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Motivation
Cumulative distribution functions (CDFs) and empirical CDFs (eCDFs) 
are widely used to summarize distributions. The Dvoretzky-Kiefer-
Wolfowitz (DKW) inequality shows the eCDF is a good approximation 
of the true.

If the underlying data is sensitive, we can use privacy-preserving 
approximations of the CDF. We want to:

• Balance privacy and utility/accuracy.
• Be compatible with federated and online updating/learning.

Goal: Design a differentially private CDF approximation that allows 
for continuous updating. 

Results

Looking ahead

Result 1: PP outperforms HQ and is comparable to AQ, even better 
than it for certain distributions, such as Beta distribution in centralized
settings.

Result 2: PP outperforms both HQ and AQ in various scenarios, such 
as decentralized settings and those involving newly collected data.
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Differential Privacy

Privacy comes from a randomized map 𝑄(𝑦|𝑥). We say 𝑄 guarantees
(𝜖, 𝛿)-differential privacy [1-3] if

𝑄 𝒮 𝑥 ≤ 𝑒!𝑄 𝒮 𝑥" + 𝛿

for all measurable subsets 𝒮 ⊆ 𝒴 and all 𝑥, 𝑥" ∈ 𝒳 with 𝑥 ∼ 𝑥′ differ in
a single 𝑥#.

Prior work on private CDF estimation

Given scalar data 𝒟 = {𝑥# ∈ 𝐴, 𝐵 : 𝑖 ∈
[𝑛]}, estimate the eCDF

?𝐹$ 𝑡 = %
&
∑#'%& 1(𝑥# ≤ 𝑡).

Two standard algorithms:

• Histogram Queries (HQ) bins the data,
computes a differentially private
histogram, and interpolates a CDF.
• Adaptive Quantiles (AQ) queries

splits of data to sequentially estimate
values of CDF (cf. binary search).

HQ and AQ methods have limitations in 
various scenarios. 
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CDF estimation as signal approximation

Polynomial Projection (PP) with Postprocessing

Prior work on private CDF estimation

The first three partial sums of the Fourier series 
for a square wave. Image sourced from Wikipedia.

Approach: function approximation to 
estimate the CDF

The eCDF is a very structured signal: 
piecewise constant, bounded, monotonic…. 

Signal processing has lots of techniques for 
structured signal approximation (Fourier
Series, wavelets, polynomials).

How should we introduce privacy?

Step 1: Estimate the empirical CDF using a 
series of polynomial functions 

!𝐹! 𝑡 ≈ ∑𝑐"𝑃" 𝑡 .

• Choose the polynomial space 𝒫 spanned by
the first 𝐾 + 1 Legendre polynomials 
{𝑃#, 𝑃$, … , 𝑃%}, where each 𝑃" is a
polynomial of degree of 𝑘.

• Obtain the optimal CDF estimate in the 
polynomial space by projecting the empirical 
CDF onto this space. 

Step 2: Add noise to the coefficients for privacy protection. 

• These coefficients are associated with the moments of the samples $
&
∑𝑥'(,

providing a straightforward approach for sensitivity computation. 

Step 3: Isotonic regression is used as a post-processing method to ensure the 
estimated CDF is non-decreasing. 

Theorem (Upper Bound for ∥ 𝑭∗ − 6𝑭 ∥𝟐).

Let 𝐹∗ be the true CDF for a random variable with 𝑥 ∈ [−1,1]. If :𝐹 is the
optimal approximation of 𝐹∗ in the polynomial space 𝒫 and ∥ 𝐹∗ − :𝐹 ∥+≤
𝛼, then with probability at least

1 − 2 exp − , -./ !

$0
− 2 𝐾 + 1 exp(− -./ !

1 %2$ "3!
),

we have ∥ 𝐹∗ − C𝐹 ∥+≤ 𝜂 for 𝜂 > 𝛼 > 0.

If the space is well-chosen, implying that :𝐹 represents 𝐹∗ well, then the DP C𝐹
can also approximate 𝐹∗ well.

Figure 1. Apply different methods with Gaussian mechanism to normal distribution 𝒩 0,1 using the following parameters: 𝑁 =
10!, 𝜖 = 0.1, 𝛿 = 𝑁"#/%, 𝐾 = 6. The bin number for HQ is set to 30, and the number of iterations for AQ is 50.

Figure 2. Comparison of distances between different DP CDF methods and the true CDF on normal distribution 𝒩 0,1 . Experiment
was run 50 times with 𝑁 = 10!, 𝛿 = 𝑁"#/%, 𝐾 = 6. The bin number in HQ was set to 30, and the number of iterations in AQ was 50.

Figure 3. The experiment was run 50 times in decentralized setting on normal distribution 𝒩 0,1 with 𝑁 = 10!, 𝛿 = 𝑁"#/%, 𝐾 = 6,
and 10 sites . The bin number in HQ was set to 30, and the number of iterations in AQ was 50.

Figure 4. The experiment was run 50 times on distribution 𝒩 0,1 with 𝑁 = 10!, 𝛿 = 𝑁"#/%, 𝐾 = 6. The CDF was updated after every
1000 new data points, for a total of 10 rounds of updates. Bin number in HQ was 30, and number of iterations in AQ was 50.

Further/better approximation guarantees… 
… empirical approaches using dictionary learning
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