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ABSTRACT
Objective Today’s clinical research institutions provide
tools for researchers to query their data warehouses for
counts of patients. To protect patient privacy, counts are
perturbed before reporting; this compromises their utility
for increased privacy. The goal of this study is to extend
current query answer systems to guarantee
a quantifiable level of privacy and allow users to tailor
perturbations to maximize the usefulness according to
their needs.
Methods A perturbation mechanism was designed in
which users are given options with respect to scale and
direction of the perturbation. The mechanism translates
the true count, user preferences, and a privacy level
within administrator-specified bounds into a probability
distribution from which the perturbed count is drawn.
Results Users can significantly impact the scale and
direction of the count perturbation and can receive more
accurate final cohort estimates. Strong and semantically
meaningful differential privacy is guaranteed, providing
for a unified privacy accounting system that can support
role-based trust levels. This study provides an open
source web-enabled tool to investigate visually and
numerically the interaction between system parameters,
including required privacy level and user preference
settings.
Conclusions Quantifying privacy allows system
administrators to provide users with a privacy budget
and to monitor its expenditure, enabling users to control
the inevitable loss of utility. While current measures of
privacy are conservative, this system can take advantage
of future advances in privacy measurement. The system
provides new ways of trading off privacy and utility that
are not provided in current study design systems.

BACKGROUND
In 1991 the Institutes of Medicine stated that
“perhaps the impediment to computer-based
patient records (CPRs) that is of greatest concern is
the issue of privacy”.1 Since then, privacy in
healthcare practice and research has received
growing attention from the public, legislators, and
researchers. In December 2000 the Federal Register
issued the Portability and Accountability Act
(HIPAA) Privacy Rule (45 CFR Part 160 and
Subparts A and E of Part 164), which contains
criteria for deciding whether data are subject to
dissemination restrictions. These criteria are based
on whether the data are ‘de-identified’dthat is,
whether a particular record or similar piece of
information can be linked back to the identity of the
person from whom it stems. Associating privacy
with preventing data-to-identity linkage is reflected
in both historic and recent definitions of privacy2e5

as well as empirical risk quantification.6 7 Indeed,

Winkler states that “the highest standard for esti-
mating (re-identification risk) is where record
linkage is used to match information from public
data with the masked microdata”.8 However, many
approaches to de-identifying or ‘sanitizing’ data sets
have been shown to be subject to attacks9e11 which
use public data to compromise privacy. In 2003
Dinur and Nissim12 showed that a data curator can
only provide useful answers to a limited number of
questions about the data without divulging most
of the sensitive information contained in it. In
2006 Dwork et al provided a definition of privacy
(‘differential privacy ’)13 that quantifies risk to
individuals of unwanted disclosures. This quantifi-
cation allows systems to account for privacy loss
over time and to track a ‘privacy budget’ to manage
this loss.
Whereas the HIPAA de-identification standard

and other anonymity-based definitions of privacy
such as k-anonymity2 are based on the properties of
the data to be disseminated, differential privacy is
based on the properties of the process used to
disseminate the data. Process-based privacy agrees
with commonsense notions of privacy. Suppose
a data holder has two data sets which have been
individually deemed safe to disseminate and they
decide to release the first or the second based on the
HIV status of a particular individual. While the
data themselves are privacy-preserving, the
dissemination process is notdthe choice of
disseminated data set reveals the HIV status of the
individual. Current approaches that treat privacy as
properties of the data are not able to address this
type of privacy threat. Furthermore, they impose
losses of utility that are deemed major barriers to
the secondary use of clinical data in research.14e17

Cohort identification is a common task in the
secondary use of clinical data. Researchers can issue
count queries about how many patients exist who
match a particular profile (eg, patients who are
male, have secondary diabetes, and are the age of
30). Allowing unrestricted access to count queries
endangers patient privacy because even a few
queries can reveal sensitive information. For
example, suppose the above query returns three. If
this query is extended with an additional clause
‘and HIV-positive’ and still returns three, we can
infer that any 30-year-old man with secondary
diabetes in the database is HIV-positive. This
information can easily be linked with auxiliary
knowledge of a diabetes patient (eg, knowing that
a colleague or neighbor seeks care for diabetes at
your institution) to infer that they are HIV-posi-
tive, which constitutes a serious privacy breach.
To protect patient privacy some institutions only

allow researchers to receive approximate counts and
access is mediated by systems such as the i2b218
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School STRIDE19 environment. In particular, i2b2 and STRIDE
add Gaussian noise to the true count and then round to the
nearest multiple of one and five, respectively. Importantly, these
systems provide privacy through the process by which they
answer queries. However, when they were developed there were
no metrics to quantify protection from re-identification, so it is
not surprising that there are no quantitative analyses of how the
scheme affects privacy loss over time. Instead, they estimate how
many times a single query has to be repeated in order to estimate
the true count by averaging out the perturbation.20

Generally speaking, fixed magnitude perturbations affect
small counts much more than large counts. Unfortunately, we
cannot reduce the perturbation for small counts and provide the
same privacy. However, there are situations where the direction
of the perturbation matters for the user, and if we allow flexi-
bility in this regard, we can mitigate the problem to some degree
without compromising privacy. Consider the following two
fictitious use cases.

Researcher A wants to conduct a clinical trial for a new
treatment for cancers affecting the salivary glands. The trial
must accrue at least 40 patients for the study to have sufficient
power, and researcher A needs to determine the length of the
trial to develop a budget. Furthermore, there would be a high
cost to not enrolling a sufficient number of patients. If the actual
count in the database is 38 patients diagnosed with primary
carcinoma of the salivary glands per year and the query tool
returns a perturbed count of 45, the researcher may budget for
a too short trial run, resulting in an underpowered study at high
cost. Researcher B designs a study that requires her to enrol
consecutive patients admitted with a diagnosis of heart failure
for the first 6 months of the year. All these patients would be
offered physiological home monitoring on discharge. This kit
would monitor various cardiovascular parameters and electron-
ically transmit them to a server. The protocol budgets for 75
patients based on the use of the query tool. If the real number is
85, the proposed budget would be too small, resulting in
a missed opportunity.

OBJECTIVE
Our objective is to demonstrate an extension to currently
employed count query systems for study design that: (1)
provides current functionality with stronger privacy guarantees,
serving as an example of a service that can be included in a larger
enterprise-wide system that manages privacy and account-
ability; (2) provides the option to incorporate user preferences
with regard to individual query responses, thereby increasing
utility to users without compromising privacy; (3) supports
privacy budgeting to increase utility to users across multiple
queries; and (4) is implementable and practical in use.

The main tools we employ to meet this objective are the
recent statistically motivated privacy metric differential
privacy13 and the exponential mechanism of McSherry and
Talwar.21

METHODS
A system for count perturbation
The following description is intended to give an overview of
what our system does and to serve as a recipe for implementa-
tion. We present the mathematical properties in subsequent
sections, as well as some potential enhancements to the system
later in the Discussion.

In describing our system we will denote by n the total number
of individual records in the database. The administrator sets
parameters rmin and rmax, which are upper and lower bounds on

the possible answers to be returned by the query mechanism,
and assigns each user a total privacy budget 3total that represents
the total privacy risk they are allowed to incur prior to their
access being reviewed. The administrator also assigns a per-
query privacy level 3 for the user.
The perturbation is parameterized by positive numbers a+,

b+, a�, and b� which define the following function Uc (r), giving
the utility placed on receiving a result r if the real count is c:

UcðrÞ ¼
�
�b

þ ðr� cÞaþ
if r$c

�b
�ðc� rÞa� otherwise

Because a and b parameters are positive, the utility Uc (r) is
maximal at r¼c. The utility is specified independently for r$c
and r<c to reflect asymmetric preferences with respect to over-
or underestimation.
The parameters a+, a�, b+, and b� are chosen using a ficti-

tious value ĉ for c. In practice, the parameter choice will be aided
by a tool like in figure 4. The right side plot shows a utility that
is linearly decreasing with absolute distance from the real count
c, with a 33 steeper decrease on the right side of c, representing
a bias towards underestimation. Other shapes can be seen in
figure 1. The system implementor can offer users a variety of
preset parameter settings from which they can choose.
When the user chooses parameters and issues a query to the

database, the system first computes the true count c. User
parameters and c are used to compute a parameter h for the per-
query privacy level 3 by:

Dþ ¼ max
�
b
þ
;aþbþ raþ�1

max

�
D� ¼ max

�
b
�
;a�b��n� rminÞa

��1�
D ¼ max

�
D�

;Dþ �

h ¼ 3

2D
:

Using the computed h, the system then translates Uc into
a probability distribution P(r|c) by:

P
�
r
��c� ¼ expðhUcðrÞÞ

N
where

N ¼ +
rmax

rt¼ rmin

expðhUcðr9ÞÞ: (1)

Finally, the system response r is randomly chosen among
integer values lying between rmin and rmax with a probability
given by P(r|c). The mean and variance of P(r|c) given the
system and user parameters are given by:

m ¼ +
rmax

r¼ rmin

r$
expðhUcðrÞÞ

+r9expðhUcðr9ÞÞ: (2)

s2 ¼ +
rmax

r¼ rmin

ðr� mÞ2$ expðhUcðrÞÞ
+r9expðhUcðr9ÞÞ: (3)

Quantifying privacy
We now describe the mathematics behind our new system and
how it compares with existing methods. We model records as
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vectors in a feature space V and a database D as a collection of n
such vectors. A query or predicate p is a function p : V/f0; 1g
taking as input a point in V, and producing 0 when the record
does not match the predicate and 1 when it does. The
number of records in D for which p evaluates to 1 is the (true)
count for p:

c
�
p;D

� ¼ +
x˛D

pðxÞ:

Response mechanisms
A perturbed response mechanism m(c(p,D), n, q) takes a predi-
cate and database and releases a number chosen randomly
according to a distribution that is a function of p, D, and
a parameter vector q. For our proposed system, if the true count
is c(p,D)¼c, then m(c, n, q) generates the response from the
distribution P(r|c) in (1) parameterized by q¼(3, rmin, rmax, b+,
b�, a+, a�). The approaches used in i2b220 and STRIDE can be
expressed as:

m
�
c;n;q

� ¼ ½c þ v�k:

where v is drawn from a Gaussian distribution with mean 0 and
SD q and [$]k stands for rounding to the nearest multiple of k. In
i2b2, k¼1, and in STRIDE, k¼5. Both approaches report values
produced by m at or below a given threshold as ‘at or below’ the
given threshold.

Differential privacy
A response mechanism satisfies 3-differential privacy13 if, for any
two databases, D and D’ differing in a single point, any query p,
and any response r, we have:

Pðmðcðp;DÞ;n;qÞ ¼ rÞ
Pðmðcðp;D9Þ;n;qÞ ¼ rÞ#e3: (4)

That is, the probability that the mechanism returns a count r
from running query p on D is very close to the probability it
returns a count r from running p on the database D’. This
closeness from changing a single individual’s data is the source of
the name ‘differential’ and also illustrates the strength of the
measuredit guarantees privacy to any (and every) individual in
the database regardless of any additional information available.
McSherry and Talwar ’s exponential mechanism21 translates

the utility Uc(r) of getting r when the true count is c into the
probability P(r|c). By specifying a utility function that matches
the user ’s own preferences, their results show that for any
non-negative integers c’ and c such that |cec’|#1 and for all r
between rmin and rmax:

PðrjcÞ
Pðrjc9Þ#e2hD;

where D ¼ max
rmin#r#rmax

fjUcðrÞ �U9cðrÞjg. Conversely, for a fixed 3,
the translation must employ h ¼ 3ð2DÞ�1 in order to provide 3-
differential privacy.
The sensitivity D of Uc is computed as follows. We start by

noting that Uc is of the form h¼�b|r�c|a with different values
for a and b depending on whether or not r$c. Consider the r$c
case where b¼b+ and a¼a+ and we denote the resulting h as h+.
We then have D+ as the maximum change in h+ over all possible
values r and c, c’ such that |c�c9|#1. Formally, we can express
this as:

Figure 1 Utility shapes and
corresponding noise distributions.
(AeC) show the distributions centered
at a true count of 50 and (D) at a true
count of 200.
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Dþ ¼ max
r;c

�
dhþ

dc

�
;where

dhþ

dc
¼ aþbþ jr� cjaþ

r� c
: (5)

We note that (5) is not defined for r¼c as this is where Uc

discontinuously ‘switches’ from h� to h+. When r¼c, we have
Uc(c)¼0 and consequently |Uc(c+1)�Uc(c)|¼|Uc(c+1)|¼b+

(and |Uc(c�1)�Uc(c)|¼|Uc(c�1)|¼b�). If a<1, b+ is always
larger than (5) and, if a+¼1, then (5) reduces to b+. Finally, if a+

>1, we have (5) is maximal for c¼0 and r¼rmax. In summary, we
have:

Dþ ¼ max
�
b
þ
;aþbþ ra

þ�1
max

	
:

An analogous argument leads to:

D� ¼ maxðb�
;a�b�ðjDj � rminÞa

��1�
:

and the overall D for Uc can be written as:

D ¼ max
�
D�

;Dþ �
:

Adding Gaussian noise
For a fixed SD s, the release value density at r corresponding to
adding Gaussian noise is proportional to

exp
�
� 1
ð2s2Þðr� cÞ2

�

. The corresponding level of differential privacy is:

log

0
BB@

exp
�
� 1
ð2s2Þðr� cÞ2

�

exp
�
� 1
ð2s2Þðr� c þ 1Þ2

�
1
CCA$

1
ð2s2Þ

��
rmax � rmin

� þ 1
�
(6)

For a mechanism adding Gaussian noise, the differential
privacy 3 is at least (6). For a SD of 1.33 and rmin¼3, values
suggested in the analysis of Murphy and Chueh20 and rmax¼106,
which is smaller than the number of patient records in typical
academic medical centers where such count query tools are
deployed, we get the differential privacy afforded has an
3>282661 as opposed 3¼2.037 in our system. Conversely, if we
require 3¼2.037, we need to require Gaussian noise with a SD
exceeding 495. Rounding the reported values to the nearest
multiple of k does not fundamentally change this behavior.
Consequently, the approach described by Murphy and Chueh20

does not guarantee practical differential privacy. A similar
analysis can be carried out for STRIDE.

Tracking privacy expenditures and privacy budgeting
In order to protect against averaging query responses, we can
only allow a finite number of queries, determined by the SD of
the response distribution as well as how accurate an estimate of
the count we want to tolerate. The allowed number of queries is
an example of a ‘privacy budget’ and it appears implicitly in the
i2b2 system, which disallows more than a fixed number of
queries that return the same true count.20 However, averaging
the result of repeating the same query is not the only form of
attack.11 22

Under differential privacy, the total decrease in privacy
resulting from a user ’s queries is at most the sum of the privacy

afforded by each query. In general, querying k times using
3-differential privacy gives a total loss of k3-differential privacy
and, if the ith query pi issued by a user has differential privacy 3i
associated with it, i queries cost +

i
3i. This cumulative loss

represents the statistical risk of breach for any attack, not just
the repeated query attack described above.
For a total privacy budget 3total, a user could ask 3total=3i queries

with cost 3i each before exhausting their budget, after which there
can be another administrative review of their project. A simple
modification of the system could allow users to pick from
a predefined set of 3 levels per query. For preliminary queries
where the expected true count is large, the user could use a small
level of 3 and incur more noise, thereby ‘saving’ the privacy
budget for later narrower queries. Because of the properties of
differential privacy, the total risk to any individual in the database
is not affected by this flexibility as long as the total expenditure
stays the same.
The privacy budget 3total can be chosen according to a person’s

role in the institution and how trusted they are. We can then
associate the level of privacy protection with the level of trust;
more trusted users can use a larger 3i and obtain more accurate
counts than less trusted users. We call such an arrangement
a ‘multi-trust level architecture’. Because such a system can
monitor and track the total privacy expenditures of users, it can
automatically flag users who expend their privacy budget,
facilitating the auditing of query logs and simplifying adminis-
trative overheads for approving preliminary research.

Optimizing usefulness of individual queries
In this section we describe how statistical properties of the
returned counts depend on the parameters. We also give some
interpretation of how user parameters and privacy level interact
with the utility shape and reported response mean and variance
in (2) and (3). We can determine parameter settings that yield
responses with a specified mean and variance (eg, those given by
existing count query systems).
The utility function is determined by the corresponding a and

b parameters. If a¼1, the utility decreases linearly with distance
from the real count with slope b. If a<1, we decrease the slope
to an increasing degree the further away we get from the real
count. The effect is to ‘flatten’ out the utility moving further
away from the real count. If a>1, we do the opposite. Setting
b�<b+ gives a bias towards underestimation while b�>b+ gives
a bias toward overestimation. Figure 1 shows how utility pref-
erences translate into the output distribution.
Given a true count of 50, figure 2 shows the mean and vari-

ance of the response distribution for fixed b as we vary 3. In
all cases, the variance of the response decreases as 3 increases.
Small 3 corresponds to more privacy and hence a larger
perturbation.
An important point illustrated in figure 2 is that the variance

of the error can be quite large for small 3. For symmetric utilities,
there is no change in the response variance with changing b for
fixed 3. For linear asymmetric utilities, the response variance is
shown in figure 3A for a few different values of 3. As the privacy
requirement becomes higher, 3 is smaller and larger asymmetry
in the utility results in higher variance. On the other hand, as
shown in figures 2 and 3, reducing the degree of asymmetry
reduces the variance.
Introducing non-linear utilities with a<1 increases the vari-

ance, as shown in figure 3B. The same happens in general for a>1.
However, reductions in variance can be achieved by applying a¼1
+d for small positive d on the side with smaller D as long as this
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does not increase this D to become the larger of the two. As an
example, consider the parameter settings in figure 4. Here D�¼1
and D+¼3. We can increase a� from 1 to a little more than 1.128
and still have D ¼ maxðD�

;DþÞ ¼ 3, but decreasing the vari-
ance from 9.25 to 5.60. However, the mean also changes from
36.08 to 36.70, decreasing the underestimation bias.

The preceding description is meant to illustrate how to trade
off different parameters in the system design. In order to facil-
itate the exploration of parameter settings, we constructed the
graphical web-based tool shown in figure 4. This can be used to
develop preset options for users to select when issuing queries to
the database.

RESULTS
We created an open source tool that fully implements the privacy
protection mechanism of the system and also includes a graphical

interface for tuning system parameters and exploring user pref-
erences. The implementation only employs about 240 lines of
JavaScript and 107 lines of standard HTML, and is available at
http://ptg.ucsd.edu/cq and by request from the authors.
In order to show that our proposed system provides similar

utility to i2b2, we simulated four queries 1000 times each with
true counts of 600, 430, 250, and 80. Figure 5 shows the histo-
gram of returned values for these queries for i2b2 with SD 1.33
and our proposed system with 3¼2 (yielding variance slightly
larger than 1.33). These values represent returned counts from
a sequence of queries designed to identify a cohort. While both
methods returned similar value ranges, our method returned the
true count more often (by a factor 1.61) while at the same time
guaranteeing 2-differential privacy.
How changing the privacy expenditure per query can help is

shown in table 1, where a sample run of queries was executed

Figure 2 (AeD) Mean and variance
of noise values for true count equal to
80 versus the differential privacy
parameter 3P. For symmetric noise
distributions the mean of the noise is
effectively 0, but in the asymmetric
case the mean increases as the privacy
level increases.

Figure 3 Variance of noisy counts as
functions of b and a. (A) Variance of
noise for true count equal to 80 versus
parameter b+ when b�¼1 in the linear
asymmetric utility. For larger 3, the
variance is smaller even with a larger
degree of asymmetry. (B) Variance of
noise for true count equal to 400 versus
a in the non-linear symmetric utility
with b¼1. The upper plot shows
a larger range of a values and the lower
plot is zoomed in for larger a.
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using our tool. In the first run the privacy expense is 3i¼1 per
query, which results in too accurate counts for broad
queries (in the upper rows of the table) and less accurate
counts for narrower queries with more clauses (in the lower
rows). In the second run we can choose 3i to vary per query,
expending more of the privacy budget in the narrower queries.
This results in a more accurate count. However, in both runs
the total privacy risk is 3¼5. This shows how quantifiable
privacy can help give users some flexibility over a ‘one size fits
all’ solution.

Finally, we applied our tool to the scenarios for researcher A
and researcher B described earlier. The results obtained for
researcher A are shown in figure 4. For researcher B, using
overestimation (b�¼3) produces responses of 84, 86, 86, 86, and
88 from a distribution with a mean of 86.95 and variance of 9.84.
As can be seen, while we are over- and underestimating, we are
not forced to do so grossly.

DISCUSSION
In accordance with our objective, we have shown in detail how
existing count query systems can be extended to provide strong
privacy guarantees, allow the incorporation of user preferences
with respect to individual query responses, and allow budgeting
of privacy loss over time. In this study we address two funda-
mental questions that arise: (1) how much privacy does
perturbing the count yield, and (2) how does the perturbation of

counts affect the usefulness to the end user? To optimize the
usefulness of the individual perturbed counts returned, we have
proposed a new method for perturbing the true counts that is
not based on noise addition but, instead, employs the expo-
nential mechanism of McSherry and Talwar.21 Our method
provides a specified level of differential privacy13 and explicitly
translates user preferences into a distribution on approximate
count values from which the returned count is drawn. Using
differential privacy, we can quantify how well our mechanism
protects information with regard to individuals, including their
identity.
The strength of our differential privacy guarantees stems from

very conservative assumptions. First, the privacy risk to each
individual is assessed assuming that all other records of the
individual have been revealed. Second, queries are treated inde-
pendently and privacy risk increases additively per query.
Ongoing theoretical work seeks to mitigate these assumptions
either through additional modeling of the data23 or through
processing queries in a non-interactive or batch manner.24 With
an extension to multiple query types, our system resembles
PINQ.25 PINQ is a specific prototype query language which
supports privacy-preserving queries on databases with the goal
of making the response mechanism transparent to the end user.
In contrast, our goal here is to let the user tune the response
mechanism for his or her specific needs. Furthermore, rather
than creating a system-dependent solution, we propose

Figure 4 Screen capture of prototype
parameter exploration tool. The
parameters are set to the
underestimation preset. The shape of
the utility function, the resulting
probability mass function together with
its mean and variance are shown, as
well as five random deviates, each of
which represents a possible system
response. As can be seen from these
five random deviates, the biasing
towards underestimation was
successful.
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modifying the response mechanism of existing study design
tools to provide quantifiable privacy and maintain the privacy
budget.

Our approach offers the use of a total ‘privacy budget’ 3total
and a bound on the maximum privacy risk per query 3max

i that
limits the total number of queries. Without these limitations
a user could approximately recover the entire database from
perturbed queries.12 Many differential privacy methods assume
that access to the query tool is public12 22 23 and hence the total
privacy budget may be too small to make an effective study
design aid. However, in institutional interactive query systems,
administrators can control the environment by restricting access
to trusted users, allowing larger budgets. If a user exhausts their
privacy budget, it can be renewed after a review. A natural point
at which renewal can happen in is when the IRB approves
a study and allows the researcher access to the data. The
quantity 3max

i should be set such that the error per query is
sufficiently small for effective cohort identification, and the total

privacy budget should be set to the typical number of queries
needed to identify an appropriate study cohort, which can be as
high as 100 (Murphy SN, personal communication, 2011). In the
end, determining these numbers is a policy question that an
institution can address in consultation with statisticians.
Regardless of regulations, institutions may continue to protect
themselves by adopting stronger privacy oversight for patient
data than required.
We envisage three ways of extending i2b2 and STRIDE by

replacing their noise addition with our mechanism: (1) only
offering symmetric linear utility and 3¼2.037; (2) offering select
simple preset parameter profiles developed by system designers
and statisticians; and (3) offering a tool like ours for users to
develop their own presets. All three approaches offer privacy
budgeting and all three can co-exist in a single implementation.
The tool we have created demonstrates both the feasibility of

such a system and the practicality of implementing it. This tool
will be useful both for selecting profiles for a simplified user

Figure 5 Comparison of count
perturbations of the proposed system
with those of i2b2.
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Table 1 Two example runs of queries

Query True count Privacy cost 3i Perturbed count Privacy cost 3i Perturbed count

Admitted with heart failure 6000 1 5996 0.5 5977

+ within last year 600 1 599 0.5 606

+ previous diagnosis of hypertension 430 1 433 1 436

+ male 250 1 251 1 246

+ under 65 80 1 70 2 79

Column 1 indicates clauses added to the query from the preceding row, column 2 is the true count of individuals satisfying the query in a hypothetical database, columns 3 and 4 are for
constant 3i per query, and columns 5 and 6 show the query results from changing 3i per query.
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interface for users who are not inclined to explore individual
parameter settings and for privacy policy makers who want to
explore the consequences of different privacy level settings.
Furthermore, our approach is already partially implemented in
our Clinical Data Warehouse for Research at the University of
California San Diego with a full implementation planned.

Because privacy in our system is quantified using a common
privacy ‘currency’, future systems can allow queries for statistics
beyond simple counts provided these are answered by methods
that guarantee differential privacy. Current such methods
include learning models by empirical risk minimization
including logistic regression and support vector machines,26 and
producing robust descriptive statistics and estimators.27 This has
the potential to enhance the ability of researchers to design
studies while staying within their privacy budget, as well as
providing the basis on which an enterprise-wide comprehensive
privacy architecture can be built.

CONCLUSION
Counts supplied by a count query tool for study design must be
perturbed to provide patient privacy. We have presented a prac-
tical approach to extending current query tools to provide
provable privacy guarantees that at the same time allows users
to tailor system responses to suit their needs and preferences. In
consequence, the presented approach yields both increased
control of privacy risks as well as usefulness to the end user. The
approach also serves as an example of a service that can be
incorporated in an enterprise-wide system for tracking privacy
and accountability.
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