

∥∥∥
≤
∞∑
t=1

δ(t)
∥∥∥H̃(t)

∥∥∥ ‖Q(t)‖+

∞∑
t=1

δ(t) ‖E[C(t)|Ft]‖

<∞.

The last step follows from Conditions 2 and 4 as well
as boundedness of Q(t).

Applying Theorem 5.2.1 of Kushner and Yin [38] shows that
the estimates converge to a limit set of the linear map H̄ .
Furthermore, from Condition 3 we know H̄ is a contraction
with a single eigenvector at 1. In other words, the limit points
are of the form Q∗ = 1q∗ where every row is identical.

The preceding theorem shows that the updates converge
almost surely to a limit when the step sizes are decreasing,

even though as shown in [6], we know that decreasing step
size is not necessary for almost sure convergence. So far the
algorithm has no provable advantage to that of [6], in that
each node’s estimate converges to a consensus state q∗, but
q∗ need not equal Π. However, by ensuring that the sample
path of the algorithm is “mean preserving” (the sum of the
j-th components of all Qi(t)’s is equal to Πj), this consensus
limit becomes equal to Π.

Condition 5 (Mean preservation). The average of the node
estimates is Π

1>Q(t) = Π ∀t.

Corollary 1. Suppose Conditions 1, 2, 3, 4, and 5 hold. Then
Q(t)→ Q∗ almost surely, where Q∗ = 1Π almost surely.

C. Rate of convergence

We now turn to bounds on the expected squared error of in
the case where Q(t)→ Q∗ almost surely.

Theorem 2 (Rate of convergence). Suppose that Conditions
1, 2, 3, and 4 also hold. Then there exists a constant C such
that

E
[
‖Q(t)−Q∗‖2

]
≤ Cδ(t).

Proof. First note that in the process (1), Qi(t) is a probability
distribution, so the entire process lies in a bounded compact
set, and under Conditions 3 and 4 we can write the iteration
as

Q(t+ 1) = Q(t) + δ(t)
[
H̄Q(t) + D(t) + M(t)

]
,

where the perturbation term ‖E[D(t)|Ft]‖ = O(δ(t)). We can
now apply Theorem 24 of Benveniste et al. [39, p. 246], which
requires checking similar conditions as the previous Theorem.

1) Condition 2 shows the step sizes are not summable [39,
(A.1)].

2) Treat the tuple of random variables
(A(t),B(t),W(t),Y(t)) as a state variable S(t).
This state is measurable with respect to Ft, and
there exists a conditional probability distribution
corresponding to the update [39, (A.2)].

3) Let
N(t) = M(t) + C(t)− E[D(t)|Ft],

so N(t) is still a martingale difference. If we define
J(t) = 1

δ(t)E[C(t)|Ft] we can rewrite the iterates as

Q(t+ 1) = Q(t) + δ(t)
[
H̄Q(t) + N(t)

]
+ δ(t)2J(t).

Again, the terms
∥∥H̄Q(t) + N(t)

∥∥ and ‖J(t)‖ are
bounded by a constant [39, (A.3) and (A.5)].

4) Since H̄ is a linear contraction, it is also Lipschitz,
and the martingale difference N(t) is bounded, which
implies condition (A.4) of Benveniste et al. [39, p. 216].

With the validity of the above conditions , the assertion of the
theorem follows directly [39, p. 216]:

E
[
‖Q(t)−Q∗‖2

]
= O(δ(t)).
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D. Example Algorithms Revisited

We can now describe how the results apply to the algorithms
described in section II-C.

1) Averaging with social samples: Our first algorithm in (8)
was one in which the nodes perform a weighted average of
the distribution of the messages they receive with their current
estimate. The general form of the algorithm was

Q(t+ 1) = (I −A)Q(t) +WY(t),

which corresponds to choosing δ(t) = 1 and B(t) = 0. For the
specific example in (8), A = 1

dmax+1D and W = 1
dmax+1G,

where G is the adjacency matrix of the graph and D is the
diagonal matrix of degrees. Furthermore, P(t) = Q(t) for all
t.

Q(t+ 1) = Q(t) + (W −A)Q(t) +W (Y(t)−Q(t)).
(13)

The term W − A is the graph Laplacian of the graph with
edge weights given by W . The following is is a corollary of
Lemma 2 and Lemma 3.

Corollary 2. For the update given in (13), the estimates Q→
Q∗ almost surely, where Q∗ is a random matrix taking values
in the set {1q∗ : q∗ ∈ Y} such that E[Q∗] = 1Π.

Examining (13), we see that the the Laplacian term drives
the iteration to a consensus state, but the only stable consensus
states are those for which Y(t)−Q(t) = 0, which means Y(t)
must be equal to Q(t) almost surely. This means each row of
Q(t) must correspond to a degenerate distribution of the form
em.

2) Averaging with social samples and decaying step size:
The second class of algorithms, exemplified by (9), has the
following general form:

Q(t+ 1) = (1− δ(t)A)Q(t) + δ(t)WY(t),

and again P(t) = Q(t) for all t. This is really the same as
(13) but with a decaying step size δ(t):

Q(t+ 1) = Q(t) + δ(t)(W −A)Q(t)

+ δ(t)W (Y(t)−Q(t)). (14)

However, the existence of a decreasing step size means that the
iterates under this update behave significantly differently than
those governed by (13). The convergence of this algorithm is
characterized by Theorems 1 and 2.

Corollary 3. For the update given in (14) with δ(t) = 1/t, the
estimates Q(t) → Q∗ almost surely, where Q∗ is a random
matrix in the set {1q> : ‖q‖1 = 1, qm > 0} and E[Q∗] =

1Π>. Furthermore, E[‖Q(t)−Q∗‖2] = O(1/t).

3) Exchange with social samples and censoring: The last
algorithm in (10) has a more complex update rule, but it is a
special case of the generic update

Q(t+ 1) = Q(t)− δ(t)B(t)Y(t) + δ(t)W (t)Y(t). (15)

For a fixed weight matrix W , define the the thresholds ∆(t) =
δ(t)

∑
j∈Ni

Wij and the sampling distribution Pi,m(t) =
1(Qi,m(t) > ∆(t)). The social samples Y(t) are sampled

according to this distribution and the weight matrices are
defined by

Wij(t) =

{
0 i 6= j, Yi = 0 or Yi 6= 0
Wij i 6= j, Yi = 0 and Yi 6= 0

Bii(t) =
∑
j∈Ni

Wij(t)

In this algorithm the iterates keep
∑
iQi,m(t) constant over

time by changing the sampling distribution P(t) over time
and by using the weight matrix B(t) to implement a “mass
exchange” policy between nodes. At each time, agent i sam-
ples a opinion Zi(t). If Qi,Zi(t)(t) is large enough, the agent
sends Yi(t) = Zi(t), giving δ(t)Wij mass to each neighbor j
and subtracting the corresponding mass from its own opinion.
If Qi,Zi(t)(t) is not large enough it exchanges nothing with its
neighbors. The distribution P(t) implements this “censoring”
operation. By keeping the total sum on each opinion fixed,
Corollary 1 shows that the estimates converge almost surely
to Π.

Corollary 4. For the update given in (15) with δ = 1/t, the
estimates Q(t)→ 1Π almost surely, and E[‖Q(t)− 1Π‖2] =
O(1/t).

IV. EMPIRICAL RESULTS

The preceding analysis shows the almost-sure convergence
of all node estimates for some social sampling strategies, and
in some cases characterizes the rate of convergence. However,
the analysis does not capture the effect of problem parameters
such as the initial distribution of node values and the network
topology. These factors are well known to affect the rate of
convergence of many distributed estimation and consensus
procedures – in this section we provide some empirical results
about these effects.

We considered a number of different topologies for our
simulations:
• The

√
n×
√
n grid has vertex set [

√
n]× [

√
n] and edge

exists between two nodes whose L1 distance is 1.
• A star network has a single central vertex which is

connected by a single edge to n− 1 other vertices.
• An Erdős-Rényi graph [40] on vertex set [n] contains each

edge (i, j) independently with probability p. We choose
p = 0.6.

• A preferential attachment graph [41], [42] is constructed
by adding vertices one at a time. A new vertex is
connected to an existing vertex with a probability that
is a function of the current degree of the vertices. We
allowed each new vertex to be connected to 3 preceding
vertices.

• A 2-dimensional Watts-Strogatz graph is a grid with
randomly “rewired” edges [43]. We chose rewiring prob-
ability 0.1.

Details on the random graph models can be found in the
igraph package for the R statistical programming lan-
guage [44]. In the simulations we calculated the average of
1
n ‖Q(t)− 1Π‖2 across runs of the simulation, which is the
average mean-squared-error (MSE) per node of the estimates.
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Fig. 4. Average MSE between the agent estimates and the true histogram initial node values versus time for 4 different 100-node graphs : a 10× 10 grid,
preferential attachment graphs with three edges generated per new node, Watts-Strogatz graphs with rewiring probability 0.1, and a star with one central node
and 99 peripheral nodes.

A. Network size and topology

We were interested in finding how the convergence time
depends on the step size and network topology. To investigate
this we simulated the grid, preferential attachment, Watts-
Strogatz, and star topologies described above on networks of
n = 100 nodes with M = 5. The initial node values were
drawn i.i.d. from a distribution (0.1, 0.25, 0.15, 0.3, 0.2) on 5
elements. Simulations were averaged over 100 instances of the
network and initial values.

Figure 3 shows that the estimates converge almost surely to
the true histogram Π when δ(t) = 1/t. While our theoretical
analysis was for this case, in practice stochastic optimization
is often used with a constant step size because the algorithm
converges faster to a neighborhood of the optimal solution
when δ(t) is appropriately small. In order to assess if this is
the case in our model, we simulated variants of the algorithm
in (10) with different settings for δ(t).

Figure 4 shows the error between the local estimates and
the true histogram of initial node values under four different
topologies and four different choices for δ(t). For δ(t) = 1/t
the algorithm satisfies the conditions of the theorem and we
can see the rather rapid convergence to the mean. If δ(t) is
constant, then the error does not converge to 0 but can still be
quite small if the step size is small. This is similar to the fixed-
weight algorithm with a weight matrix that has very small off-
diagonal entries. By contrast, the weight sequence δ(t) = 1/t2

decays too quickly and there is a large residual MSE.

We see a greater effect on the convergence time by looking
at different graph topologies for the same number of nodes.
For graphs with fast mixing time such as the preferential
attachment and Watts-Strogatz model, the error decreases
much more rapidly than for the grid or star. This suggests
that the mixing time of the random walk associated with
the weight matrix of the algorithm should affect the rate of
convergence, as is the case in other consensus algorithms. The
effect of choosing weight sequences that do not guarantee
almost sure convergence also varies depending on the network
topology. For sparsely connected networks like the star, the
performance is quite poor unless the weight sequence is chosen
appropriately. However, for denser networks like the Watts-
Strogatz model, the difference may be more modest.

B. The effect of the initial distribution

The size and shape of the histogram to be estimated also
affects the rate of convergence. To illustrate this, we sampled
initial values from a uniform distribution on M items for
different values of M . Figure 5 shows the average time
to get to an MSE of 10−2 versus M for this scenario.
Here the effect of the network topology is quite pronounced;
topological features such as the network diameter seem to have
a significant impact on the time to convergence.

To see the effect of the number of nonzero elements in a
fixed example we simulated the Erdős-Rényi, grid, preferential
attachment, and Watts-Strogatz models for n = 100 with
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Fig. 6. Average MSE per node versus time (on a log10(·) scale) versus time for different support sizes for four different network topologies. The distribution
is uniform on a subset of size M∗ = 2 to M∗ = 15 (the Sparsity level) out of M = 150. The MSE decays much more quickly for sparser distributions for
the same alphabet size M .

initial values for the nodes sampled from a set of sparse
distributions with different values of M . More precisely, we
considered a sparse distribution over M = 150 bins where the
actual distribution of opinions is uniform on an (unknown)
sparse subset of M∗ � M bins where in our simulations,
M∗ ranges from M∗ = 2 to M∗ = 15. The effect of this
“sparsity” is shown in Figure 6, where the log MSE per node
is plotted against the number of time steps of the algorithm.
Here the difference in the network topologies is more stark –
for the Erdős-Rényi graph the effect of changing the number of
elements is negligible, but the average MSE per node increases
in the other three graph models. The difference is greatest in
the preferential attachment model, where the increase in M
corresponds to a nearly linear increase in the log MSE.

Next we consider a closely related question regarding the
shape of the histogram to be estimated. In particular, we con-
sidered initial distributions which are heavily concentrated on
a few elements but still contain many elements with relatively

low popularity. Specifically, in our simulations we chose the
initial values to be drawn from the following distribution

Π =

(
0.38, 0.38,

0.24

M − 2
, . . . ,

0.24

M − 2

)
(16)

for values of M ranging from M = 5 to M = 26. We sim-
ulated each network 50 times, uniformly assigning the initial
values to the nodes. The average error is shown in Figure 7.
Here we see that when the distribution is biased such that most
of the weight is on the first two elements, the support size M
does not have an appreciable effect on the convergence time.
What Figure 7 suggests is that the shape of the distribution
is more important than the support. This is not surprising –
because we are measuring squared error, elements in Π which
are small will contribute relatively little to the overall error and
so in this sense the uniform distribution is the “worst case”
for convergence. In these scenarios, different measures of
convergence may be important, such as the Kullback-Leibler
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Fig. 7. Average MSE per node versus time (on a log10(·) scale) versus time for different M for a distribution in (16) that is skewed with larger M . In
general, the error is dominated by the convergence on the larger elements of the histogram.
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Fig. 5. Time to get to MSE of 10−2, averaged across nodes, versus M for a
uniform distribution on the four different network topologies with n = 100
nodes.

divergence between the estimated distributions and Π. Other
quantities related to Π may impact the rate of convergence of
the algorithm.

V. DISCUSSION

In this paper we studied a simple model of message passing
in which nodes or agents communicate random messages
generated from their current estimates of a global distribu-
tion. The message model is inspired by models of social
messaging in which agents communicate only a part of their
current beliefs at each time. This family of processes contains
several interesting instances, including a recent consensus-
based model for language formation and an exchange-based
algorithm that results in agents learning the true distribution
of initial opinions in the network [6]. To analyze this latter
process we found a stochastic optimization procedure cor-
responding to the algorithm. The simulation results confirm
the theory and also show that while the topology of the
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network affects the rate of convergence, the shape of the
overall histogram Π may play larger role than its support size
when considering L2 convergence.

One interesting theoretical question is whether the error√
t(Q(t) − Q∗) converges to a normal distribution when

δ(t) = 1/t. Such a result was obtained by Rajagopal and
Wainwright [37] for certain cases of noisy communication
in consensus schemes for scalars. They showed a connection
between the network topology and the covariance of the
normalized asymptotic error. Such a result will not trans-
fer immediately to our scenario because of the additional
perturbation term C(t). However, because this term decays
rapidly, we do not believe it will impact the covariance matrix.
Characterizing the asymptotic distribution of the error in terms
of the graph topology, M , and Π may yield additional insights
into the convergence rates in terms of measures other than L2

norm of error vector.
The results in this paper also apply to the “gossip” scenario

wherein only one pair of nodes exchanges messages at a time.
This corresponds to selecting a random graph G(t) which
contains only a single edge. In terms of time, the convergence
in this setting will be slower because only one pair of messages
is exchanged in a single time slot. The analysis framework is
fairly general – to get the almost-sure convergence we need
mild assumptions on the message distributions. Both finding
other interesting instances of the algorithm and extending the
analysis for metrics such as divergence and other statistical
measures are interesting directions for future work. Solving the
latter problem may yield some new techniques for analyzing
other statistical procedures which can be cast as stochastic
optimization, such as empirical risk minimization.

This model of random message passing may be useful in
other contexts such as inference and optimization. Stochastic
coordinate ascent is used in convex optimization over large
data sets; extending this framework to the distributed opti-
mization setting is a promising future direction, especially for
high-dimensional problems. In belief propagation, stochastic
generation of beliefs can ensure convergence even when the
state space is very large [45]. Finally, the framework here can
also be applied to a model for distributed parametric inference
in social networks [46]–[48] in which agents both observe and
communicate over time. In these applications and in others,
the same ideas behind the social sampling model in this paper
appear to be useful in reducing the message complexity while
allowing consistent inference in distributed setting.
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[30] A. Kashyap, T. Başar, and R. Srikant, “Quantized consensus,”
Automatica, vol. 43, no. 7, pp. 1192–1203, 2007. [Online]. Available:
http://dx.doi.org/10.1016/j.automatica.2007.01.002

[31] R. Carli, F. Fagnani, P. Frasca, and S. Zampieri, “Gossip consensus
algorithms via quantized communication,” Automatica, vol. 46, no. 1,
pp. 70–80, January 2010. [Online]. Available: http://dx.doi.org/10.1016/
j.automatica.2009.10.032

[32] M. Zhu and S. Martı́nez, “On the convergence time of asynchronous
distributed quantized averaging algorithms,” IEEE Transactions on
Automatic Control, vol. 56, no. 2, pp. 386–390, February 2011.
[Online]. Available: http://dx.doi.org/10.1109/TAC.2010.2093276

[33] J. Lavaei and R. M. Murray, “Quantized consensus by means
of gossip algorithm,” IEEE Transactions on Automatic Control,
vol. 57, no. 1, pp. 19–32, January 2012. [Online]. Available:
http://dx.doi.org/10.1109/TAC.2011.2160593

[34] K. Srivastava and A. Nedic, “Distributed asynchronous constrained
stochastic optimization,” IEEE Journal of Selected Topics in Signal
Processing, vol. 5, no. 4, pp. 772 –790, August 2011. [Online].
Available: http://dx.doi.org/10.1109/JSTSP.2011.2118740

[35] M. Yildiz and A. Scaglione, “Coding with side information for
rate-constrained consensus,” IEEE Transactions on Signal Processing,
vol. 56, no. 8, pp. 3753 –3764, August 2008. [Online]. Available:
http://dx.doi.org/10.1109/TSP.2008.919636

[36] S. Kar and J. Moura, “Distributed consensus algorithms in sensor
networks: Quantized data and random link failures,” IEEE Transactions
on Signal Processing, vol. 58, no. 3, pp. 1383 –1400, March 2010.
[Online]. Available: http://dx.doi.org/10.1109/TSP.2009.2036046

[37] R. Rajagopal and M. Wainwright, “Network-based consensus averaging
with general noisy channels,” IEEE Transactions on Signal Processing,
vol. 59, no. 1, pp. 373–385, January 2011. [Online]. Available:
http://dx.doi.org/10.1109/TSP.2010.2077282

[38] H. J. Kushner and G. G. Yin, Stochastic Approximation and Recursive
Algorithms and Applications, 2nd ed. Springer, 2010.

[39] A. Benveniste, M. Métivier, and P. Priouret, Adaptive Algorithms and
Stochastic Approximations, ser. Applications of Mathematics. Berlin:
Springer-Verlag, 1990, no. 22.
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