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Abstract—Differential privacy is a recent framework for com-
putation on sensitive data, which has shown considerable promise
in the regime of large datasets. Stochastic gradient methods
are a popular approach for learning in the data-rich regime
because they are computationally tractable and scalable. In this
paper, we derive differentially private versions of stochastic
gradient descent, and test them empirically. Our results show
that standard SGD experiences high variability due to differential
privacy, but a moderate increase in the batch size can improve
performance significantly.

I. INTRODUCTION

As data becomes easier to acquire and aggregate in digitized
formats, designing efficient algorithms that can operate on this
data has emerged as a central challenge for signal processing,
machine learning, and related fields. Often this data may be
private or sensitive, such as medical or financial records. Dif-
ferential privacy [1] is rapidly becoming a popular framework
for designing algorithms that can guarantee a quantifiable level
of privacy. An α-differentially private algorithm guarantees
that the log-likelihood ratio of the outputs of the algorithm
under two databases differing in a single individual’s data is
smaller than α. For small α an adversary’s inferences about an
individual will be similar regardless of whether that individual
participates in the dataset or not.

Guaranteeing differential privacy involves approximating
some desired algorithm or computation. The approximate
nature impacts the performance, or utility of the resulting
procedure. For example, in parameter estimation, guaranteeing
privacy may increase the mean-squared error of the estimator.
One way to interpret this effect is that the sample size required
for a target utility level increases with the privacy constraint.

In the data-rich setting, at first blush it appears that learning
algorithms can enjoy both low privacy risk and high utility.
However, optimization methods for large data sets must also
be scalable. Stochastic gradient descent (SGD) algorithms
have received significant attention recently because they are
simple and satisfy the same asymptotic guarantees as more
computationally intensive learning methods [2], [3]. However,
because these guarantees are asymptotic, to obtain reasonable
performance on finite data sets practitioners must take care
in setting parameters such as the learning rate (step size) for
the updates. To alleviate some of this sensitivity and improve

the performance of SGD in the finite sample setting, several
works [4]–[6] have suggested grouping updates into “mini-
batches.” This can improve the robustness of the updating at a
moderate expense in terms of computation, but also introduces
the batch size as a free parameter.

In this paper we derive differentially private versions of
single-point SGD and mini-batch SGD evaluate them on real
and synthetic data sets. These algorithms work for gradient de-
scent for general convex objectives – we illustrate the approach
using logistic regression for classification. We demonstrate
that differentially private single-point SGD has high variance,
but a moderate increase in the batch size can improve the
performance significantly. For low-dimensional problems, the
private algorithm’s performance is close to non-private SGD.
However, we show that there is a limit to how much the batch
size can help, and that the performance is dependent on the
learning rate.

II. PRELIMINARIES

While the methods we propose work for general optimiza-
tion methods, we will describe the problem in terms of a
classification problem. There, the data are n labelled examples
(x1, y1), . . . , (xn, yn), where xi ∈ Rd, and yi ∈ {−1, 1}.
We assume that for all i, the norm ‖xi‖ ≤ 1. In linear
classification, our goal is to find a hyperplane through the
origin that largely separates the examples labeled 1 from those
labeled −1. The most popular method of training such a linear
classifier based on labelled data is by solving a regularized
convex optimization problem:

w∗ = argmin
w∈Rd

λ

2
‖w‖2 + 1

n

n∑
i=1

`(w, xi, yi) (1)

Here w is the normal vector to the hyperplane separator, and `
is a convex loss function. Popular choices for ` in the machine
learning literature are the logistic loss `(w, x, y) = log(1 +

e−yw
>x), which leads to Logistic Regression, and the hinge

loss `(w, x, y) = max(0, 1− yw>x), which leads to Support
Vector Machines (SVMs).

SGD is an iterative algorithm for solving the regularized
convex optimization problem in 1. SGD begins with an initial
point w0, and at step t, updates the iterate as:

wt+1 = wt − ηt(λwt +∇`(wt, xt, yt)) (2)
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Here ηt is a learning rate, and the (sub)gradient ∇`(wt, xt, yt)
is computed based on a single example (xt, yt).

In SGD with mini-batch updates, instead of a single exam-
ple, the update at each step t is based on a small subset Bt
of examples of size b. Specifically,

wt+1 = wt − ηt

λwt + 1

b

∑
(xi,yi)∈Bt

∇`(wt, xi, yi)

 (3)

Both of these methods are approximations of a full gradient
update – if the point(s) at each time t are sampled uniformly
from {1, 2, . . . , n} then the expected gradient step at each
iteration is equal to a gradient step on the full objective
function in (1). More generally, we can consider general
empirical risk minimization with convex loss functions. We
study the L2-regularized objective because strong convexity
allows favorable theoretical guarantees.

Our algorithms guarantee differential privacy, a
crypographically-motivated notion of privacy due to [1].
Differential privacy has gained significant attention over the
past few years in the computer science community, and has
spawned a growing literature. The privacy parameter α > 0
quantifies privacy risk; lower α means higher privacy.

Definition 1: A (randomized) algorithm A whose outputs
lie in a domain S is said to be α-differentially private if for
all S ⊆ S , for all datasets D and D′ that differ in the value
of a single individual, it is the case that: Pr(A(D) ∈ S) ≤
eα Pr(A(D′) ∈ S)

Dwork and Smith reviewed much of the early theoretical
work on differential privacy [7]. Sarwate and Chaudhuri pro-
vide a tutorial from a signal processing perspective [8]. Signal
processing methods for differential privacy have recently been
investigated by Le Ny and Pappas [9], [10]. The work most
connected to the current paper are those on differentially
private classification [11], [12]. Duchi et al. proposed an SGD
method for local privacy [13]. Stochastic gradient methods are
on example of online learning methods. Another approach to
differentially private online learning was proposed by Jain et
al. [14]; however, their algorithm is just as computationally
intensive as batch regularized convex optimization methods.
The PINQ [15] package uses a noisy sum operation to compute
full noisy gradient steps for logistic regression [16]. There
the goal was exchanging iterations for accuracy. The noisy
perceptron method [17] also uses iterative noisy updates to
learn a classifier. We focus here on the effect of step size
and batch size for SGD methods, so we do not compare the
performance for these specific classification methods.

III. SGD WITH DIFFERENTIAL PRIVACY

A differentially-private version of the SGD update can be
written as:

wt+1 = wt − ηt (λwt +∇`(wt, xt, yt) + Zt) , (4)

where each Zt is a random noise vector in Rd drawn inde-
pendently from the density:

ρ(z) ∝ e−(α/2)‖z‖ (5)

A differentially-private version of the mini-batch update
using a batch Bt of examples of size b can be written as:

wt+1 = wt − ηt

λwt + 1

b

∑
(xi,yi)∈Bt

`(wt, xi, yi) +
1

b
Zt

 .

(6)
where Zt is again drawn from the density in (5).

Theorem 1 shows that provided the initialization point w0

is determined independent of the sensitive data, the batches
Bt are disjoint, and the ‖∇`(w, x, y)‖ is bounded for all w,
these updates are α-differentially private.

Theorem 1 (Privacy of SGD and Mini-Batch Updates):
Suppose we run SGD with mini-batch updates in (6) for T
batches B1, . . . , BT . If the initialization point w0 is chosen
independent of the sensitive data, the batches Bt are disjoint,
and if ‖∇`(w, x, y)‖ ≤ 1 for all w, and all (xi, yi), then SGD
with mini-batch updates is α-differentially private.

Due to space limitations, we provide a sketch of the proof
here and defer the details for the full version of this work.
The key idea of the proof is the observation that provided
the conditions of the theorem hold, the global sensitivity of
each update is 2ηt

b . The proof now follows by combining this
observation with results of Dwork et al. [1], and using the fact
that the privacy guarantee does not degrade across batches as
the samples used in the batches are disjoint.

Because we add noise at each iteration, the SGD pro-
cedure guarantees differential privacy in a “local” sense –
each individual i may choose an αi and this method can
guarantee differential privacy at different levels αi for different
individuals by adjusting the distribution of Zt. A slightly
different notion of local privacy was also studied by Duchi et
al. [13] in the statistical setting: there the algorithm can sample
individuals from a distribution with unknown parameter and
the goal is to estimate the parameter. At each time their
algorithm can samples a new individual and receives a noisy
subgradient estimate. They use mirror descent to guarantee
privacy under a variant of differential privacy based on a
mutual information criterion.

IV. EXPERIMENTS

A. Datasets

We consider three classification tasks – one on a synthetic
dataset and two on real data. Our synthetic dataset consists of
n = 10, 000 samples drawn uniformly from a 5-dimensional
sphere, and is linearly separable with margin 0.001. For our
first classification task on real data, we use the KDDCup99
dataset [18], an intrusion detection dataset on network con-
nections. We address the normal vs. malicious classification
task, and use a subsample of size 50, 000. For our second
task on real data, we address the “1 vs. all” classification
task on the MNIST dataset [19], which consists of 60, 000
training examples and 10, 000 test examples of images of
handwritten digits 0 to 9. In both cases, we preprocess the
data by normalizing each feature, projecting each row to the
unit ball, and then reducing the data dimension by random
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Fig. 1: Objective function value vs. number of iterations
for private and non-private algorithms on the MNIST and
KDDCup99 data sets. Horizontal axis is scaled so that the
number of samples is the same.

projections, which preserve differential privacy. We use a
reduced dimension of d = 9 for KDDCup, and d = 15 for
MNIST.

B. Procedure

We use SGD to train a logistic regression model. For each
update, we use the mini-batch update from (6) for batch
sizes b ∈ {1, 2, 5, 10, 20, 50}, with regularization parameter
λ = 0.0001 and α = 1. In each case, we make a single pass
over the entire training data. To maintain numerical stability,
after each update, we project the iterate wt onto a ball of radius
1/λ. For each experiment we investigated a few different
schemes for setting the learning rates. We averaged the ob-
jective function values obtained over 20 random permutations
of the training data as well as fresh random samples of the
noise Zt for the private algorithm. The error bars are at a single
standard deviation. Since we are interested in the optimization
performance, we plot the objective function value – in future
work we will also investigate the classification accuracy.

C. Mini-batching reduces variance

The first question we ask is how SGD would fare with
batch size 1, since this is the case which has been most
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Fig. 2: Objective function value vs. batch size b for private
and non-private algorithms on MNIST and KDDCup99.

studied in the literature. The top half of Figure 1 shows the
objective value for the MNIST data set versus the number of
samples in the algorithm for learning rate ηt = 1/

√
t. For

batch size b = 1, differentially private SGD is far from the
non-private objective and furthermore has high variance. That
is, the noise added in each iteration prevents the algorithm
from converging. However, a modest batch size b = 10, as
shown in the lower half of the figure, reduces the variance of
differentially private SGD to the point of matching non-private
SGD, even for a moderate number of data points.

The other plots in Figure 1 show that this behavior also
holds for the KDDCup99 data set. Although the variance of
the differentially private algorithm decreases slowly, choos-
ing b = 5 makes the mini-batch SGD performance nearly
identical to that of the non-private mini-batch SGD. What
these two experiments indicate is that in terms of objective
value, guaranteeing differential privacy can come for “free”
using SGD with moderate batch size. We emphasize here that
all of these examples are low-dimensional problems, and the
privacy parameter α = 1. It is well-known that differentially
private learning algorithms often have a sample complexity
that scales linearly with the data dimension d and inversely
with the privacy risk α. Thus a moderate reduction in α or
increase in d may require more data. It would be interesting
to see if increasing the batch size can still make private SGD
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Fig. 3: Objective function value vs. number of data points for
private and non-private algorithms on synthetic data for batch
size b = 5.

match non-private SGD in these settings.

D. Choosing appropriate parameters

Our next experiment is to find the impact of batch size
on the performance of these algorithms. Figure 2 shows the
objective value as a function of batch size for private SGD,
non-private SGD, and a centralized learning procedure which
solves the optimization using all of the data points. In all cases,
increasing the batch size improved the performance of private
SGD, but there is a limit – for step size 1/

√
t, much larger

batch sizes actually degrade performance. Because we choose
to make a single pass over the data to limit the noise per
iteration, increasing the batch size decreases the number of
iterations, and therefore there is an optimal choice of b for each
problem. With a larger learning rate 10/

√
t, the performance

for larger batches does not degrade as much, and the end value
of the objective is closer to that of the centralized learning
algorithm.

Many analyses of SGD in the strongly convex case suggest
that a learning rate ηt = 1/λt guarantees fast convergence
rates [2]. In our case λ is quite small, meaning the objective
is not very strongly convex. To see the impact of the noise
added for differential privacy, we simulated two learning rates,
1/
√
t and 1/λt, on the synthetic data with b = 5. The results

in Figure 3 show that choosing a rapidly decreasing step
size dramatically increases the variance of private SGD. In
practice, choosing the step size in stochastic approximation
schemes is often a matter of art, and differentially private noise
complicates this choice.

V. CONCLUSIONS

In this paper we investigated how differential privacy affects
mini-batched stochastic gradient descent (SGD). When data
is plentiful, privacy is “affordable,” and SGD strategies are
more computationally efficient. We showed that in many cases
the performance of differentially private SGD was close to
that of non-private SGD, especially with larger batch sizes. In
stochastic optimization, both the variability of the algorithm

and the impact of privacy-preserving noise can be ameliorated
by processing groups of points together. Our experiments
show that privacy affects both the optimal batch size b and
learning rate ηt. Some interesting future directions suggested
by our work include: quantifying the impact of the dimension
d and privacy parameter α, allowing different αi’s for each
point, and using multiple passes through the data to trade
off iterations, total privacy loss (via composition results for
differential privacy), and error. These modifications could
make differentially private learning more effective in practical
settings.
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