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Abstract—Local differential privacy is a model for privacy in
which an untrusted statistician collects data from individuals
who mask their data before revealing it. While randomized
response has shown to be a good strategy when the statistician’s
goal is to estimate a parameter of the population, we consider
instead the problem of locally private data publishing, in
which the data collector must publish a version of the data
it has collected. We model utility by a distortion measure
and consider privacy mechanisms that act via a memoryless
channnel operating on the data. If we consider a the source
distribution to be unknown but in a class of distributions,
we arrive at a robust-rate distortion model for the privacy-
distortion tradeoff. We show that under Hamming distortions,
the differential privacy risk is lower bounded for all nontrivial
distortions, and that the lower bound grows logarithmically in
the alphabet size.

I. INTRODUCTION

Data sharing is a major challenge for many organizations,
and especially for government organizations tasked with
providing access to “official statistics.” The United States
Census Bureau is a canonical example of this: information
collected about the population must be shared with the public.
Another example is public health monitoring: policies and
regulations may require hospitals to share information about
their patient population to a regulator. Public health officials
receiving such data can help guide the provisioning of health
care resources to improve patient outcomes. Finally, regional
transmission organizations (RTOs) in the power grid may
wish to share information about loads and uses in their
networks to facilitate more efficient monitoring and control
of the power grid.

In some cases this release may take the form of data
derivatives such as histograms, contingency tables, or other
statistical summaries of the data. However, in many applica-
tions, sharing the raw data, or a version thereof, is necessary
for subsequent processing. Sharing data allows for more
open-ended investigations and analyses that are not possible
with data derivatives alone. However, sharing the data or
derivatives raises the danger of privacy violations, especially
when the data is sensitive or proprietary. By looking at the
data it is often possible to re-identify individuals using either
identifiers in the data or linking the shared data with auxiliary
information [1], [2].

There have been several approaches to mathematically for-
malizing privacy. In this paper we will examine the relation-
ship between two of these: information-theoretic privacy [3]
and differential privacy [4]. In both of these frameworks
sharing data is done by a sanitizer, which is a function that
takes a database Xn of n individuals Xi whose data lies in a
set X and publishes an approximation X̂n to that database.
In this paper we study the relationship between these two
definitions of privacy by studying sanitizers that take the form
of a channel Q(x̂|x) between an individual data point in the
input and its sanitized output. In particular, we study these
definitions through the lens of rate distortion theory.

Information theoretic privacy measures privacy in terms of
information leakage, which is defined as the mutual informa-
tion I

(
Xn; X̂n

)
. The interpretation is that the output of the

sanitizer “leaks” I
(
Xn; X̂n

)
bits of information about the

input. In the basic model, the assumption is that the data Xn

is an independent and identically distributed (i.i.d.) sample
from a distribution P (x) on X . The goal is to produce a san-
itization X̂n such that the distortion

∑n
i=1 d(Xi, X̂i) ≤ nD,

where d(·, ·) is a single-letter distortion measure. Thus the
information-theoretic version of privacy is a standard rate-
distortion problem where the rate is the privacy leakage.

In differential privacy, there is no stochastic assumption
on the database, so that data is an individual sequence xn

as opposed to a random variable Xn. However, the mapping
xn → X̂n is a random mapping, and privacy is measured as
the largest additive gap ε between the log likelihood functions
for this mapping. In the rate-distortion setting, the goal is to
find a single Q(x̂|x) that guarantees a distortion less than D
while maintaining a small additive gap.

The main difference between these two privacy models
is in the assumptions on the source data; the information-
theoretic model assumes we know P and the differential
privacy model makes no assumptions on the distribution.
To bring these two models closer together, we consider
modified versions of the problem. For the information-
theoretic problem we assume the source distribution P is
unknown but lies in a known set P , and for the differential
privacy problem we assume the type of xn is known to
lie in the set P . Other researchers have also studied rate-
distortion approaches for differential privacy [5], as well as
the structure of optimal mechanisms for function computa-



tion [6]–[8]. An interpretation via hypothesis testing forms
another information-theoretic understanding of differential
privacy [9], [10]. Our work differs from these by considering
the modeling issues raised by the knowledge of P and how
it influences the choice of the privacy mechanism and the
resulting achievable distortion.

Since the goal is to choose a channel Q(x̂|x), we can
think of both privacy definitions in the rate-distortion setting
as minimizing the distortion subject to a privacy constraint.
That is, given a certain privacy level (measured in terms
of leakage or gap), we can find a corresponding set of
channels that guarantees that privacy level. We then choose
the channel in that set that achieves the lowest distortion
possible universally over the set P . Under this formulation,
we can ask the following questions: what privacy level ε
can be achieved subject to an expected distortion guarantee
D that holds universally over P? Contrariwise, for a given
privacy level ε, what distortion D Is achievable universally
over P? For binary channels under Hamming distortion we
characterize this tradeoff and show a surprising result: the
minimum privacy risk ε experiences a discontinuity as D
approaches its maximum value. This implies that there is a
minimum privacy risk for releasing any useful version x̂n of
the data. This risk depends on the class of sources P .

II. PROBLEM MODELS

Notation: random variables will be denoted by cap-
ital letters and individual sequences or realizations
by lower case letters. The shorthand xn indicates a
length-n sequence (x1, x2, . . . , xn), and x−i indicates
(x1, x2, . . . , xi−1, xi+1, . . . , xn), the sequence with the i-th
term removed. For a probability distribution P (x) on a space
X and a conditional distribution Q(x̂|x) from a space X
to X̂ the expression P × Q denotes the joint distribution
P (x)Q(x̂|x) on X × X̂ .

A. Rate distortion

Our investigation in this paper is motivated by the fol-
lowing lossy compression problem. Let X and X̂ be given
alphabets. The encoder’s goal is to compress (or publish) is a
an n tuple xn ∈ Xn. The decoder will take the compressed
information provided by the encoder to produce a n tuple
x̂n ∈ X̂n. The quality of this reconstruction is measured by
a nonnegative distortion function d : X × X̂ → R applied
letter-by-letter to the two sequences in the usual way:

d(xn, x̂
n) =

1

n

n∑
i=1

d(xi, x̂i).

When the tuple xn is the realization of a sequence of n
i.i.d. random variables X1, X2, . . . , Xn with distribution P ,
the minimum compression rate that that reliably guarantees a
reconstruction with distortion less than D is the well-known
rate distortion function:

R(D) = min
Q(x̂|x):EP×Q[d(X,X̂)]≤D

I
(
X; X̂

)
. (1)

The quantity we are interested in is the channel Q that
achieves the minimum mutual information in (1).

B. Differential privacy

One way to interpret the distortion-achieving optimal lossy
compression channel Q in (1) is as a mechanism for private
data release – a holder of (random) private data Xn wishes
to release a masked or ”sanitized” version X̂n. The distortion
represents a loss in utility, and the rate R(D) is the privacy
loss or “leakage” associated with the mechanism. A small
mutual information (1) means that on average, the output
X̂n does not provide much information about the input Xn.

Differential privacy is another approach to defining privacy
which does not make stochastic assumptions on the inputs
xn. Differential privacy is defined for functions of the data
xn; the mapping from xn to x̂n is one such function. Because
the data is not stochastic, differentially private functions are
randomized, and the privacy is a property of the random
variable that is the output of the function. These functions
are often called mechanisms; a mechanism M : Xn → Y
that (randomly) maps data to an arbitrary output space Y is
ε-differentially private if for all (xn, x̃n) ∈ Xn × Xn such
that dH(xn, x̃n) ≤ 1,

P (M(xn) ∈ S) ≤ eεP(M(x̃n) ∈ S), (2)

for all measurable S ⊆ Y . One way to interpret (2) is that
the distributions of the output of the mechanism with inputs
xn and x̃n differing in a single entry are close to each other.

A mechanism that provides ε-differential privacy also guar-
antees a small leakage as measured by mutual information
when the data are random [11]. Let M be a ε-differentially
private mechanism and let xn−1 be a fixed sequence. Let
Y denote the output of M . Suppose Xn and X̃n are i.i.d.
random variables with distribution P . Then (2) implies that
for all realizations x̃n,

P
(
Y ∈ S|(xn−1, xn)

)
P (x̃n)

≤ eεP
(
Y ∈ S|(xn−1, x̃n)

)
P (x̃n).

Integrating both sides with respect to x̃n we see

P
(
Y ∈ S|(xn−1, xn)

)
≤ eεP

(
Y ∈ S|xn−1

)
.

This in turn implies that for all measurable S,

log
P
(
Y ∈ S|(xn−1, xn)

)
P (Y ∈ S|xn−1)

≤ ε.

That is, the conditional distribution of Y given Xn = xn
is close to the marginal distribution of Y . Taking the
expectation over Xn shows that the mutual information
I (Xn;Y ) ≤ ε.

C. Private channels

For the specific problem of data release, we can consider
a restricted class of mechanisms which operate in a single-
letter manner by generating a random X̂i from xi distributed
according to conditional distribution Q(x̂|x). That is, the data



holder passes the data xn through a channel Q to produce
X̂n, so Y = X̂n. Such a channel provides ε-differential
privacy if

log
Q(x̂|x)

Q(x̂|x̃)
≤ ε ∀(x, x̃, x̂) ∈ X × X × X̂ .

As above, a channel which provides ε-differential privacy in
this way also guarantees a small leakage I

(
X; X̂

)
≤ ε.

For a given rate distortion leakage δ and input distribution
P we can define the set of channels which achieve that
leakage:

QMI(P, δ) =
{
Q(x̂|x) : I

(
X; X̂

)
≤ δ
}
. (3)

Similarly, for a given privacy level ε we can define the set
of channels which provide ε-differential privacy:

QDP(ε) =

{
Q(x̂|x) : log

Q(x̂|x)

Q(x̂|x̃)
≤ ε ∀x, x̃ ∈ X

}
. (4)

The preceding discussion shows that for any P and any fixed
ε, we have QDP(ε) ⊆ QMI(P, ε).

D. Classes of sources

We consider rate-distortion problems in which the distri-
bution P governing the data is not known, but it is known
that P lies in a set P of sources on X . We can define a third
set of channels containing those channels which guarantee
distortion D over the class P:

QRD(P, D) =

{
Q(x̂|x) : max

P∈P
EP×Q[d(X, X̂)] ≤ D

}
Because differential privacy is agnostic to the source distri-
bution, QDP(ε) does not depend on the source distribution
P . However, given P the optimal value of ε subject to a
distortion constraint does depend on D:

ε∗DP(P, D) = min {ε : QRD(P, D) ∩QDP(ε) 6= ∅} . (5)

Similarly, for the mutual information we have the optimal
value of δ subject to a distortion constraint:

δ∗MI(P, D) = min
Q∈QRD(P,D)

max
P∈P

I
(
X; X̂

)
. (6)

In subsequent sections we will analyze these functions for
Hamming distortion.

III. HAMMING DISTORTION

A. Binary channels with Hamming distortion

In this section we consider the simplest example of the
difference between information-theoretic privacy and differ-
ential privacy for binary sources. Let P = {(1 − p, p) : p ∈
[pmin, pmax]} be a set of source distributions on {0, 1}. We
will consider the case where 0 ≤ pmin ≤ pmax ≤ 1

2 . We
consider memoryless privacy mechanisms Q mapping X to
X̂ .

The set of all possible mechanisms Q can be parameterized
by the two crossover probabilities Q(0|1) and Q(1|0). Since

in differential privacy the privacy guarantee is just a function
of the channel, let

ε(Q) = max

{∣∣∣∣log
Q(0|1)

Q(0|0)

∣∣∣∣ , ∣∣∣∣log
Q(1|0)

Q(1|1)

∣∣∣∣} . (7)

The left side of 1 shows the value of ε(Q) guaranteed by a
channel Q as a function of the two crossover probabilities.
On the line Q(0|1) = 1 − Q(1|0) the differential privacy
risk is 0 because the output of the channel is independent
of the input. However, along the edges where Q(0|1) = 0
and Q(1|0) = 0 the differential privacy risk becomes infinite,
since the ratio of the probabilities in (4) becomes infinite.

We measure the utility of a channel Q in terms of the
worst-case Hamming distortion over P . The Hamming distor-
tion between two symbols x, x̂ ∈ {0, 1} is d(x, x̂) = 1(x 6=
x̂), and thed(xn, x̃n) between two sequences xn, x̃n ∈ Xn

is
∑n

i=1 d(xi, x̂i).

∆ = max
p∈P

E
[
d(X, X̂)

]
= max

p∈P
(pQ(0|1) + (1− p)Q(1|0)) .

Taking the derivative with respect to p, we see that

d

dp
(pQ(0|1) + (1− p)Q(1|0)) = Q(0|1)−Q(1|0).

Thus

∆(Q) = pQ(0|1) + (1− p)Q(1|0),

where

p =

{
pmin if Q(0|1) < Q(1|0)
pmax if Q(0|1) > Q(1|0)

(8)

The maximum distortion is Dmax = pmax.
The two cases in (8) correspond to above and below the

dotted line Q(0|1) = Q(1|0) line shown in Figure 2. The
solid line corresponds to the constraint ∆(Q) = D for some
D.

The diagonal line Q(1|0) = 1 − Q(0|1) is the dashed
diagonal line in Figure 2. Along this line, we have

eε = max

{
Q(1|0)

Q(1|1)
,
Q(1|1)

Q(1|0)
,
Q(0|0)

Q(0|1)
,
Q(0|1)

Q(0|0)

}
= 1,

or ε = 0. Below the dashed line, in the gray region, we have
Q(1|0) < 1 − Q(0|1). This in turn implies that Q(1|0) <
Q(1|1) and Q(0|1) < Q(0|0), so we need only calculate two
terms for ε:

eε = max

{
Q(1|1)

Q(1|0)
,
Q(0|0)

Q(0|1)

}
= max

{
1−Q(0|1)

Q(1|0)
,

1−Q(1|0)

Q(0|1)

}
.

Now suppose D is fixed and given and we must choose a
Q that guarantees ∆(Q) ≤ D. What is the smallest privacy
risk ε∗DP(P, D) over all such Q?

Our first result is a lower bound on ε∗DP(P, D) for the class
of binary sources
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Fig. 1. Surface map of DP and IT privacy guarantees as a function of the channel.

Theorem 1 Consider the class of binary sources P = {(1−
p, p) : p ∈ [pmin, pmax]} for 0 < pmin ≤ pmax < 0.5 under
Hamming distortion. Then for D < pmax,

ε∗DP(P, D) = log
1−D
D

.

Moreover,

lim
D→pmax

ε∗DP(P, D) = log
1− pmax

pmax
,

but ε∗DP(P, pmax) = 0. That is, the optimal differential
privacy risk ε∗DP(P, D) is discontinuous at D = pmax.

Proof: We claim that ε is minimized along the line
∆(Q) = D. To see this, suppose that we are given a Q such
that ∆(Q) < D. If 1−Q(0|1)

Q(1|0) > 1−Q(1|0)
Q(0|1) we can increase

Q(0|1) to lower ε while increasing ∆(Q) to D. Similarly, if
1−Q(0|1)
Q(1|0) < 1−Q(1|0)

Q(0|1) we can increase Q(1|0) to lower ε while
increasing ∆(Q) to D. Therefore we need only consider
channels Q along the piecewise linear boundary ∆(Q) = D.

We next claim that ε is minimized at Q(1|0) = Q(0|1),
which corresponds to the point (D,D) in the plane. At this
point, the two terms in ε are equal. To prove the claim, we
parameterize the two line segments on the boundary. Let a =

D
1−pmin

. Then the line is parameterized for t ∈ [0, 1] as

Q(1|0) = (1− t)D + ta

Q(0|1) = (1− t)D.
Taking a derivative of one component of ε with respect to t:

d

dt

1−Q(1|0)

Q(0|1)
=

d

dt

1− (1− t)D − ta
(1− t)D

=
(D − a)(1− t)D + (1− (1− t)D − ta)D

((1− t)D)2

=
−aD +D

((1− t)D)2
.

Since a < 1 the derivative is positive for t > 0, so this term is
monotonically increasing in t. Because we have 1−Q(0|1)

Q(1|0) =
1−Q(1|0)
Q(0|1) at t = 0, we must have ε minimized at Q(1|0) =

Q(0|1) along the segment (D,D) to (0, a).
Now consider the segment from (D,D) to (b, 0) where

b = D/pmax. The segment is parameterized as

Q(1|0) = (1− t)D
Q(0|1) = (1− t)D + tb.

Taking the derivative of 1−Q(0|1)
Q(1|0) with respect to t, we have

a similar formula:

d

dt

1−Q(0|1)

Q(1|0)
=

d

dt

d

dt

1− (1− t)D − tb
(1− t)D

=
−bD +D

((1− t)D)2
.

And using the same argument, ε is minimized at Q(1|0) =
Q(0|1).

Therefore the minimum-ε channel is symmetric, and the
corresponding value of ε is

ε∗DP(P, D) = log
1−D
D

.

This holds for any D < Dmax = pmax. In particular,

lim
D→D−

max

ε∗DP(P, D) = log
1− pmax

pmax
.

However, for D = pmax we can achieve ε = 0 using the
channel that sets Q(0|1) = 1 and Q(1|0) = 0; that is, the
channel maps all entries to 0.

The theorem says that to guarantee any non-trivial utility,
the differential privacy risk is bounded away from 0. In this
setting, revealing any approximation of the database incurs a
minimum privacy risk of at least log 1−pmax

pmax
.
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B. Discrete alphabets with Hamming distortion

The setup from the binary case generalizes straightfor-
wardly to the case of Hamming distortion for general discrete
alphabets. Suppose X = [M ] is a M -ary discrete alphabet.
For the rate-distortion problem, we quantify the utility of the
published database using the Hamming distortion d. For a
given distribution P and a channel Q the expected distortion
is

EP×Q[d(X, X̂)] = Pr
(
X 6= X̂

)
=
∑
j

P (j) Pr
(
X̂ 6= X|X = i

)
=
∑
j

P (j)
∑
i,i6=j

Q (i|j)

=
∑
j

P (j) (1−Q (j|j)) . (9)

The worst case Hamming distortion for an M -ary alphabet
is defined as

∆ (P, Q) = max
P∈P

EP×Q[d(X, X̂)]. (10)

We have the following conjecture for Hamming distortion
for general sources.

Conjecture 1 Consider a closed convex set of M -ary dis-
tributions P under Hamming distortion. Then the channel
achieving the minimum

Q(x̂|x) =

{
1−D x̂ = x

D
M−1 x̂ 6= x

For this channel,

ε∗DP(P, D) = log(M − 1) + log
1−D
D

.

Moreover,

lim
D→Dmax

ε∗DP(P, D) = log(M − 1) + log
1−Dmax

Dmax
,

but ε∗DP(P, Dmax) = 0.

The conjecture states that the optimal channel is symmetric
and does not depend on the class of sources P . From the
distortion constraint, we can see that the set of channels
which guarantees distortion D universally over the class P
is a piecewise linear region.

IV. CONCLUSION

In this paper we initiated the study of differentially private
mechanisms from a rate-distortion perspective. The literature
on differential privacy is extensive; we refer to a recent
tutorial by Dwork and Roth [12] for a more comprehensive
treatment. Rate distortion is applicable when the goal of the
data collector is to publish an approximation of the data itself.
This is different than problems that have been considered
previously in the literature, such as releasing the answers to
a set of statistical queries [13]–[15], interactive queries [16],
releasing synthetic data [17], data marginals [18], or statisti-
cal estimation [19]–[21]. Furthermore, we consider the case
where the data collector is not trusted, which leads us to use
local differential privacy [21] as our measure of privacy.

To capture uncertainty in the source distribution, we con-
sider a robust rate-distortion setting in which the source
distribution is unknown but comes from a class P , and ask for
a locally differentially private channel Q(x̂|x) that achieves
minimum privacy risk while simultaneously guaranteeing
distortion no more than D universally over the class P . For
the most basic example of binary sources under Hamming
distortion, we characterize this channel and show a surprising
result: the release of any approximation to the database with
non-maximum distortion incurs a minimum privacy risk.

In future work we plan to extend this framework to other
source models and distortion measures. For general discrete
alphabets with Hamming distortion we conjecture the result
for the binary case will extend naturally to prove a similar
lower bound on the privacy risk. Given recent interest in
mutual information measures of utility via the logarithmic
loss function [22], [23], investigating lower bounds for that
case would definitely be interesting and may shed some
additional insight on the minimax lower bounds for statistical
inference [21] that depend on the class P . Extending the
framework to continuous sources may be challenging due to
to range issues [20]. Another interesting direction is to relax
the privacy measure to (ε, δ)-differential privacy – in this
setting the discontinuity may vanish due to the smoothing
effect of δ, establishing another separation between the two
privacy measures.
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