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ABSTRACT for separation is often quite poor compared to joint source-

A data collection problem in sensor networks is formulated/fich channel strategies [1, 2]. Although uncoded transmisséon ¢

the number of channel uses per source sample is greater tiean o SOMetimes achieve the optimal distortion-power tradeioff,
An example of this problem is given in which the objective oét cannot exploit the bandwidth mismatch and hence becomes

data collector is to compute a filtered and downsampledaersi  inefficient in this regime. In the paper we propose the use of

the sensor field. In this regime, it is shown that uncodedstrassion g novel coding strategy based computation codeas devel-

is not appropriate and that strategies based on separatingesand oped by Nazer and Gastpar [3].

channel coding perform poorly. By using a novel coding syt As a motivating example, we will examine a toy model of

based on computation codes, the power-distortion tradeafdmes twork | ired b T itori S

more favorable than that from separation. a sensor network inspired by seismic monitoring. Sensers ar

~ placed at regular intervals closer than required by theiapat

Index Terms— sensor networks, spatial filtering, joint handwidth of the seismic waves. Every day a plane flies over

source-channel coding, distributed refinement the sensor field to collect the data from the sensors. The col-
lector wishes to create a summary of the sensor field in the
1. INTRODUCTION form of a spatially low-pass filtered and downsampled ver-

sion of the data at each time instant. One approach to this

Sensor network applications provide a rich set of problem#roblem would be to gather all of the data and perform the
in distributed Signa| processing_ In many proposed frameprOCESSing and fllterlng off-line. This has the benefit of al-
works, a central agent is interested in estimating a precess Iowing further flexibility in processing at the data collect
version of the sensor’s observations. The quality of the estbut may be wasteful in terms of the energy expended by the
mate is limited by constraints on the communication chasnelSensors, since each sensor must quantize and transmit all of
between the sensors and the agent. Broadly speaking, ti§ observed data. By employing a computation code, we can
different approaches have been proposed to perform thik k”‘d”'ectly Compute the desired filter in an energy efficienhfas

of reconstruction. In the first approadeparation the data 10N.

gathering is decoupled from the computation. The sensors

compress their observations individually and transmitrtize s¢[m] h[m] vilm] I N v [mN]
independent messages over a shared communication channel
and the collector uses the compressed observations to com- )
pute the function. The second approashgoded transmis- Fig. 1. Data collector’s goal.

sion, exploits two facts: the computation of interest is often

linear and the communication channel is additive. The sen-

sors perform a linear transformation of their observatimns Our main result is that the tradeoffs provided by com-
meet a transmit power constraint and transmit the analog vaPutation codes are beneficial in applications which require
ues over the communication Channe'y and the collector peﬁ. coarse but low-distortion version of the sensor field. In

forms some post-processing on the summed analog signals#® next section we describe our simple network model, fol-
arrive the final estimate. lowed by an analysis of the collect-then-filter in Sectioh 3.

We are interested in the case where there sparce- and computation coding schemes in Section 3.2 for comput-

channel bandwidth mismatciso that we have$k channel ing the filter-downsample operation. An example is given in
uses fork source symbols, witl8 > 1. Both separation Section 5 to illustrate the distortion-energy tradeoff.

and uncoded transmission have limitations in this setting —

because separating compression and communication is gen- 2. PROBLEM FORMULATION

erally suboptimal in networks, the distortion-power traffe
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For them-th MAC, sensoi will encode its observed vec-
tor s[¢] into a codeword; ,,, of length 5k, whereg > 1 is
the bandwidth expansion factor. We will assume th&t an
integer. The sensors then transmit their codewords over the
channel to the data collector, which receives
m
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Fig. 2. A network on the line. Heré = 6, A = 2, andN =  wherew; is iid Gaussian noise with varianee,. We can
4, write theaverage power used by sengdor collection point
m by
. . 1 2
positionm observes a source veckrm] of lengthk. We can P(i,m) = i l[%i,m 1 - (5)

write the observations as a matrix _ _
We will assume that the collection agent samples the net-

sill] s12] - sifm] work very infrequentlyand that the nodes collect a large amo-
s2(l]  2(2] s1[m] ) unt of data between samplings, so thas large.
se[l]  sk[2] <o+ sglm] - 3. SPATIALLY INDEPENDENT SOURCES

For simplicity of exposition, we will assume that the source\ye first consider the case where the sensors are not cotrelate

vectorss[m] are iid (across time) and Gaussian with variance,ar space, so that,, (e/) = 2. Although the filter-then-
2 , ps

o;. However, for each time instani the realization of the 44y nsample objective is less motivated in this case, the re-
sensor field{s;[m] : m € Z} is wide-sense stationary pro- 15 are cleaner to state and form a point of comparison for
cess with autocorrelatioft, [m] and power spectral density yhe noisy and correlated cases in the next section. We de-

Sss(€7). o ) ] ) scribe the energy-distortion tradeoffs for separation amd
The data collector is interested in computing a filtered and, o rithm based on computation codes. Because there is no
downsampled version 6f[m] for ¢ = 1,2,...k, asshownin  oqnica) way of adapting the uncoded transmission styateg
Flgur.e 1. We will assume the filtér{m] is FIR with transfer to the case3 > 1, we will not compute tradeoffs for those
function schemes. For a related discussion, see [3]. Our results show
HG)=ap+arz  +asz2 4 +ayz".  (2) the benefit gained by using computation codes to both expl_oit
the channel structure as well as the source-channel batidwid
The output of the filter i [m] = (h * s;)[m] and the collec- mismatch.
tor would like to compute, [mN], the output of the filter at
integer multiples of the downsampling factdr. 3.1. Collect then filter
As we face communication constraints and our sources
are continuous-valued, we cannot reconstruct the filter outVe now analyze a coding strategy based on the separation
put at arbitrary precision at the receiver. Our objectiviois Principle. The data collector attempts to collect all of the

approximate this filter output at the minimum mean-squaregource vectors from all of the sensors and then apply the de-
error (MSE) or distortion), where: sired filter. This scheme is limited by interference as each

sensor has to share its channel with other users.
D=E [(vt [m] — 04 [m])Q] , 3) - ) o
Proposition 1 (Separation with iid sourcesyor the sensor

whered,[m] is the estimate of;[m]| and expectation is over network collection problem with source vectors of length
both time,t, and positionymn. and variancer?, filter h[m), downsampling factoN, L-user

We will assume that a collection agent can scan the neMACs at everyA sensors, channel noise?, and channel
work progressively. We can model this as a set-afser addi-  blocklengthsk, quantizing at the sensors and transmitting us-
tive white Gaussian noise multiple access channels (AWGNing a separation-based scheme results in a distortion-ggner
MACSs) containing overlapping subsets of the sensors, g0 th&radeoff given by:
the MAC at positionm has as users the sensors at positions

. 2 B/A
m — L+ 1 throughm. We will assume that the data collector Dyep = ||h]|? - 02 ( Ow ) (6)
s . . sep — s 2

can query at position&m, whereA is an integer greater than APsep + 03,
1. Thus each sensor participatedifA multiple access chan- 2 o2 (|2 A/B
nels. For simplicity, we will assume > M unless otherwise Piep = =2 <(5Di) - 1) - (7)
specified. s



Proof. (Sketch) In the first step, each sensor uses an optimal In the computation code, the sensors participating in the
Gaussian rate-distortion code to quantize their sourcerebs [ N-th MAC will compute thel N-th filter outputv[IN] di-
vation with rateR and transmits thesgk bits using an op- rectly :

timal channel code to the data collector. With this encoding M .
we can write the quantized source vectors as wy =Y ais[IN —i]. (12)
=1
S[m] = s[m] + q[m], (8)

Computation codes use the MAC to compute an approxima-
whereq[m] can be thought of as an iid white Gaussian sourcdion @ to minimize the distortion; |u — @||2. The power-

with varianceD. The rate-distortion function per is given by distortion performance of a computation code is given by the
following lemma.

2
R(Dq) = 92 log <D;) : ) Lemma 1 (Computation codes for linear functiondjor an
M-user AWGN-MAC with Gaussian souregs at the users
Since each sensor participatedifA different MACs and  of variances?, for n. = 3k whereg € Z, andk sufficiently
time sharing is optimal for the MAC, we can view each sendarge there exists a code of blocklengthfor the channel that
sor as effectively havingL /A )3k channel uses on afruser  can compute a vectol approximatingu = an‘le AmSm
MAC. Since each user must transnilk bits, the power for  such that
each user must be set via:

M 2 B
2 | as6-1.2 Ow

= g los (1 n f—f) | (o) Deomp < <mz_:1 “m) Moy (a‘a +—MP) |
Therefore the power used per sensor can be written in terms Due to space limitations, we cannot give a full proof of
of Dy as this result. We refer the interested reader to [3] for a de-
tailed study of the computation of a sum from which the linear

o2 o2 AlB function case follows. The construction is a generalizatib

P= A (DQ) -1 (1) an elegant point-to-point scheme by Kochman and Zamir [7].

In the point-to-point setting, we want to communicate a sin-

We can now assume that the vect®rs| are available to  gle Gaussian source to a receiver over an AWGN channel.
the data collector for filtering and downsampling. The dis-The receiver has Gaussian side information about the @ligin
tortion in the filter output is jusDs., = ||h]|?Dg, and the source. Essentially, the sender quantizes its source toraeo
energy expended is jugt., = (L/A)n.P. Since downsam- enough lattice such that the receiver can (with high prdbabi
pling will not reduce the average distortion per sample & th ity) quantize the side information to the same lattice point
output of the filter, the average distortion for this scheme i The quantization erroris then transmitted uncoded over the
given by Dgep,. O channel. Using its observation of this quantization erttoe,
receiver improves its estimate of the source. This proaess r
peats with the new estimate serving as side informatiorn unti
we have run out of channel uses. For our computation code,
In this section we describe a scheme that directly computesach sender simultaneously runs this scheme using the same
the output of downsampling the filter by using the additivelattice. It follows that the receiver then sees the quatitina
property of the channel. Using the channel as part of a diserror for the sum of the sources.
tributed estimation scheme was first considered in [1] ard ex  Thus, our computation coding scheme only requires a sin-
tended to a variety of settings in [4-6]. However, there thgjle vector quantizer on top of whatever hardware is needed
channel is used in an uncoded fashion and the distortion & implement uncoded transmission. Note that the distortio
driven down by a scaling number of sensors. Here, the nungiven above may not be the best possible using computation
ber of sensors involved in a single filter output is fixed andcodes. In particular, a construction that is adapted to the fi
the distortion is reduced by distributed refinement over sevter coefficients may achieve a lower distortion for the same
eral channel uses. power. However, with this result in hand, we can easily eval-

The key construction we will need are the computationyate our performance in the proposed sensor network.
codes developed in [3]. These lattice-based codes can allow

the sensors to compute a linear function of their sources ov&heorem 1 (Computation codes with independent sources)
the channel with a better distortion-energy tradeoff that t For the sensor network collection problem with source vecto
provided by the separation-based scheme. We will assunw lengthk and variancer?, filter h[m], downsampling factor
here that the downsampling factdris an integer multiple of N, L-user MACs at everyV sensors, channel noise , and
the MAC-sampling interval\. channel blocklengttik, using a computation code to com-

3.2. Using computation codes



pute the filter output over the channel results in a distartio They then use the computation code from the previous section
energy tradeoff given by to compute the filter output. This will efficiently computeeth
output of the filter with the MMSE estimate of each sensor

D < IRl . AB-1p2 o2 p 13 value in place of the true value. An extra offset term appears
comp < [|hf|*- Ts 02 + NPeomp (13) due to the observation noigén).
_ 1/B . .
P < ﬁ [2]]* - MP a2 / -1 (14) Theorem 2. For the sensor network collection problem with
comP =N Deomp ' source vectors of length and variancer? observed through

white Gaussian noise of varianeg to form observations

The proof of this theorem follows directly from Lemma 1. r[m] filter h[m], downsampling factotV, L-user MACs at
Recall that we have assumad < L, so the entire FIR filter everyN sensors, channel noig€,, and channel blocklength
output can be computed using the computation code. Eaghk, using a computation code to compute the filter output
user participates i/ /N MACs on average, so the average over the channel results in a distortion-energy tradeofegi
power expended per user B, = (M/N)P and by as- by
sumptionM /N < L/A. The achievable distortion for com-
putation codes in (13) is similar to that from separatioréi ( D Sk < ool > (17)
but the exponent on the attenuation term is larger, and there ~— ““"'* — 02 + 02

a penalty term ofi/%—1. As we will see in the example, com- o o2 B
putation codes have a more favorable power-distortioretrad + ||h|PMP =2 & .
; ; o2+02 \o2 + NP,
off for low distortion. s 2 \Tw comp
(18)
4. NOISE AND SPATIAL CORRELATION Proof. (SketchjThe constant first term in the distortion is

identical to the distortion for the best centralized estona
We now turn to two extensions — one for the case where thRaving access to the valuesiéfi] directly. The computation
power spectrunb(e’“’) is not constant, so that the sensorcode instead minimizes the distortion of the filter applied t
measurements are correlated over space, and the other whtae MMSE estimates of the source samples. Thus the distor-
the sensor observations are noisy. As before, we are intefion is the same as (13) with the source variamg¢eeplaced
ested in computing the filtered and downsampled version dfy o /(02 + o2), the variance of the MMSE estimate. [
the sensor field. For the distributed source coding problem
in the correlated setting, the exact rate region is not known
except in some special cases, which means we cannot evaffr2- Correlated sources

ate the true distortion-power tradeoff for the separabased  \ye o take the case where the sensor observations are cor-
scheme. In the noisy case, the performance is limited by thgy|5ted across space (but not time), and there is no obieTvat
observation noise, but the gap between the best centralizgghise \we assume the sensor observations are wide-sense sta
estimator and the decentralized estimator decays in a Manngnary with autocorrelatiotR,,[m]. Using the computation

similar to (6). Due to space limitations we will defer evalu- ., 4e in the correlated case requires a modification of ounmai
ating bounds on the performance of separation for the corrg-ayma 1.

lated and noisy cases for the full version of this paper.

Theorem 3. For the sensor network collection problem with
4.1. Observation Noise source vectors of lengthand autocorrelationR,, [m], target
filter h[m], downsampling factofV, L-user MACs at every
In the noisy setting, we assume that the each terminal now sensors, channel noise’,, and channel blocklengthk,
observes an corrupted version of the source: using a computation code to compute the filter output over
the channel results in a distortion-energy tradeoff givgn b

r[m] = s[m] + z[m] , (15)
o2 p-1 2
wherez[m] is an iid noise sequence with Gaussian distribu- Deomp < ||]|?02 (271”) <27w> ,
tion of mear0 and variance-2. i + NPeomp o+ Fet 19
In the noisy setting, the sensors first pre-process their in- (19)
formation to compute the minimum mean-squared error esr\?vhere
mate ofs givenr:
2 1 M Ryd[i — j]
§[m] = Ug‘:_s Uzr[m] . (16) Pot = Peomp (maxm |am|2) ”2::1 a;a; o3 . (20)



Proof. (Sketchhn the first phase of the computation code, the 6. DISCUSSION

sensor observations are forwarded using an uncoded scheme

that has effective poweP.¢, which captures the beamform- Many models for linear data processing for wireless sensor

ing gain of the sensor’s correlations. In the remainihg 1 networks exploit the additive nature of the wireless chatme

phases, the lattice-based refinement scheme is agnodiie to improve the estimation performance. Uncoded transmission

correlations in the quantization errors, so the distortien has been proposed as a power-efficient method of computing

duction factor is identical to the case of independent surclow-distortion estimates over multiple-access channielg,

observations. O cannot exploit extra channel uses per source symbol. Com-

_ o putation codes exploit the additive structure of the channe

The lattices used in this strategy do not take advantage @fnd the extra channel uses to achieve a more favorable power-

correlation and structure simultaneously, but we are nat@w istortion tradeoff than separation. To explore this invero

of structured codes which can outperform the performancg,ent we examined the situation of a network on a line in
shown above. which the data collector wishes to acquire a filtered and down
sampled version of the source observations. In the fulieers
of this work we will derive explicit bounds for the perfor-

mance of separation in the correlated and noisy settings to
To illustrate the kinds of tradeoff curves we can achievagisi which we can compare the results presented here.

computation codes, we consider a simple example with noise-
less sensor observations. The filteis a 64-tap FIR lowpass
filter with transition band between frequencied x 27 and

0.6 x 27, designed using the Parks-McClellan algorithm. For[l] M. Gastpar and M. Vetterli, “Source-channel communi-

i _ — — 2 _ o .

this example we taka = 4, N = 16, L = 64, o5 = 0.5, and cation in sensor networks,” iand Int Workshop on Info
o2 = 1. Figure 3 shows the distortion-power tradeoff curves Proc in Sensor Networks (IPSN '08). J. Guibas and
for the collect-then-filter scheme and the scheme based on g 7154 eds.), Lecture Notes in Computer Science, (New
computation codes. We plot the tradeoff on a log-log scale v N\,() op 167-177 Springer, April 2003 '

for 3 = 2,4,6,8. T ’ ' '

5. COMPARISON AND EXAMPLE
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