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Abstract. We investigate the longest increasing subsequence of a permutation, and relate

its length to random matrices. We provide a simple card game as a vehicle for computing the

length of the longest increasing subsequence in a permutation. We discuss the relationship

between permutations and combinatorial structures called Young tableaux via the Schensted

correspondence. By relating representations of the symmetric group and the unitary group,

we express the distribution of the longest increasing subsequence in terms of a matrix integral

over the unitary group.

1. Introduction. In this paper, we investigate a simple problem, finding the longest
increasing subsequence of a permutation, and we relate it to random matrices. Although
our investigation is straightforward, it passes through important areas of combinatorics
and algebra, and uses important constructions in both of those areas. Our presentation
is largely modeled on that of Aldous and Diaconis [1], but is shorter and designed for
a wider audience. Two semesters of abstract algebra and some exposure to measure
theory should permit following the ideas presented here.
More precisely, the problem is as follows. Let π be an arbitrary permutation of

the integers 1, 2, . . . , n. Denote by π(i) the ith element of the permutation. Then an
increasing subsequence (i1, i2, . . . , ik) of π is a subsequence satisfying

i1 < i2 < · · · < ik,

π(i1) < π(i2) < · · · < π(ik).

We denote by l(π) the length of the longest increasing subsequence. We denote by Ln
the integer valued random variable that takes on the value l(π) when the permutation
π is drawn from a uniform distribution. The problem is to express the distribution of
Ln in terms of random unitary matrices.
Others have extended the results in this paper. Rains [7, pp. 5–6] expresses matrix

integrals on the orthogonal and symplectic groups to the distribution of the longest
increasing subsequences of permutations given some restrictions. Odlyzko and Rains [6,
p. 2] give explicit computations and Monte Carlo simulations to illustrate the behavior
of Ln. Aldous and Diaconis [1, p. 416] provide several different perspectives on the
asymptotic behavior of Ln as n becomes large.
In Section 2, we discuss patience sorting, a simple card-game model for comput-

ing l(π), and provide some Monte Carlo simulations to show the empirical distribution
of Ln. In Section 3, we introduce Young tableaux, a combinatorial construction with
applications in representation theory and geometry. We construct the Schensted corre-
spondence, which makes explicit the link between the set of Young Tableaux and the
symmetric group. The Schensted correspondence is also used to compute the distribu-
tion of Ln.
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In Section 4, we provide a quick summary of some facts from representation theory
and express the distribution of Ln in terms of characters of the irreducible represen-
tations of the symmetric group Sn. In Section 5, we discusses power-sum symmetric
functions and their role in linking the symmetric and unitary groups. These functions
allow us to express the distribution of Ln in terms of the matrix integral of the trace of
a power of a unitary matrix. In the Appendix, we provide a MATLAB program that
computes the length of the longest increasing subsequence in a permutation.

2. Patience Sorting. Patience sorting is a card game first invented in the 1960s. Its
full history is given in Aldous and Diaconis [1, p. 417]. Suppose we shuffle a deck of
cards, numbered 1, 2, . . . , n, which we shuffle into a random order. We turn up cards
one at a time and place them into piles according to the following rules:

1. A card may always be used to start its own pile to the right of all other piles.
2. A card may instead be placed on top of a card with a higher number.

The goal is to end with as few piles as possible.
Although this game seems uninteresting at first, there is a simple strategy for playing

that yields an effective way of computing l(π), called the greedy strategy. It involves
placing the current card on the leftmost pile possible. This strategy can be explained
with an example. Say we have a deck of ten cards in the following order:

8 3 7 9 2 5 4 1 10 6.

The greedy strategy plays the game in the following manner:

2 2
3 3 3 3 3 5

8 8 8 7 8 7 9 8 7 9 8 7 9

1 1 1
2 4 2 4 2 4 2 4
3 5 3 5 3 5 3 5 6
8 7 9 8 7 9 8 7 9 10 8 7 9 10

It turns out that patience sorting is an easy way for us not only to calculate l(π), but
also to find an increasing subsequence in π of length l(π).

Theorem 2-1. Let π be an ordering of a deck of cards numbered {1, 2, . . . , n}. Then
the greedy strategy results in exactly l(π) piles.

Proof: We first prove that the number of piles is at least l(π), and then show that
the number of piles is at most l(π).
Let i1 < i2 < · · · < ik be an increasing subsequence of π. Then π(ij) must always

lie in a pile to the right of π(ij+1) since we are only allowed to place cards on top of
cards of higher value. Therefore any valid strategy, and particularly the greedy strategy,
results in at least l(π) piles.
We can use patience sorting to find an instance of an increasing subsequence, thereby

showing that we have at most l(π) piles. Every time we place a card c in a pile i that is
not the first pile, draw an arrow from c to the top card d of the preceding pile i−1. We
know d < c ; otherwise, in our greedy strategy, c would be placed on top of d. Note that
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each arrow goes from a later card to an earlier card. This construction is illustrated in
Figure 2-1 using the example above.

1
2          4
3          5          6
8          7          9          10

Figure 2-1. Constructing an increasing subsequence.

If we have k piles, call the the top card in the rightmost pile ak. Then follow the
arrow from ak to ak−1 and so on. In this way we construct an increasing subsequence
in π. Therefore we have at most l(π) piles.

�

The game is called patience sorting because, at the end, we can sort the cards into
order. Card 1 will be at the top of some pile. Removing it, we are left with a patience-
sorted deck of cards numbered {2, 3, . . . , n}; so Card 2 must now be at the top of some
pile. Proceeding as before, we can sort the deck.
In the Appendix we provide a MATLAB script to compute the distribution of Ln

using this method. Histograms for n = 10 and n = 20 using 107 samples are shown in
Figure 2-2. As we can see, the distribution is heavily clustered at the lower end of the
graph.
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Figure 2-2. Histogram of number of piles for patience sorting on decks of 10 cards
(left) and 20 cards (right) using 107 samples.

3. Young Tableaux. We now turn to another way of looking at permutations using
diagrams called Young tableaux. These are special structures, which are used in invariant
theory and group representations of the symmetric group Sn. They are also important in
combinatorics and algebraic geometry, and in the theory of symmetric functions. What
is most important for our problem is an important construction, called the Schensted
correspondence, which relates multiset permutations to ordered pairs of Young tableaux.
Let λ = (λ1, λ2, . . . , λk) be a set of integers such that λ1 ≥ λ2 ≥ . . . ≥ λk > 0

and
∑

λi = n. Then we say λ is a partition of n and write λ ` n. We denote the
number of entries in λ by |λ|, which in this case is equal to k. In the special case where
λ = (1, 1, . . . , 1), we write λ = 1n.
A Ferrers diagram with shape λ is a set of cells as shown on the left in Figure

3-1, where row i has λi cells. A standard Young tableau is a Ferrers diagram with the
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numbers 1, 2, . . . , n in the cells such each number is used once, and the entries increase
along each row and down each column.

11

1 2 7 10

953

4 8

6

Figure 3-1. A Ferrers diagram for (4, 3, 2, 2), and example of a Young tableau with
shape λ.

The hook length hc of a cell c is the number of cells to the right of c in its row plus
the number of cells below c in its column plus one for the cell c itself. Thus, in the
tableau in Figure 3-1, the hook length of the cell containing 5 is 4, and the hook length
of the cell containing 8 is 2.
Denote by dλ the number of standard Young tableaux of shape λ. Proposition 3-1

gives a surprisingly simple way of computing dλ.

Proposition 3-1 (Hook Formula). The number dλ is given by the formula

dλ =
n!
∏

c hc
.

Unfortunately, no simple combinatorial proof of the hook formula exists. A number
of outlines of existing proofs are given in [8, p. 266], and a probabilistic proof is given
in [5, p. 54].
For example, if we look at the tableau in Figure 3-1, then we can calculate the

number of tableau of shape (4, 3, 2, 2):

d(4,3,2,2) =
11!

7 · 6 · 3 · 1 · 5 · 4 · 1 · 3 · 2 · 2 · 1
= 1320.

This is far too many to explicitly verify, so we can look at an easier example. Consider
λ = (3, 2) ` 5. The hook-length formula tells us we can construct 120/(4 ·3 ·1 ·2 ·1) = 5
standard Young tableaux. These are shown in Figure 3-2. It is an exercise to prove
there exist no more standard Young tableaux of that shape.

1 2 3

4 5

1

2 4

1 2

3 4

5 1 2

3

4

5

53 1

2 5

43

Figure 3-2. All standard Young tableaux of shape (3,2).

Young tableaux are related to the permutation group by a construction called the
Schensted correspondence, or perhaps more appropriately, the Robinson–Schensted–
Knuth correspondence. For a more extensive discussion of the nomenclature, see Fulton
[5, p. 38]. The Schensted correspondence is a bijection between the set of permutations
and ordered pairs of Young tableaux. Consult Fulton [5, pp. 33–57] or Stanton and
White [10, pp. 85–92] for more extensive treatments of the correspondence.

Theorem 3-2 (Schensted correspondence). There exists a natural bijection between
permutations π ∈ Sn and ordered pairs of standard Young tableaux (P,Q) of the same
shape λ ` n.
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Proof: We construct the pair (P,Q) from a permutation π to show that any permu-
tation can be mapped to an ordered pair of Young tableaux. Next we prove that every
(P,Q) arises from a unique permutation. Then we provide a means of recovering π from
an arbitrary pair (P,Q) to prove every ordered pair corresponds to a unique permuta-
tion. In the spirit of the previous section, we denote the mth card in our permutation
by π(m).
Let π be a permutation of the numbers 1, 2, . . . , n. It helps to represent π in a

two-line form, where the first line are the integers from 1 to n and the second line is the
permutation:

π =

(

1 2 3 4 5 6 7 8 9 10
8 3 7 9 2 5 4 1 10 6

)

. (3-1)

We construct the Q-tableau from the first line and the P -tableau from the second
by inserting one card at a time moving from left to right. Denote by Pm the tableau
created after inserting m cards, and Qm analogously. We start with 1 in the single cell
of the left-most column of Q1, and π(1) in the single cell of the left-most column of P1.
To insert the m-th card, we use the following rules:

1. If π(m) is larger than all cards in the current column of Pm−1, append π(m) to
the end of the current column.
2. If π(m) is not larger than all cards in the current column of the Pm−1, replace
the smallest card b such that b > π(m) with π(m). Now use Rules 1 and 2 to
insert b into the next column to the right.
3. After π(m) has been inserted into the Pm−1, we obtain Pm, which has the same
shape as Pm−1 except for a single added cell. Create Qm by adding that same
cell to Qm−1 with the number m in that cell.

As we can see, this algorithm produces two standard Young tableaux of the same
shape from the permutation π. For example, in Figure 3-3 we construct the two tableaux
for Permutation (3-1).
We must describe how to construct a permutation π from an arbitrary pair of stan-

dard Young tableaux. We essentially perform the reverse operation to the column
insertion described in the first half of the proof. Again, we let Pm be the P -tableau
with n cells, and Qm the Q-tableau with m cells. The procedure is outlined below:

1. Remove the largest entrym in Qm to form Qm−1. Find the corresponding entry
b in Pm and remove it from the tableau.
2. If b is in the first column of P , then set π(m) = b.
3. If b is not in the first column, we insert b into the column to the left. Find the
largest entry c of this column such that b > c. Put b in the position of c and then
place c according to rules 2 and 3.

It is clear that this procedure simply reverses the previous construction. Figure 3-4
provides an example of constructing π from a pair of Young tableaux. It is easy to see
that π yields the given pair of tableaux under the map from permutations to tableaux
described above.
We have exhibited a map that takes each permutation to an ordered pair of Young

tableaux. The inverse takes each pair of tableaux to a permutation in Sn. �
The Schensted correspondence has a number of interesting and beautiful properties,

two of which are quickly described here to give a feeling for how useful the correspon-
dence is.
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Figure 3-3. Successive steps of the Schensted correspondence of Permutation (3-1).
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Figure 3-4. The Schensted correspondence from tableaux to permutation.

Proposition 3-3. If π corresponds to (P,Q) under the Schensted correspondence,
then π−1 corresponds to (Q,P ).

This proposition is not too difficult to prove, and a good proof is provided in [10,
pp. 93–104].
An involution of {1, 2, . . . , n} is an element π of Sn such that π = π

−1. Thus
Proposition 3-3 gives us the following corollary.

Corollary 3-4. The number of involutions of {1, 2, . . . , n} is

∑

λ`n

dλ.

Schensted’s original motivation in constructing his correspondence was to investigate
ways of computing l(π) for a given permutation. Although this method is more tedious
to perform than patience sorting, the following result is more useful to us because
it allows us, via representation theory, to connect the distribution of Ln to random
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matrices. The proof of Proposition 3-5 is omitted here due to its length, and can be
found in [10, pp. 93–104].

Proposition 3-5. Given a permutation π ∈ Sn, the number of rows in the corre-
sponding P -tableau under the Schensted correspondence is equal to l(π). The number of
columns is equal to the length of the longest decreasing subsequence.

We can now obtain an explicit formula for the distribution of Ln by counting the
number of Young tableaux with a certain number of rows.

Corollary 3-6. The distribution of Ln can be expressed as follows:

P (Ln = l) =
1

n!

∑

λ`n, |λ|=l

(dλ)
2.

4. Representations of Sn. In this section, we review some basics of representation
theory, and describe the link between the representations of the symmetric group Sn and
standard Young tableaux. For the basics of group representations, consult the algebra
textbook by Artin [2, pp. 307–344]. The books by Diaconis [3, pp. 5–16] and Sagan
[9, pp. 1–51] cover the basics as well as particular results on the representations of the
symmetric group.

Let G be a group and V be a finite-dimensional vector space over the complex
numbers C. Then a representation of G is a homomorphism ρ : G → GL(V ), where
GL(V ) is the general linear group of all invertible linear transformations from V to
itself. The space V is called the G-module associated with ρ because G acts on the
space V . The degree of ρ is defined to be dim(V ).
The representation ρ : G → GL(V ) that sends all elements of G to the identity is

called the trivial representation, and has degree 1. If G = Sn, then we can let ρ map G
to the set of n × n permutation matrices. This is called the defining representation of
Sn, and has degree n.

A G-module V is called irreducible if V has no proper subspace W that is invariant
under the action of G. Mashke’s theorem states that every G-module can be written as
the direct sum of irreducible G-modules. The number of irreducible representations is
equal to the number of conjugacy classes of G.

Consider the group Sn. The cycle type of a permutation is a list (λ1, λ2, . . . , λk) of
the cycle lengths in the permutation. The conjugacy classes of Sn consist of permuta-
tions having the same cycle type. Note that a cycle type is the same as a partition of
n. We can in fact identify with each partition λ ` n an irreducible module Sλ of Sn,
called its Specht module.

The character of a representation ρ is the function χ : G→ C defined by the equation

χ(g) = tr(ρ(g)).

The character is constant on the conjugacy classes of G. Let e ∈ G be the identity
element. Then every representation must map e to the identity matrix in GL(V ). Thus
χ(e) = tr(ρ(e)) = dim(V ). In the case where G = Sn we denote the characters of S

λ

by χλ. The most important fact for us is stated below in Lemma 4-1 without proof;
consult [9, pp. 66–74].
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Lemma 4-1. Let λ be a partition of n, let Sλ be the corresponding Specht module,
and let e be the identity element of Sn. Then

dλ = dim(S
λ).

This is a powerful result, which relates the combinatorial enumeration of standard
Young tableaux to the representations of the symmetric group. The proof involves a
construction, which turns the standard Young tableaux of shape λ into a basis for the
Specht module Sλ. Combining Lemma 4-1 and Corollary 3-6 we obtain the following
expression for the cumulative distribution of Ln.

Proposition 4-2. The cumulative distribution of Ln can be expressed as follows:

P (Ln ≤ l) =
1

n!

∑

λ`n,|λ|≤l

(χλ(e))2.

5. Random Matrices and Ln. We are now ready to connect the results from the
previous sections to what we know about random matrices. We have expressed the
density of Ln in terms of the characters of the symmetric group. Frobenius established
an explicit relationship, via power-sum symmetric functions, between the characters
of the symmetric group and the characters of the unitary group. By exploiting this
relation, we can express the quantity in Proposition 4-2 in terms of an inner product of
two power-sum symmetric functions, which is also a way of calculating a matrix integral
over the unitary group.
The power-sum symmetric functions play an important role in the following analysis,

since they are the link between random matrices and random permutations. Let U be
a l × l matrix with eigenvalues x1, x2, . . . , xl. Then the power sum symmetric function
Pj is given by

Pj(U) =

l
∑

i=1

xji .

If λ ` n, then we define

Pλ =

|λ|
∏

j=1

Pλj .

We define the inner product of two power-sum symmetric functions as the expecta-
tion of their conjugate product using normalized Haar measure on the unitary group:

〈Pλ, Pµ〉 = EU∈U(l)[Pλ(U)Pµ(U)] =
1

n!

∫

U∈U(l)

Pλ(U)Pµ(U) dU. (5-1)

The Schur functions {sµ | µ ` n} are the irreducible characters of the unitary group
of l× l matrices U(l). Their inner product is defined analogously:

〈sµ, sν〉 = EU∈U(l)[sµ(U)sν(U)] =
1

n!

∫

U∈U(l)

sµ(U)sν(U) dU.
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They have the properties that sµ = 0 if |µ| > l and 〈sµ, sν〉 = δµν [4, p. 52]. Frobenius
proved that the Schur functions form a basis for the power-sum symmetric polynomials:

Pλ =
∑

µ`n

χµ(λ)sµ (5-2)

where χµ(λ) is the character of the Specht module Sµ of the symmetric group Sn
evaluated on the conjugacy class of λ. This important result allows us to relate the
characters of the symmetric and unitary groups.
Using (5-2) we now express the expectation in (5-1) in terms of Schur functions and

characters of the symmetric group:

EU∈U(l)[Pλ(U)Pµ(U)] =
1

n!

∑

ν,κ`n

χν(λ)χκ(µ)EU∈U(l)(sν(U)sκ(U)). (5-3)

We are now ready to prove our the main result of this paper.

Theorem 5-1. The cumulative distribution function of the random variable Ln is
given by the following equation:

P (Ln ≤ l) =
1

n!

∫

U(l)

|Tr(U)n|2 dU. (5-4)

where dU is the normalized Haar measure on the group of l × l unitary matrices.

Proof: The power-sum symmetric function P1(U) is simply the trace of U . If λ = 1
n,

then Pλ(U) = Tr(U)
n. Hence the integral on the right-hand side of Equation (5-4) is

the expected value of the product of P1n(U) with itself. We expand this product using
Equation (5-3) with λ = µ = 1n to obtain the expression:

1

n!

∫

U(l)

|Tr(U)n|2 dU =
1

n!

∑

ν,κ`n

(χν(1n)χκ(1n))EU∈U(l)[sν(U)sκ(U)]. (5-5)

We now apply the properties of Schur functions discussed earlier. Therefore all terms
with ν 6= κ, and |ν| > l in Equation (5-5) vanish, and we are left with

1

n!

∫

U(l)

|Tr(U)n|2 dU =
1

n!

∑

ν`n, |ν|≤l

(χν(1n))2.

But this is the same expression as in Proposition 4-2, since the partition 1n corresponds
to the identity permutation e. The result follows immediately. �

Appendix. Computing l(π) with Patience Sorting

Below is code in MATLAB used to compute a histogram of l(π).

%% patienceSort.m

%%

%% Performs greedy patience sorting on decks of length n

%% for given number of samples. The output histogram is

%% saved in v.
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n = 10;

samples = 1e7;

v = zeros(n,1);

for loop1 = 1:samples

ord = randperm(n);

piles = n;

for ind1=1:length(ord)

curr = ord(ind1);

[val, pos] = find(piles > curr);

if (val ~= [])

piles(min(pos)) = curr;

else

piles = [piles curr];

end

end

v(length(piles)) = v(length(piles)) + 1;

end
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