

Motivation

Cumulative distribution functions (CDFs) and empirical CDFs (eCDFs) are widely used to summarize distributions. The Dvoretzky-Kiefer-Wolfowitz (DKW) inequality shows the eCDF is a good approximation of the true.

If the underlying data is sensitive, we can use privacy-preserving approximations of the CDF. We want to:

- Balance privacy and utility/accuracy.
- Be compatible with federated and online updating/learning.

Goal: Design a differentially private CDF approximation that allows for continuous updating.

Privacy comes from a randomized map Q(y|x). We say Q guarantees (ϵ, δ) -differential privacy [1-3] if

 $Q(\mathcal{S}|x) \le e^{\epsilon}Q(\mathcal{S}|x') + \delta$

for all measurable subsets $S \subseteq Y$ and all $x, x' \in X$ with $x \sim x'$ differ in a single x_i .

Prior work on private CDF estimation

Given scalar data $\mathcal{D} = \{x_i \in [A, B]: i \in A\}$ [*n*]}, estimate the eCDF

$$\widehat{F}_X(t) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}(x_i \le t).$$

Two standard algorithms:

- Histogram Queries (HQ) bins the data, computes a differentially private histogram, and interpolates a CDF.
- **Adaptive Quantiles (AQ)** queries splits of data to sequentially estimate values of CDF (cf. binary search).

HQ and AQ methods have limitations in various scenarios.

Differentially Private Distribution Estimation Using Functional Approximation

ECE Department, Rutgers University, Piscataway, New Jersey 08854

CDF estimation as signal approximation

Approach: function approximation to estimate the CDF

The eCDF is a very structured signal: piecewise constant, bounded, monotonic....

Signal processing has lots of techniques for structured signal approximation (Fourier Series, wavelets, polynomials).

The first three partial sums of the Fourier series for a square wave. Image sourced from Wikipedia.

Polynomial Projection (PP) with Postprocessing

Step 1: Estimate the empirical CDF using a series of polynomial functions

$$\widehat{F}_X(t) \approx \sum c_k P_k(t).$$

- Choose the polynomial space \mathcal{P} spanned by the first K + 1 Legendre polynomials $\{P_0, P_1, \dots, P_K\}$, where each P_k is a polynomial of degree of k.
- Obtain the optimal CDF estimate in the polynomial space by projecting the empirical CDF onto this space.

<u>Step 2</u>: Add noise to the coefficients for privacy protection.

• These coefficients are associated with the moments of the samples $\frac{1}{n}\sum x_i^m$, providing a straightforward approach for sensitivity computation.

Step 3: Isotonic regression is used as a post-processing method to ensure the estimated CDF is non-decreasing.

Prior work on private CDF estimation

Theorem (Upper Bound for $|| F^* - \widetilde{F} ||_2$).

Let F^* be the true CDF for a random variable with $x \in [-1,1]$. If \check{F} is the optimal approximation of F^* in the polynomial space \mathcal{P} and $|| F^* - \check{F} ||_2 \leq$ α , then with probability at least

 $1 - 2 \exp\left(-\frac{N(\eta - \alpha)^2}{16}\right) - 2(K + 1)$

we have $|| F^* - \tilde{F} ||_2 \le \eta$ for $\eta > \alpha > 0$.

If the space is well-chosen, implying that \check{F} represents F^* well, then the DP \tilde{F} can also approximate F^* well.

Work supported by the USA NIH under Award 2R01DA040487: COINSTAC 2.0 (PI: V. Calhoun)

Ye Tao, Anand D. Sarwate

How should we introduce privacy?

1) exp
$$(-\frac{(\eta-\alpha)^2}{4(K+1)^4\sigma^2}),$$

<u>Result 1</u>: PP outperforms HQ and is comparable to AQ, even better than it for certain distributions, such as Beta distribution in centralized settings.

Symposium (CSF). IEEE, 2017, pp. 263–275.

Results

<u>Result 2</u>: PP outperforms both HQ and AQ in various scenarios, such as decentralized settings and those involving newly collected data.

- [1] Cynthia Dwork and Aaron Roth, "The algorithmic foundations of differential privacy," Foundations and Trends[®] in Theoretical Computer Science, vol. 9, no. 3–4, pp. 211–407, 2014. [2] Peter Kairouz, Sewoong Oh, and Pramod Viswanath, "The composition theorem for differential
- privacy," in International Conference on Machine Learning. PMLR, 2015, pp. 1376–1385.
- [3] Ilya Mironov, "Renyi differential privacy," in 2017 IEEE 30th Computer Security Foundations
- [4] D. G. Luenberger, Optimization by vector space methods. John Wiley & Sons, 1997.