
SPATIAL FILTERING IN SENSOR NETWORKS WITH COMPUTATION CODE S

Anand D. Sarwate, Bobak Nazer, Michael Gastpar

Department of Electrical Engineering and Computer Sciences, UC Berkeley

ABSTRACT

A data collection problem in sensor networks is formulated in which
the number of channel uses per source sample is greater than one.
An example of this problem is given in which the objective of the
data collector is to compute a filtered and downsampled version of
the sensor field. In this regime, it is shown that uncoded transmission
is not appropriate and that strategies based on separating source and
channel coding perform poorly. By using a novel coding strategy
based on computation codes, the power-distortion tradeoffbecomes
more favorable than that from separation.

Index Terms— sensor networks, spatial filtering, joint
source-channel coding, distributed refinement

1. INTRODUCTION

Sensor network applications provide a rich set of problems
in distributed signal processing. In many proposed frame-
works, a central agent is interested in estimating a processed
version of the sensor’s observations. The quality of the esti-
mate is limited by constraints on the communication channels
between the sensors and the agent. Broadly speaking, two
different approaches have been proposed to perform this kind
of reconstruction. In the first approach,separation, the data
gathering is decoupled from the computation. The sensors
compress their observations individually and transmit them as
independent messages over a shared communication channel
and the collector uses the compressed observations to com-
pute the function. The second approach,uncoded transmis-
sion, exploits two facts: the computation of interest is often
linear and the communication channel is additive. The sen-
sors perform a linear transformation of their observationsto
meet a transmit power constraint and transmit the analog val-
ues over the communication channel, and the collector per-
forms some post-processing on the summed analog signals to
arrive the final estimate.

We are interested in the case where there is asource-
channel bandwidth mismatch, so that we haveβk channel
uses fork source symbols, withβ > 1. Both separation
and uncoded transmission have limitations in this setting –
because separating compression and communication is gen-
erally suboptimal in networks, the distortion-power tradeoff
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for separation is often quite poor compared to joint source-
channel strategies [1, 2]. Although uncoded transmission can
sometimes achieve the optimal distortion-power tradeoff,it
cannot exploit the bandwidth mismatch and hence becomes
inefficient in this regime. In the paper we propose the use of
a novel coding strategy based oncomputation codesas devel-
oped by Nazer and Gastpar [3].

As a motivating example, we will examine a toy model of
a sensor network inspired by seismic monitoring. Sensors are
placed at regular intervals closer than required by the spatial
bandwidth of the seismic waves. Every day a plane flies over
the sensor field to collect the data from the sensors. The col-
lector wishes to create a summary of the sensor field in the
form of a spatially low-pass filtered and downsampled ver-
sion of the data at each time instant. One approach to this
problem would be to gather all of the data and perform the
processing and filtering off-line. This has the benefit of al-
lowing further flexibility in processing at the data collector,
but may be wasteful in terms of the energy expended by the
sensors, since each sensor must quantize and transmit all of
its observed data. By employing a computation code, we can
directly compute the desired filter in an energy efficient fash-
ion.

st[m] h[m]
vt[m]

↓ N vt[mN ]

Fig. 1. Data collector’s goal.

Our main result is that the tradeoffs provided by com-
putation codes are beneficial in applications which require
a coarse but low-distortion version of the sensor field. In
the next section we describe our simple network model, fol-
lowed by an analysis of the collect-then-filter in Section 3.1
and computation coding schemes in Section 3.2 for comput-
ing the filter-downsample operation. An example is given in
Section 5 to illustrate the distortion-energy tradeoff.

2. PROBLEM FORMULATION

For simplicity, we will consider a network comprised of eve-
nly spaced sensors along a line, as shown in Figure 2. We
will assume them-th sensor is at positionm∆. The sensor at
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Fig. 2. A network on the line. HereL = 6, Λ = 2, andN =
4.

positionm observes a source vectors[m] of lengthk. We can
write the observations as a matrix
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

. (1)

For simplicity of exposition, we will assume that the source
vectorss[m] are iid (across time) and Gaussian with variance
σ2

s . However, for each time instantt, the realization of the
sensor field{st[m] : m ∈ Z} is wide-sense stationary pro-
cess with autocorrelationRss[m] and power spectral density
Sss(e

jω).
The data collector is interested in computing a filtered and

downsampled version ofst[m] for t = 1, 2, . . . k, as shown in
Figure 1. We will assume the filterh[m] is FIR with transfer
function

H(z) = a0 + a1z
−1 + a2z

−2 + · · · + aMz−M . (2)

The output of the filter isvt[m] = (h ∗ st)[m] and the collec-
tor would like to computevt[mN ], the output of the filter at
integer multiples of the downsampling factorN .

As we face communication constraints and our sources
are continuous-valued, we cannot reconstruct the filter out-
put at arbitrary precision at the receiver. Our objective isto
approximate this filter output at the minimum mean-squared
error (MSE) or distortion,D, where:

D = E
[

(vt[m] − v̂t[m])2
]

, (3)

wherev̂t[m] is the estimate ofvt[m] and expectation is over
both time,t, and position,m.

We will assume that a collection agent can scan the net-
work progressively. We can model this as a set ofL-user addi-
tive white Gaussian noise multiple access channels (AWGN-
MACs) containing overlapping subsets of the sensors, so that
the MAC at positionm has as users the sensors at positions
m−L + 1 throughm. We will assume that the data collector
can query at positionsΛm, whereΛ is an integer greater than
1. Thus each sensor participates inL/Λ multiple access chan-
nels. For simplicity, we will assumeL ≥ M unless otherwise
specified.

For them-th MAC, sensori will encode its observed vec-
tor s[i] into a codewordxi,m of lengthβk, whereβ > 1 is
the bandwidth expansion factor. We will assume thatβ is an
integer. The sensors then transmit their codewords over the
channel to the data collector, which receives

ym =

m
∑

i=m−L+1

xi,m + wi , (4)

wherewj is iid Gaussian noise with varianceσ2
w. We can

write theaverage power used by sensori for collection point
m by

P (i, m) =
1

βk
‖xi,m‖2 . (5)

We will assume that the collection agent samples the net-
workvery infrequently, and that the nodes collect a large amo-
unt of data between samplings, so thatk is large.

3. SPATIALLY INDEPENDENT SOURCES

We first consider the case where the sensors are not correlated
over space, so thatSss(e

jω) = σ2
s . Although the filter-then-

downsample objective is less motivated in this case, the re-
sults are cleaner to state and form a point of comparison for
the noisy and correlated cases in the next section. We de-
scribe the energy-distortion tradeoffs for separation andour
algorithm based on computation codes. Because there is no
canonical way of adapting the uncoded transmission strategy
to the caseβ > 1, we will not compute tradeoffs for those
schemes. For a related discussion, see [3]. Our results show
the benefit gained by using computation codes to both exploit
the channel structure as well as the source-channel bandwidth
mismatch.

3.1. Collect then filter

We now analyze a coding strategy based on the separation
principle. The data collector attempts to collect all of the
source vectors from all of the sensors and then apply the de-
sired filter. This scheme is limited by interference as each
sensor has to share its channel with other users.

Proposition 1 (Separation with iid sources). For the sensor
network collection problem with source vectors of lengthk
and varianceσ2

s , filter h[m], downsampling factorN , L-user
MACs at everyΛ sensors, channel noiseσ2

w, and channel
blocklengthβk, quantizing at the sensors and transmitting us-
ing a separation-based scheme results in a distortion-energy
tradeoff given by:

Dsep = ‖h‖2 · σ2
s

(

σ2
w

ΛPsep + σ2
w

)β/Λ

(6)

Psep =
σ2

w

Λ

(

(

σ2
s‖h‖

2

Dsep

)Λ/β

− 1

)

. (7)



Proof. (Sketch) In the first step, each sensor uses an optimal
Gaussian rate-distortion code to quantize their source obser-
vation with rateR and transmits theseRk bits using an op-
timal channel code to the data collector. With this encoding,
we can write the quantized source vectors as

s̃[m] = s[m] + q[m] , (8)

whereq[m] can be thought of as an iid white Gaussian source
with varianceD. The rate-distortion function per is given by

R(DQ) =
1

2
log

(

σ2
s

DQ

)

. (9)

Since each sensor participates inL/Λ different MACs and
time sharing is optimal for the MAC, we can view each sen-
sor as effectively having(L/Λ)βk channel uses on anL-user
MAC. Since each user must transmitRk bits, the power for
each user must be set via:

R

(L/Λ)β
=

1

2L
log

(

1 +
PL

σ2
w

)

. (10)

Therefore the power used per sensor can be written in terms
of DQ as

P =
σ2

w

L

(

(

σ2
s

DQ

)Λ/β

− 1

)

. (11)

We can now assume that the vectorss̃[m] are available to
the data collector for filtering and downsampling. The dis-
tortion in the filter output is justDsep = ‖h‖2DQ, and the
energy expended is justEsep = (L/Λ)ncP . Since downsam-
pling will not reduce the average distortion per sample in the
output of the filter, the average distortion for this scheme is
given byDsep.

3.2. Using computation codes

In this section we describe a scheme that directly computes
the output of downsampling the filter by using the additive
property of the channel. Using the channel as part of a dis-
tributed estimation scheme was first considered in [1] and ex-
tended to a variety of settings in [4–6]. However, there the
channel is used in an uncoded fashion and the distortion is
driven down by a scaling number of sensors. Here, the num-
ber of sensors involved in a single filter output is fixed and
the distortion is reduced by distributed refinement over sev-
eral channel uses.

The key construction we will need are the computation
codes developed in [3]. These lattice-based codes can allow
the sensors to compute a linear function of their sources over
the channel with a better distortion-energy tradeoff than that
provided by the separation-based scheme. We will assume
here that the downsampling factorN is an integer multiple of
the MAC-sampling intervalΛ.

In the computation code, the sensors participating in the
lN -th MAC will compute thelN -th filter outputv[lN ] di-
rectly :

ulN =

M
∑

i=1

ais[lN − i] . (12)

Computation codes use the MAC to compute an approxima-
tion û to minimize the distortion1

k‖u − û‖2. The power-
distortion performance of a computation code is given by the
following lemma.

Lemma 1 (Computation codes for linear functions). For an
M -user AWGN-MAC with Gaussian sourcessm at the users
of varianceσ2

s , for nc = βk whereβ ∈ Z+ andk sufficiently
large there exists a code of blocklengthnc for the channel that
can compute a vector̂u approximatingu =

∑M
m=1 amsm

such that

Dcomp ≤

(

M
∑

m=1

a2
m

)

· Mβ−1σ2
s

(

σ2
w

σ2
w + MP

)β

.

Due to space limitations, we cannot give a full proof of
this result. We refer the interested reader to [3] for a de-
tailed study of the computation of a sum from which the linear
function case follows. The construction is a generalization of
an elegant point-to-point scheme by Kochman and Zamir [7].
In the point-to-point setting, we want to communicate a sin-
gle Gaussian source to a receiver over an AWGN channel.
The receiver has Gaussian side information about the original
source. Essentially, the sender quantizes its source to a course
enough lattice such that the receiver can (with high probabil-
ity) quantize the side information to the same lattice point.
The quantization erroris then transmitted uncoded over the
channel. Using its observation of this quantization error,the
receiver improves its estimate of the source. This process re-
peats with the new estimate serving as side information until
we have run out of channel uses. For our computation code,
each sender simultaneously runs this scheme using the same
lattice. It follows that the receiver then sees the quantization
error for the sum of the sources.

Thus, our computation coding scheme only requires a sin-
gle vector quantizer on top of whatever hardware is needed
to implement uncoded transmission. Note that the distortion
given above may not be the best possible using computation
codes. In particular, a construction that is adapted to the fil-
ter coefficients may achieve a lower distortion for the same
power. However, with this result in hand, we can easily eval-
uate our performance in the proposed sensor network.

Theorem 1 (Computation codes with independent sources).
For the sensor network collection problem with source vectors
of lengthk and varianceσ2

s , filter h[m], downsampling factor
N , L-user MACs at everyN sensors, channel noiseσ2

w, and
channel blocklengthβk, using a computation code to com-



pute the filter output over the channel results in a distortion-
energy tradeoff given by

Dcomp ≤ ‖h‖2 · Mβ−1σ2
s

(

σ2
w

σ2
w + NPcomp

)β

(13)

Pcomp ≤
σ2

w

N

(

(

‖h‖2 · Mβ−1σ2
s

Dcomp

)1/β

− 1

)

. (14)

The proof of this theorem follows directly from Lemma 1.
Recall that we have assumedM ≤ L, so the entire FIR filter
output can be computed using the computation code. Each
user participates inM/N MACs on average, so the average
power expended per user isPcomp = (M/N)P and by as-
sumptionM/N < L/Λ. The achievable distortion for com-
putation codes in (13) is similar to that from separation in (6),
but the exponent on the attenuation term is larger, and thereis
a penalty term ofMβ−1. As we will see in the example, com-
putation codes have a more favorable power-distortion trade-
off for low distortion.

4. NOISE AND SPATIAL CORRELATION

We now turn to two extensions – one for the case where the
power spectrumSss(e

jω) is not constant, so that the sensor
measurements are correlated over space, and the other when
the sensor observations are noisy. As before, we are inter-
ested in computing the filtered and downsampled version of
the sensor field. For the distributed source coding problem
in the correlated setting, the exact rate region is not known
except in some special cases, which means we cannot evalu-
ate the true distortion-power tradeoff for the separation-based
scheme. In the noisy case, the performance is limited by the
observation noise, but the gap between the best centralized
estimator and the decentralized estimator decays in a manner
similar to (6). Due to space limitations we will defer evalu-
ating bounds on the performance of separation for the corre-
lated and noisy cases for the full version of this paper.

4.1. Observation Noise

In the noisy setting, we assume that the each terminal now
observes an corrupted version of the source:

r[m] = s[m] + z[m] , (15)

wherez[m] is an iid noise sequence with Gaussian distribu-
tion of mean0 and varianceσ2

z .
In the noisy setting, the sensors first pre-process their in-

formation to compute the minimum mean-squared error esti-
mate ofs givenr:

s̃[m] =
σ2

s

σ2
s + σ2

z

r[m] . (16)

They then use the computation code from the previous section
to compute the filter output. This will efficiently compute the
output of the filter with the MMSE estimate of each sensor
value in place of the true value. An extra offset term appears
due to the observation noisez[m].

Theorem 2. For the sensor network collection problem with
source vectors of lengthk and varianceσ2

s observed through
white Gaussian noise of varianceσ2

z to form observations
r[m] filter h[m], downsampling factorN , L-user MACs at
everyN sensors, channel noiseσ2

w, and channel blocklength
βk, using a computation code to compute the filter output
over the channel results in a distortion-energy tradeoff given
by

Dcomp ≤ ‖h‖2

(

σ2
sσ2

z

σ2
s + σ2

z

)

(17)

+ ‖h‖2Mβ−1 σ4
s

σ2
s + σ2

z

(

σ2
w

σ2
w + NPcomp

)β

.

(18)

Proof. (Sketch)The constant first term in the distortion is
identical to the distortion for the best centralized estimator
having access to the values ofr[m] directly. The computation
code instead minimizes the distortion of the filter applied to
the MMSE estimates of the source samples. Thus the distor-
tion is the same as (13) with the source varianceσ2

s replaced
by σ4

s/(σ2
s + σ2

z), the variance of the MMSE estimate.

4.2. Correlated sources

We now take the case where the sensor observations are cor-
related across space (but not time), and there is no observation
noise. We assume the sensor observations are wide-sense sta-
tionary with autocorrelationRss[m]. Using the computation
code in the correlated case requires a modification of our main
Lemma 1.

Theorem 3. For the sensor network collection problem with
source vectors of lengthk and autocorrelationRss[m], target
filter h[m], downsampling factorN , L-user MACs at every
N sensors, channel noiseσ2

w , and channel blocklengthβk,
using a computation code to compute the filter output over
the channel results in a distortion-energy tradeoff given by

Dcomp ≤ ‖h‖2σ2
s

(

σ2
w

σ2
w + NPcomp

)β−1(
σ2

w

σ2
w + Peff

)

,

(19)

where

Peff = Pcomp

(

1

maxm |am|2

) M
∑

i,j=1

aiaj
Rss[i − j]

σ2
S

. (20)



Proof. (Sketch)In the first phase of the computation code, the
sensor observations are forwarded using an uncoded scheme
that has effective powerPeff , which captures the beamform-
ing gain of the sensor’s correlations. In the remainingβ − 1
phases, the lattice-based refinement scheme is agnostic to the
correlations in the quantization errors, so the distortionre-
duction factor is identical to the case of independent source
observations.

The lattices used in this strategy do not take advantage of
correlation and structure simultaneously, but we are not aware
of structured codes which can outperform the performance
shown above.

5. COMPARISON AND EXAMPLE

To illustrate the kinds of tradeoff curves we can achieve using
computation codes, we consider a simple example with noise-
less sensor observations. The filterh is a 64-tap FIR lowpass
filter with transition band between frequencies0.4 ∗ 2π and
0.6 ∗ 2π, designed using the Parks-McClellan algorithm. For
this example we takeΛ = 4, N = 16, L = 64, σ2

s = 0.5, and
σ2

w = 1. Figure 3 shows the distortion-power tradeoff curves
for the collect-then-filter scheme and the scheme based on
computation codes. We plot the tradeoff on a log-log scale
for β = 2, 4, 6, 8.
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Fig. 3. Tradeoff between average power and distortion forβ =

2, 4, 6, 8 using a 64-tap FIR lowpass filter. The dashed line is for the
collect-then-filter protocol. The solid line is for the computation-
code protocol.

As the bandwidth expansion factor increases, the power
required for both schemes to reach the target distortion de-
creases. For applications which require low distortion, the
savings offered by computation codes are quite significant,
but for distortion-insensitive applications the gains aremodest
to non-existent, as evidenced by the crossing of the tradeoff
curves. In the full version of this work we will demonstrate
similar tradeoffs in the noisy and correlated settings.

6. DISCUSSION

Many models for linear data processing for wireless sensor
networks exploit the additive nature of the wireless channel to
improve the estimation performance. Uncoded transmission
has been proposed as a power-efficient method of computing
low-distortion estimates over multiple-access channels,but
cannot exploit extra channel uses per source symbol. Com-
putation codes exploit the additive structure of the channel
and the extra channel uses to achieve a more favorable power-
distortion tradeoff than separation. To explore this improve-
ment we examined the situation of a network on a line in
which the data collector wishes to acquire a filtered and down-
sampled version of the source observations. In the full version
of this work we will derive explicit bounds for the perfor-
mance of separation in the correlated and noisy settings to
which we can compare the results presented here.
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