
2014 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEPT. 21–24, 2014, REIMS, FRANCE

TRADEOFFS FOR TASK PARALLELIZATION IN DISTRIBUTED OPTIMIZATION

Konstantinos I. Tsianos Anand D. Sarwate Michael G. Rabbat

Department of ECE Department of ECE Department of ECE
McGill University Rutgers University McGill University

Montréal, Québec, Canada Piscataway, NJ, USA Montréal, Québec, Canada

ABSTRACT

We consider the problem of solving multiple optimization
tasks on the same data in a distributed setting. We focus
on consensus-based and incremental optimization strategies.
Consensus-based distributed optimizers converge in fewer it-
erations, but the multiple tasks must be run serially. Incre-
mental optimization algorithms, where the iterate is passed
from node to node, have slower convergence guarantees but
they can be parallelized to work on multiple tasks concur-
rently. When there are many tasks to solve, this approach can
suffer from queuing delay. We provide an analysis of this de-
lay which suggests that incremental algorithms may have su-
perior performance for a moderate number of tasks. The main
factor that controls this effect is the communication time. We
show experimentally that there is a regime in which parallel
instances of incremental algorithms can outperform serial in-
stances of consensus-based algorithms.

Index Terms— distributed optimization, machine learn-
ing, consensus algorithms, networks

1. INTRODUCTION

Optimization lies at the heart of many machine learning
workflows. In many cases, especially when the volume of
data is high, the optimizer has limited time to find a solu-
tion [1]. There is an active body of research studying how
to harness the power of distributed computing to make op-
timization methods more efficient for machine learning [2].
Typically, one splits the data across multiple computing nodes
to parallelize the processing and communication between the
nodes is needed for coordination. In many important cases,
however, the cost of local numerical computations is much
cheaper than the communication overhead. Consequently,
even though communication is needed to obtain a valid so-
lution, it can significantly impact the total time to solve a
problem. Another (sometimes overlooked) aspect of working
with large datasets is that simply loading the data can take
a lot of time. Fortunately, this can be trivially parallelized
with modern infrastructure [11]. However, to see the benefit,
it may be better to run several optimizations (or tasks) over

the same data once it is loaded. There are many machine
learning scenarios where one naturally needs to solve mul-
tiple tasks using the same data. For example, fitting models
with free parameters typically requires sweeping through a
range of values for parameter tuning. In cross-validation we
repeat the same computation on different splits of the data.
One approach to multiclass classification is to train several
“one-versus-all” classifiers, which could be done in parallel.
In exploratory data analysis, one may not know a priori which
loss function or kernel function is best suited to the data, and
training several algorithms with different characteristics can
help determine an appropriate model.

This paper. The communication time, computation time,
data dimension, and network size all affect the total time to
solve a single optimization problem with a distributed algo-
rithm [3]. In this paper we study issues arising when also par-
allelizing over tasks where the effects of the aforementioned
variables are amplified. We consider a standard setting where
n nodes are arranged in a network, and the i-th node holds a
subset Si of the data. The system wishes to solve J differ-
ent tasks involving the same data. For each task, node i has
a local objective fi(Si) and the global objective is to mini-
mize

∑n
i=1 fi(Si). We consider two classes of asynchronous

methods for distributed optimization: consensus-based meth-
ods and incremental methods.

In consensus-based methods [4, 5, 6, 7] each node main-
tains a copy of the optimization variables. Nodes alternate be-
tween computing updates using their local objective fi(·), and
exchanging messages with their neighbors so that all nodes’
estimates converge to a minimizer of f(·). Each time a node
finishes an update it sends its latest state to all of its neigh-
bours. Running J tasks using a consensus-based method is
straightforward. One simply invokes the optimizer on the next
task once the current one is solved. The overall runtime is J
times the runtime required to solve a single task.

Incremental methods [8, 9, 10] are an alternative approach
in which only a single node performs an update at any given
time, and one single copy of the optimization variables is
passed around the network. This reduces the communica-
tion cost by having the optimization method “visit” the func-
tion components fi one at a time. Nedic et al. [8] and Bert-

978-1-4799-3694-6/14/$31.00 c©2014 IEEE

sekas [9] analyze the situation where every component fi(·)
has to be visited once in every cycle, essentially assuming
that the nodes are connected as a complete graph. Johansson
et al. [10] generalize this approach for any connected graph in
the Markov incremental gradient descent (MIGD) algorithm
by having the task take a random walk on the graph. In con-
trast to consensus methods, all J tasks can be solved concur-
rently using MIGD by having each task take a random walk.
However, when two or more tasks arrive at a node, queuing
will occur, potentially increasing the total time required to
solve all J tasks.

For a single task, incremental methods converge slower
in theory and practice compared to consensus methods. For
example, on convex and Lipschitz continuous objectives, al-
though the consensus-based method distributed dual averag-
ing (DDA) [6] and MIGD both achieve an accuracy that scales
as O(1√

T
) with the number of iterations T , DDA achieves

a target error n times faster than MIGD for well-connected
graphs such as expanders [6]. Under task parallelization,
however, this comparison changes. If J ≤ n tasks could
be scheduled optimally, an incremental method can poten-
tially solve J tasks in the same time as 1 task, whereas a
consensus-based method takes J times longer.

We experimentally verify this prediction by comparing
consensus-based serial optimization with parallel incremen-
tal optimization. We use DDA and MIGD as exemplars of
these two approaches to optimization; other algorithms will
have different tradeoffs. We solve a problem in metric learn-
ing, where the communication overhead can be significant. A
theoretical analysis (deferred to the full version of this paper)
predicts the performance for a small-to-moderate number of
jobs; empirically, there is a significant range of J for which
parallel-MIGD is faster than serial-DDA.

Our results demonstrate that the existing convergence
analyses of distributed optimization procedures do not re-
flect the entire picture. The best (i.e., fastest) optimization
algorithm to solve J tasks on the same data depends on the
specifics of the tasks and the computing architecture. As in
Tsianos et al. [3], the communication time for these algo-
rithms impacts their practical performance. When solving
many tasks, amortizing the communication time by paral-
lelizing over tasks can potentially be very efficient.

2. FRAMEWORK AND ALGORITHMS

Let [N] = {1, 2, . . . , N}. Suppose we have N data points
{y1, . . . , yN} with each yj ∈ Y . The points are divided ac-
cording to a partition of [N] into n disjoint sets S1,S2, . . . ,Sn.
There are n processors which communicate according to a
connected undirected graph G = (V,E) with V = [n]. Each
processor i has access to data Di = {yj : j ∈ Si}.

Let X ⊂ Rd be a bounded convex constraint set for which
maxx∈X ‖x‖2 ≤

√
2R. Let fi : X → R be a convex

function with bounded subgradients: ‖gi(x)‖ ≤ L where

gi(x) ∈ ∂xfi(x) for some L < ∞. The aim of the proce-
dure is to minimize the following function over X :

f(x) =
1

n

n∑
i=1

fi(x). (1)

We think of fi(x) as depending on the local dataDi at node i.
For example, in empirical loss minimization a function lj(x)
measures the loss of a model xwith respect to the data yj , and
then we simply have fi(x) = n

N

∑
j∈Di

lj(x). The global

objective being minimized is F (x) = 1
N

∑N
j=1 lj(x), the av-

erage loss over the entire dataset. Let x∗ = argminx∈X f(x)
and define the error function ε(x) = f(x)− f(x∗).

Distributed optimization methods involving synchronous
iterations, such as those built using MapReduce [11] or
Spark [12], are susceptible to the “slow node” problem:
because all nodes must synchronize between iterations, com-
putation proceeds at the pace of the slowest node. This can
be a significant issue in systems where resources are shared
among many users or where infrastructure is prone to failure.
For this reason, we consider two classes of decentralized op-
timization methods which can naturally be implemented and
analyzed in an asynchronous framework. The two concrete
algorithms we consider are DDA [6] and MIGD [10].

In DDA, the nodes use a communication protocol de-
scribed by a column stochastic matrix P . The matrix P is
graph conformant: pi,j > 0 iff (i, j) ∈ E. Node i controls
the i-th column of P and assigns weights pi,j to its out-
going messages. The algorithm requires the second largest
eigenvalue λ2 of P to calculate the theoretically-optimal step
size. To find a solution within the constraint set, each next
estimate is projected back into X . The exact form of the
projection operator is specific to the problem but is easy to
compute when X has reasonable geometric structure. Finally,
the running average x̂i(t) is maintained locally at each node,
and it is the error ε(x̂i(t)) which vanishes as t → ∞. The
analysis of DDA [6] shows that all nodes achieve accuracy
ε after T = O(1

ε2) iterations if nodes communicate over a
well-connected graph (e.g., complete or expander).

MIGD [10] is formulated to minimize

f(x) =

n∑
i=1

fi(x), x ∈ X . (2)

To match the DDA setting described above, each fi(x) for
MIGD is scaled by 1

n . Suppose we only have one optimiza-
tion problem, and node i receives the token for this job. Node
i first performs a projected incremental gradient descent up-
date based on its local objective fi. Once the update compu-
tation is completed, i chooses a neighbour j, drawn randomly
according to the ith column of a doubly stochastic matrix P ,
and i passes the token and latest update to j. As explained
by Duchi et al. [6], MIGD requires T = O(nε2) iterations to
reach accuracy ε > 0 on a well-connected graph.

3. COMMUNICATION VS. COMPUTATION

Consider solving J ≤ n optimization problems using DDA
or MIGD. To remove the effect of different graph topologies,
we assume that the nodes communicate over a well-connected
graph; i.e., either a complete graph or a k-regular expander.
To solve J problems with DDA, we run the J jobs one after
the other. With MIGD, we start J random walks at different
nodes in the network and let them run concurrently. We as-
sume that each processor will only work on one problem at a
time, so if two random walks arrive at the same node, one is
served and the other is buffered until the node’s CPU becomes
available to process it.

Let us momentarily assume that all jobs take the same
number of iterations to reach the desired accuracy.1 To solve
all problems to ε-accuracy, DDA will need JT = O(Jε2) iter-
ations in total. For MIGD, if the random walks do not collide
(so that no job idles in buffer) the time to solve J problems
is identical to the time to solve one; i.e., the total number of
MIGD iterations is O(nε2). Immediately we see that, in this
idealized scenario, if J = Θ(n), MIGD exploits task paral-
lelization to become competitive with DDA. Note, however,
that this discussion is in terms of the number of iterations or
gradient steps taken by the nodes. This abstraction ignores the
time for communicating the messages between nodes which,
for some problems, may be commensurate with the time to
perform a single update. Let us thus refine the analysis fol-
lowing the model of Tsianos et al. [3].

With J = 1, at every iteration, each processor i in DDA,
or the processor having the token in MIGD, computes a local
subgradient on its subset of the data:

gi(x) ∈ ∂fi(x) =
n

N

N
n∑
j=1

∂lj(x). (3)

The cost of this computation increases linearly with the sub-
set size. We normalize time so that one processor computes a
subgradient on the full dataset of size N in 1 time unit. Then,
dividing the data evenly among n processors, each local gra-
dient computation will take 1

n time units. We disregard the
time required to compute the projection; often this can be
done very efficiently and requires negligible time when N is
large compared to n and d.

Next we study the communication cost. One message in
either DDA or MIGD is d floating point values (doubles),
since this is the dimension of x(t) in MIGD and zi(t) in DDA.
Meta data such as time stamps are O(1) in comparison to d.
We account for the cost of communication as follows. In the
consensus update of DDA, each node i transmits pjizj and
receives pijzi from each neighbour j in G. Since the mes-
sage size depends only on the problem dimension d and does
not change with N or n, we denote by r the time required to

1This is the case, e.g., if all jobs are clones of each other. This simplifying
assumption helps gaining intuition. Our results do not rely on it.

transmit and receive one message, relative to the 1 time unit
required to compute the full gradient on all the data. If every
node has k neighbors, the cost of one iteration is

1

n
+ kr time units / iteration. (4)

The same approach can be used for MIGD for the node that
has the token. Since that node will only transmit the estimate
to one neighbor, the cost of a MIGD iteration is simply

1

n
+ r time units / iteration. (5)

Equipped with these time models we can reason about the
time to achieve ε accuracy rather than the number of itera-
tions. Specifically, to reach ε accuracy on J problems, DDA
will take J · T iterations or

τdda(ε) = CDDA
J

ε2

(
1

n
+ kr

)
time units (6)

where CDDA is a constant that does not depend on n. For
MIGD on the other hand, in the ideal case where the random
walks do not collide and there are no delays, the total is equiv-
alent to the time to complete T iterations; i.e.,

τmigd(ε) =CMIGD
n

ε2

(
1

n
+ r

)
=CMIGD

1

ε2
(1 + nr) time units. (7)

This simple manipulation reveals that the relative perfor-
mance of the two algorithms is more delicate than what
the iteration bounds suggest. If G is the complete graph,
where k = n − 1, then asymptotically as n increases,
τdda(ε) = Θ(τmigd(ε)); i.e., the algorithms are equiva-
lent. This is not surprising. Even though MIGD needs n
times more iterations, each MIGD iteration takes only 1

n -th
of the time since MIGD requires communication with only
one neighbor instead of n − 1. Of course, if the message
size is very small, the network bandwidth is very high, or
computation takes significantly longer than a transmission,
then r → 0, and in that case MIGD is indeed n times slower.

For a non-vanishing communication cost, if the graph is
a k-regular expander, then as n increases the defining factor
is the relative size of Jk and n which multiply the communi-
cation/computation tradeoff r in (6) and (7), and it could be
the case that either algorithm is faster. Following similar rea-
soning, these arguments can be generalized to the case where
the jobs are not identical. We omit this analysis but refer the
reader to the experiments in Section 4 below.

4. EXPERIMENTS

To understand the difference between consensus-based and
incremental optimizers when running many jobs, we imple-
ment DDA and MIGD on a cluster and compare their perfor-
mance on logistic regression and metric learning tasks. The

theoretical analysis of DDA assumes a synchronous algorithm
where a barrier mechanism synchronizes all nodes at the end
of every iteration [13]. When barriers are used, synchroniza-
tion forces the algorithm to run at the speed of the slowest
node. In our experiments, we use an asynchronous version
called Push-Sum DDA (PS-DDA) [14] which converges at
the same rate but with different constants. We emphasize
that these experiments are designed to illustrate the different
regimes for these two procedures, and that the “best” opti-
mization procedure will, in general, depend on the particular
problem, data set, and hardware.
Cluster description. Experiments are run on a cluster with
8 machines running Matlab 2009b. Each machine has two 4-
core, 2.5GHz Xeon processors with 14GB of RAM. Commu-
nication happens over 100Mbps Ethernet. We run 64 worker
node processes (one per core), and communication among
the nodes is organized as a logical expander graph G. To
set G, we sample from the family of Erdős-Rényi random
graphs [15] with p = 0.5. Such graphs have good expan-
sion properties with high probability. Out of 105 samples,
we kept the graph for which P has the smallest spectral gap.
The implementation of DDA and MIGD is in Matlab using
the labSend and labReceive communication primitives
supported by the Parallel Computing Toolbox. No synchro-
nization of the nodes is imposed; both implementations are
completely asynchronous and subject to real network condi-
tions and communication delays.
Manipulating the communication time. To demonstrate the
tradeoffs discussed above, we first consider a binary classi-
fication task. Specifically, we train `2-regularized logistic re-
gression using the Covertype dataset [16]. We obtain between
1 and 16 different optimization tasks by sweeping the regu-
larization parameter between 0.75 and 0.0001 uniformly on
a logarithmic scale. All problems are solved using 32 cores,
and all tasks are run until they achieve the same accuracy.
In the Covertype dataset we have 522,880 data points with
d = 54 features each. The time to compute a gradient on
the full dataset using a single CPU is roughly 30 seconds,
and the time to communicate one 54-dimensional vector to
one neighbour is 0.0062 seconds. The relative communica-
tion/computation tradeoff is r = 0.0002.

Figure 1 depicts the time to completion for DDA and
MIGD as a function of the number of tasks for three differ-
ent communication cost scenarios. The first scenario (solid
lines) corresponds exactly to the Covertype problem de-
scribed above, with the default amount of communication
(i.e., each message contains 108 doubles, the model param-
eters for each class). This is a relatively small amount of
communication as compared to the amount of data available,
and so DDA consistently finishes faster than MIGD. In order
to better understand how the communication-computation
tradeoff arises, we repeat the same experiment while artifi-
cially increasing the size of each message to either 5, 108 or
10, 108 doubles. The additional communication cost affects

1 4 8 12 16
0

2000

4000

6000

8000

Number of tokens

T
im

e
to

 a
cc

u
ra

cy
 (

s)

DDA (msg. size 10k)
MIGD (msg. size 10k)
DDA (msg. size 5k)
MIGD (msg. size 5k)
DDA (default)
MIGD (default)

Fig. 1. Solving 1–16 `2-regularized logistic regression tasks
on a cluster of 32 cores. By default (solid lines), messages
sizes are small (108 doubles), and DDA is always faster. The
two other sets of curves correspond to increasing the message
sizes by 5, 000 and 10, 000 doubles, respectively.

the performance of DDA much more significantly than that
of MIGD, with the relative amount of time communicating
vs. computing determining which algorithm finishes faster.
Large communication time. The previous experiment
showed that as the communication time increases for a fixed
computation time, the per-iteration cost of DDA can become
so large that parallelization in MIGD yields shorter wall time
for the optimization of many tasks. To see this effect in
a different setting, we evaluate the algorithms on a metric
learning task [17] where the message sizes are quite sub-
stantial. In metric learning, the input data consists of tuples
{(uj , vj , sj) : j = 1, . . . , N} where uj and vj are in Rd and
sj ∈ {−1, 1} is a label indicating whether uj is “similar”
to vj . The goal is to learn a positive semidefinite symmetric
matrix A such that the pseudo-metric

DA(u, v) =
√

(u− v)TA(u− v)

assigns a small distance to similar points and a large distance
to dissimilar points. One way of learning such a matrix is to
define a hinge-like loss function

lj(A, b) = max{0, sj(DA(uj , vj)
2 − b) + 1}

where b ≥ 1 is a bias term, and find A and b which solve:

minimizeA,b
1

N

N∑
j=1

lj(A, b) subject to b ≥ 1, A � 0.

In the distributed setting the data are partitioned into dis-
joint sets S1,S2, . . . ,Sn and the partial objectives are sim-
ply fi(A, b) = n

N

∑
j∈Si lj(A, b). Each message contains

d(d−1)
2 + d + 1 doubles to represent the d × d symmetric

matrix A and the bias b.
We use the MNIST digits dataset, where each point is a

28× 28 pixel image of handwritten digits 0 to 9. A data point
is a 282 = 784-dimensional vector, making each message

0 1000 2000 3000 4000 5000 6000 7000

100

101

Time (sec)

O
bj

ec
tiv

e

 DDA
DDA Fixed
MIGD, S=1
MIGD, S=2
MIGD, S=4
MIGD, S=8
MIGD, S=16
MIGD, S=24
MIGD, S=32
MIGD, S=40
MIGD, S=50
MIGD, S=64

Fig. 2. Evolution of the objective for DDA for diminishing
and fixed step size, and MIGD with a varying number of jobs
running in parallel.

307721 doubles or approximately 2.4 MB in size. For our
experiments we use 32000 randomly selected pairs of images,
partitioned evenly among the processors.

To solve J instances of this metric learning problem, we
run DDA J times serially and run J copies of MIGD in par-
allel. Because the instances in MIGD move according to a
random walk, different instances may collide; if an instance i
moves to a node which is already busy processing job j, job
i waits in a buffer until the node completes processing job
j. When there are many instances, collisions can delay the
convergence of MIGD.
Differences when running identical jobs. Our first exper-
iment illustrates the effect of communication cost on dis-
tributed optimization. We create a 64 node expander with
average node degree 32 ± 2.6. To keep the conditions some-
what symmetric and stay close to the theoretical models
discussed earlier, we solve a varying number of identical
instances of the metric learning problem. Since all instances
are identical, they all take approximately the same time to
complete. To limit the overhead of monitoring, we focus on
one instance. For DDA we measure the time it takes to solve
one instance of the problem. For MIGD we track one instance
of the problem and measure the total time it takes for this job
to converge in the presence of other jobs.

Figure 2 shows the objective value as a function of the
total wall time for the two algorithms with varying numbers of
jobs. Since MIGD uses a fixed step size, we also show DDA
with a fixed step size. As expected, the time for a single DDA
instance to complete is very short. MIGD is slower but not by
a factor of n. As the number of parallel instances increases
there is an additional slowdown for MIGD per instance as a
result of buffering from random walk collisions.

In Figure 3 we plot the cumulative time it takes to solve
J tasks with DDA and MIGD to a fixed accuracy ε, and with
J between 1 and 64. We see that there is indeed a tradeoff in
wall time between consensus-based and iterative algorithms.
For few tasks, DDA is fast enough that it has time to solve 4

12 4 8 16 24 32 40 50 640

1

2

3

4

5x 104

Number of jobs

Ti
m

e
to

 s
ol

ve
 a

ll
jo

bs
 to

 a
cc

ur
ac

y

DDA
DDA Fixed
MIGD

Fig. 3. Cumulative time to solve J = 1, . . . , 64 jobs with
MIGD and DDA with fixed and diminishing step size. In both
cases there is a crossover point at which MIGD becomes the
faster algorithm.

tasks one after the other before MIGD solves them in parallel.
At that point, MIGD is able to accommodate and solve more
and more tasks in parallel and is therefore preferable. Notice
also that DDA with fixed step size is faster than DDA with
diminishing step size, so the crossover point between DDA
and MIGD is moved from 4 to 20 jobs but it still exists.
Example: Sweeping a problem parameter. Next, we turn to
a scenario where there is a parameter in the optimization and
we wish to run multiple instances for different values of the
parameter. In this case, instances have different runtimes. As
an example we consider `2-regularized metric learning [20]:

argmin
A,b

1

N

N∑
j=1

lj(A, b) +
λ

2
‖A‖F s.t. b ≥ 1, A � 0.

Varying the regularization parameter makes the target prob-
lem harder (large λ) or easier (small λ). TakingG to be an ex-
pander graph of 16 nodes, we solve between 1 and 16 differ-
ent tasks by sweeping λ from 1 to 0.0001. Figure 4 shows the
cumulative amount of time needed to solve all problems with
MIGD and DDA with fixed step size. Despite the fact that
the jobs are now different from each other, the same tradeoff
still exists. With very few jobs, DDA is superior while adding
more jobs renders MIGD a better choice. Notice that extrapo-
lating from this figure we see that the benefit of MIGD cannot
be sustained. In fact if we let the number of tasks grow, even-
tually we expect that MIGD would again become slower than
DDA due to the increasing number of collisions.

5. DISCUSSION

When solving multiple distributed optimization tasks which
use the same data, choosing the right computational algo-
rithm depends on characteristics of the optimization tasks and
the system architecture. In this work we illustrate that the

1 2 4 8 12 160

1000

2000

3000

4000

5000

Number of Jobs

Ti
m

e
to

 s
ol

ve
 a

ll
jo

bs
 to

 a
cc

ur
ac

y

DDA Fixed
MIGD

Fig. 4. Cumulative time to solve J = 1, . . . , 16 jobs to accu-
racy ε using DDA with fixed step size and MIGD.

bounds on the iterations for consensus-based and incremental
procedures do not necessarily characterize the overall runtime
for solving multiple optimizations since there is room for im-
provement by exploiting task parallelization. In particular, we
show that there are regimes where running parallel copies of
the incremental MIGD algorithm is faster than running se-
quential copies of the consensus-based DDA algorithm.

We illustrate this discrepancy via two particular applica-
tions, but we believe that the phenomena we exhibit here are
general. The two algorithms we consider, DDA and MIGD,
are exemplary of two paradigms of asynchronous distributed
optimization methods (consensus-based, and incremental, re-
spectively). The regimes for different methods will vary, but
we believe it is relatively clear that the tradeoff may appear in
many problems of interest.

6. REFERENCES

[1] Leon Bottou, “Large-scale machine learning with
stochastic gradient descent,” in Proc. Int’l Conf on
Comp. Stat., Paris, France, August 2010, pp. 177–187.

[2] Ron Bekkerman, Mikhail Bilenko, and John Langford,
Scaling up Machine Learning, Parallel and Distributed
Approaches, Cambridge University Press, 2011.

[3] Konstantinos I. Tsianos, Sean Lawlor, and Michael G.
Rabbat, “Communication/computation tradeoffs in
consensus-based distributed optimization,” in NIPS,
2012.

[4] Angelia Nedic and Asuman Ozdaglar, “Distributed sub-
gradient methods for multi-agent optimization,” IEEE
Trans. on Autom. Control, vol. 54, no. 1, January 2009.

[5] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato,
and Jonathan Eckstein, “Distributed optimization and
statistical learning via the alternating direction method
of multipliers,” Foundations and Trends in Machine
Learning, vol. 3, no. 1, pp. 1–122, 2010.

[6] John Duchi, Alekh Agarwal, and Martin Wainwright,
“Dual averaging for distributed optimization: Conver-
gence analysis and network scaling,” IEEE Trans. Au-
tom. Control, vol. 57, no. 3, pp. 592–606, 2011.

[7] S. Sundhar Ram, Angelia Nedic, and Venugopal V.
Veeravalli, “Distributed stochastic subgradient projec-
tion algorithms for convex optimization,” J. Opt. Th.
Appl., vol. 147, no. 3, pp. 516–545, 2011.

[8] Angelia Nedic, Dimitri P. Bertsekas, and Vivek S.
Borkar, “Distributed asynchronous incremental subgra-
dient methods,” in Inherently parallel algorithms in fea-
sibility and optimization and their applications, 2000.

[9] Dimitri P. Bertsekas, “Incremental gradient, subgradi-
ent, and proximal methods for convex optimization: A
survey,” Tech. Rep. 2848, MIT-LIDS, 2010.

[10] Bjorn Johansson, Maben Rabi, and Mikael Johansson,
“A randomized incremental subgradient method for dis-
tributed optimization in networked systems,” SIAM J.
Control Opt., vol. 20, no. 3, 2009.

[11] J. Dean and S. Ghemawat, “Mapreduce: Simplified data
processing on large clusters,” Comm. ACM, vol. 51, no.
1, pp. 107–113, January 2008.

[12] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M.J. Franklin, S. Shenker, and I. Sto-
ica, “Resilient distributed datasets: A fault-tolerant ab-
straction for in-memory cluster computing,” in USENIX
NSDI, 2012.

[13] Konstantinos I. Tsianos, Sean Lawlor, and Michael G.
Rabbat, “Consensus-based distributed optimization:
Practical issues and applications in large-scale machine
learning,” in Allerton Conference, 2012.

[14] Konstantinos I. Tsianos, Sean Lawlor, and Michael G.
Rabbat, “Push-sum distributed dual averaging for con-
vex optimization,” in IEEE CDC, 2012.

[15] Paul Erdős and Alfred Rényi, “On the evolution of ran-
dom graphs,” Publ. Math. Inst. Hungary. Acad. Sci., vol.
5, pp. 17–61, 1960.

[16] Jock A. Blackard and Dennis J. Dean, “Comparative
accuracies of neural networks and discriminant analysis
in predicting forest cover types from cartographic vari-
ables,” in Second Southern Forestry GIS Conference,
Athens, GA, USA, 1998, pp. 189–199.

[17] Eric P. Xing, Andrew Y. Ng, Michael I. Jordan, and Stu-
art Russell, “Distance metric learning, with application
to clustering with side-information,” in NIPS, 2003.

[18] Kilian Q. Weinberger, Fei Sha, and Lawrence K. Saul,
“Convex optimizations for distance metric learning and
pattern classification,” IEEE Signal Process. Mag.,
2010.

[19] Kilian Q. Weinberger and Lawrence K. Saul, “Distance
metric learning for large margin nearest neighbor classi-
fication,” J. Opt. Th. Appl., vol. 10, pp. 207–244, 2009.

[20] Rong Jin, Shijun Wang, and Yang Zhou, “Regularized
distance metric learning: Theory and algorithm,” in
NIPS, 2012.

