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Everyone should have privacy!
We all want it but… what is it?

US legal scholar Daniel J. Solve identifies at 
least 6 different legal meanings of privacy 
in US law:


• A “right to be left alone” (no photos)

• The right to limit access to myself (locks)

• Information secrecy

• Control over how information is used

• “Personhood”

• Decision-making about myself

“Perhaps the most striking thing 
about the right to privacy is that 
nobody seems to have any clear 
idea what it is.”


Judith Jarvis Thomson, The Right to Privacy, 
Philosophy & Public Affairs 4(4), 1975.

Ph
ot

o:
 M

IT
 N

ew
s



We see examples all the time
The cost of privacy loss



Our motivation: biomedical research
Joint analyses can make a huge difference, but are they safe?



Trying to enable collaboration

• Goal: platform for researchers to create 
consortia for federated analysis of 
neuroimaging data.


• Algorithms: preprocessing, feature 
discovery (PCA, ICA, NMF, DNNs), 
prediction, visualization and quality 
control, etc. 

• Challenge: small sample size, high 
dimension, domain-specific algorithms.

A Case Study

https://trendscenter.org/

https://coinstac.org/ 



What this talk is about
From privacy basics to private federated learning

We will start from the basics:


• How does information theory let us understand 
privacy, and particular differential privacy (DP)?


• How do we protect privacy when doing 
machine learning and statistics?


• What challenges and opportunities arise when 
working with federated data?


• How can this help in collaborative science?



An IT perspective on DP



Modeling private information: a binary secret
Let’s start simple

Suppose we have a single bit 
 of private information.


Some information  which depends 
on  gets leaked (or published) and 
is observed by an adversary.


The privacy question: How much 
does Z reveal about ?

b ∈ {0,1}

Z
b

b

b ∈ {0,1}

Z ∼ p(z |b)

b̂ ∈ {0,1}



This is a hypothesis testing problem!
Time to dust off your notes from detection and estimation…

This privacy question is a hypothesis testing question:








The optimal test for the adversary is a likelihood ratio test:


ℋ0 : Z ∼ p(z |0)

ℋ1 : Z ∼ p(z |1)

b̂ =
1 log p(z |1)

p(z |0) ≥ τ

0 log p(z |1)
p(z |0) < τ

I ❤ Neyman-Pearson!



Tradeoffs between  and PFA PMD
We get more privacy when the hypothesis test is “hard”

• A privacy guarantee is made by the tradeoff 
between probabilities of


• false alarm (Type I error) and 


• missed detection (Type 2 error)


• If the likelihood ratio is small, the test will 
have a higher error.


• We can use a version of the ROC curve to 
visualize the kinds of guarantees.
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Error tradeoÆs for Gaussian hypotheses
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Error tradeoÆs for Gaussian hypotheses
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Error tradeoÆs for Gaussian hypotheses
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Everyone’s favorite example: Gaussians!
Example: additive Gaussian noise

If the revealed information  is Gaussian:








We can write the error probabilities in terms 
of Q functions:


, .

Z

ℋ0 : Z ∼ 𝒩(0,σ2)

ℋ1 : Z ∼ 𝒩(1,σ2)

PFA = Q ( t
σ ) PMD = Q ( 1 − t

σ )



Example: additive Laplace noise
We can do more than just Gaussians!

If the revealed information  is Lapace:








Where  has density


.

Z

ℋ0 : X ∼ 𝖫𝖺𝗉𝗅𝖺𝖼𝖾(λ)

ℋ1 : X ∼ 1 + 𝖫𝖺𝗉𝗅𝖺𝖼𝖾(λ)

𝖫𝖺𝗉𝗅𝖺𝖼𝖾(λ)

p(z) =
λ
2

exp(−λ |z | )

°3 °2 °1 0 1 2 3
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Examples of Laplace distributions
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∏ = 0.5

0.0 0.2 0.4 0.6 0.8 1.0
PFA

0.0

0.2

0.4

0.6

0.8

1.0

P
M

D

Error tradeoÆs for Laplace hypotheses

∏ = 1.0

0.0 0.2 0.4 0.6 0.8 1.0
PFA

0.0

0.2

0.4

0.6

0.8

1.0

P
M

D

Error tradeoÆs for Laplace hypotheses

∏ = 4.0

∏ = 2.0

∏ = 1.0

∏ = 0.5

0.0 0.2 0.4 0.6 0.8 1.0
PFA

0.0

0.2

0.4

0.6

0.8

1.0

P
M

D

Error tradeoÆs for Laplace hypotheses

∏ = 2.0

0.0 0.2 0.4 0.6 0.8 1.0
PFA

0.0

0.2

0.4

0.6

0.8

1.0

P
M

D

Error tradeoÆs for Laplace hypotheses

∏ = 4.0

Error tradeoffs for Laplace noise
Lighter tails give a different shape

The error probabilities for the test are:








The tradeoff is similar to the Gaussian but 
the slope at the corners is different.

PFA = ∫
∞

t

λ
2

exp( − | t |λ)dt

PMD = ∫
t

−∞

λ
2

exp( − |A − t |λ)dt



Hard tests mean more privacy
Designing lower bounds on error probability

We can define privacy in terms of lower bounds on the tradeoff curve.


One way to do this is to put bounds on the log likelihood ratio.


Suppose we have bounds like:








This is exactly the same as the definition of -differential privacy! 
[Wasserman and Zhou 2010, Kairouz, Oh, Vishwanath 2017]

PFA + eϵPFA ≥ 1 − δ

eϵPFA + PMD ≥ 1 − δ

(ϵ, δ)



Error tradeoffs from DP lower bounds
Using piecewise linear functions to bound the error

Starting with








We see different error tradeoffs.


We can vary  or vary  to see how these 
“privacy parameters” affect the shape of 
the tradeoff region.

PFA + eϵPFA ≥ 1 − δ

eϵPFA + PMD ≥ 1 − δ

ϵ δ
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Revisiting Gauss and Laplace
What DP guarantees do our previous hypothesis tests have?

Any kind of lower bound gives a way of 
measuring privacy! 

Laplace and Gaussian tests do not meet 
the DP lower bounds exactly.


We can base privacy guarantees around 
any shape of tradeoff curve [Dong, Roth, Su 2019].


How do we reconcile the “standard” DP 
story with this simple binary hypothesis 
test?
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The “standard” approach to explaining DP
Neighboring databases of individual records

In the textbook approach to describing DP we have several ingredients:


1. Data space: , often modeled as records from  individuals.


2. Neighborhood relationship : for  we write  if they are “neighbors”.

• Example: each person has 1 bit so  and  if they differ in one position.


3. Output space: , depends on the functionality/what we want to release. 

• Example: If we want the average of data , we have s .

• Example: If we want to train a classifier using data , 


4. Algorithm: a randomized map/conditional distribution/channel .

𝒳 n

∼ x, x′￼ ∈ 𝒳 x ∼ x′￼

𝒳 = {0,1}n x ∼ x′￼

𝒴
𝒳 = [0,1]n 𝒴 = [0,1]

𝒳 = {ℝd × {0,1}}n 𝒴 = ℝd .

Q : 𝒳 → 𝒴



The hypothesis testing in DP

A channel/“mechanism”/algorithm  is -differentially private if





For all measurable subsets  and all . 

Q (ϵ, δ)

Q(𝒮 |x) ≤ eϵQ(𝒮 |x′￼) + δ

𝒮 ⊆ 𝒴 x ∼ x′￼

<latexit sha1_base64="wEe26dl5F4cKK0SXfsWX0SaumdQ=">AAAB/HicbVDLSsNAFL3xWesr6tLNYBVclUREXRbduKxgH9CEMplM2qGTBzOT0hLil7hUN+LWP3Hh3zhJu9DWAwOHc+7lnjlewplUlvVtrKyurW9sVraq2zu7e/vmwWFbxqkgtEViHouuhyXlLKItxRSn3URQHHqcdrzRXeF3xlRIFkePappQN8SDiAWMYKWlvmk6Q6wyJ8Rq6AXZJM/7Zs2qWyXQMrHnpNY4hRLNvvnl+DFJQxopwrGUPdtKlJthoRjhNK86qaQJJiM8oD1/zBIZ4ZBKN5uU4XN0pn0fBbHQL1KoVH8vZTiUchp6erJIKRe9QvzP66UquHEzFiWpohGZHQpSjlSMiiaQzwQlik81wUQwHReRIRaYKN1XVfdgL/56mbQv6vZV3X64rDVuZ4VABY7hBM7BhmtowD00oQUExvAMr/BmPBkvxrvxMRtdMeY7R/AHxucPMo2V5w==</latexit>

x̂Adversary
<latexit sha1_base64="KDrPpXErQFVRHlczfAz/lhc00AE=">AAAB63icbVBNSwMxEJ2tX7V+VT16CVbBU9kVUY9FLx5bsB/QLiWbzbahSXZJssWl9Bd4VC/i1Z/kwX9juu1BWx8MPN6bYWZekHCmjet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqCG2SmMeqE2BNOZO0aZjhtJMoikXAaTsY3c/89pgqzWL5aLKE+gIPJIsYwcZKjaxfrrhVNwdaJd6CVGpnkKPeL3/1wpikgkpDONa667mJ8SdYGUY4nZZ6qaYJJiM8oN1wzBItsaDanzzlt07RufVDFMXKljQoV38PTbDQOhOB7RTYDPWyNxP/87qpiW79CZNJaqgk80VRypGJ0exxFDJFieGZJZgoZs9FZIgVJsbGU7I5eMtfr5LWZdW7rnqNq0rtbh4IFOEETuECPLiBGjxAHZpAgMIzvMKbI5wX5935mLcWnMXMMfyB8/kDsLmOyg==</latexit>

y

<latexit sha1_base64="lyz82hhd81yVwEu44OJdq6DLj+M=">AAAB9HicbVBNT8JAEJ3iF+IX6tFLI5rghbTGqEeiF4+QyEeEhmy3W9iw3W12t8QG+Rce1Yvx6r/x4L9xKRwUfMkkL+/NZGaeHzOqtON8W7mV1bX1jfxmYWt7Z3evuH/QVCKRmDSwYEK2faQIo5w0NNWMtGNJUOQz0vKHt1O/NSJSUcHvdRoTL0J9TkOKkTbSQ72cPnVxIPRZr1hyKk4Ge5m4c1KqnkCGWq/41Q0ETiLCNWZIqY7rxNobI6kpZmRS6CaKxAgPUZ90ghGNFUcRUd74MTt6Yp8aP7BDIU1xbWfq76ExipRKI990RkgP1KI3Ff/zOokOr70x5XGiCcezRWHCbC3saQJ2QCXBmqWGICypOdfGAyQR1iangsnBXfx6mTTPK+5lxa1flKo3s0AgD0dwDGVw4QqqcAc1aAAGDs/wCm/WyHqx3q2PWWvOms8cwh9Ynz/ZnJJI</latexit>

Q(y|·)
<latexit sha1_base64="lyz82hhd81yVwEu44OJdq6DLj+M=">AAAB9HicbVBNT8JAEJ3iF+IX6tFLI5rghbTGqEeiF4+QyEeEhmy3W9iw3W12t8QG+Rce1Yvx6r/x4L9xKRwUfMkkL+/NZGaeHzOqtON8W7mV1bX1jfxmYWt7Z3evuH/QVCKRmDSwYEK2faQIo5w0NNWMtGNJUOQz0vKHt1O/NSJSUcHvdRoTL0J9TkOKkTbSQ72cPnVxIPRZr1hyKk4Ge5m4c1KqnkCGWq/41Q0ETiLCNWZIqY7rxNobI6kpZmRS6CaKxAgPUZ90ghGNFUcRUd74MTt6Yp8aP7BDIU1xbWfq76ExipRKI990RkgP1KI3Ff/zOokOr70x5XGiCcezRWHCbC3saQJ2QCXBmqWGICypOdfGAyQR1iangsnBXfx6mTTPK+5lxa1flKo3s0AgD0dwDGVw4QqqcAc1aAAGDs/wCm/WyHqx3q2PWWvOms8cwh9Ynz/ZnJJI</latexit>

Q(y|·)

<latexit sha1_base64="S+vMKsPVJuY9zkg/tmtrYpkIhPo=">AAAB9HicdVDLTgIxFL2DL8QX6tJNI5q4IjOKPHZENy4xkUcEQjqlAw2dzqTtEMiEv3Cpboxb/8aFf2MZMFGjJ2lycs69uafHDTlT2rY/rNTK6tr6Rnozs7W9s7uX3T9oqCCShNZJwAPZcrGinAla10xz2golxb7LadMdXc/95phKxQJxp6ch7fp4IJjHCNZGuu/4WA9dL57MetmcnbcTIDtfKJTsy4ohxUrZvqggZ2nlqieQoNbLvnf6AYl8KjThWKm2Y4e6G2OpGeF0lulEioaYjPCAtvtjFiqBfaq68SQJPUOnxu8jL5DmCY0S9ftSjH2lpr5rJuch1W9vLv7ltSPtlbsxE2GkqSCLQ17EkQ7QvAHUZ5ISzaeGYCKZiYvIEEtMtOkpY3r4+iz6nzTO804x79wWctWrRSGQhiM4hjNwoARVuIEa1IGAgAd4gmdrbD1aL9brYjRlLXcO4Qest08tzpMp</latexit>

x
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x0

DP is a property of the channel

[Dwork-Kenthapadi-McSherry-Mironov-Naor 2006]

[Wasserman-Zhou 2010] 




DP makes many hypothesis tests hard

Compared to our single private bit , in DP 
we want many hypothesis tests to hard for 
the adversary. For every  the test








should have a large probability of error.


When can we do this? When neighboring 
data sets make similar output distributions.

b

x ∼ x′￼

ℋ0 : y ∼ Q( ⋅ |x)

ℋ1 : y ∼ Q( ⋅ |x′￼)

Protecting many single bits simultaneously
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Sensitivity of scalar functions
Understanding the distance between hypotheses

In DP, we usually want to approximate some 
function of the data.


Suppose we want . We want the test to 
be hard for any pair  which are “neighbors” 
( ).


If  is small for all neighbors, this should be 
easier.


Example:  can change by at most  

for .

f : 𝒳 → ℝ
(x, x′￼)

x ∼ x′￼

f( ⋅ )

f(x) =
1
n

n

∑
i=1

xi
1
n

xi ∈ [0,1] 0 ø 1

H0 H1

PMD PFA



Sensitivity of scalar functions
Understanding the distance between hypotheses

The global sensitivity of  is 


.


If we use additive noise (like in the Laplace and Gaussian case) we have


         vs.         


We can make a guarantee for all “neighbors” if following test is hard: 


         vs.          .

f( ⋅ )

Δ( f ) = max
x∼x′￼

f(x) − f(x′￼)

ℋ0 : Z ∼ p(z − f(x)) ℋ1 : Z ∼ p(z − f(x′￼))

ℋ0 : Z ∼ p(z) ℋ1 : Z ∼ p(z − Δ( f ))



Some notes on the definition
DP’s underlying assumptions are slightly different

• Differential privacy is a stringent requirement: The probability of any event 
is similar, regardless of whether the data was x or any other neighboring x′. 


• Guarantee is on conditional probabilities given the data: same risk holds 
regardless of side information (e.g. linkage). 


• There is no statistical assumption on the data: x is not drawn from some 
distribution since it’s in the conditioning. 


• The data itself is considered identifying: no notion of some parts being 
personally identifiable information (PII) and others not.



DP and hypothesis testing
Fundamentally, DP is just a lower bound

The guarantee





Is equivalent to saying








Any test used by an adversary taking  and 
guessing if .

Q(𝒮 |x) ≤ eϵQ(𝒮 |x′￼) + δ

PFA + eϵPFA ≥ 1 − δ

eϵPFA + PMD ≥ 1 − δ

y
x ∼ x′￼
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Differentially private ML



Point estimation with differential privacy
Adding noise to sufficient statistics

 A typical DP approach to statistical estimation 
(Smith 2009):


• Model data as drawn i.i.d. . 


• Compute a sufficient statistic  for .


• Add noise to  to guarantee DP.


• Compute a “plug-in” estimate from noisy .


We just need the sensitivity of .

∼ p(x |θ)

T(xn) θ

T(xn)

T(xn)

T( ⋅ )

θ
xn ∼ p(x |θ)

T( ⋅ )

Q( ⋅ | t)

̂θpriv



Example: the sample mean
Computing the MSE as a function of privacy risk

Suppose we have data in  and want to estimate the mean:





• Sensitivity of  is .


•  will guarantee -DP.


• MSE of  is .

𝒳 = [A, B]n

̂μ(xn) =
1
n

n

∑
j=1

xj + Z

̂μ(xn) (B − A)/n

Z ∼ 𝖫𝖺𝗉𝗅𝖺𝖼𝖾(nϵ/(B − A)) (ϵ,0)

̂μ(xn) 2/λ2 = 2
(B − A)2

n2ϵ2

I hate Laplace noise!



The privacy-utility tradeoff
How much do we lose when we guarantee privacy?

Adding  noise guarantees privacy, but at what cost? The MSE is:





So we can see that less privacy risk (smaller ) induces more MSE.


We can try to optimize the privacy mechanism if we know the utility function 
(like squared error).


This is what people call the privacy-utility tradeof.

𝖫𝖺𝗉𝗅𝖺𝖼𝖾(λ)

2/λ2 = 2
(B − A)2

n2ϵ2

ϵ



Beyond additive noise
Sampling for privacy with the exponential mechanism

The Exponential Mechanism [McSherry, Talwar, 2007] samples a random  to maximize





To approximate this, sample according to a Gibbs measure using the sensitivity 
of :


.


y

y* = argmax
y

u(y, x)

u( ⋅ )

Q(y |x) ∝ exp (ϵu(y, x)/2Δ(u))



Maximum likelihood and ERM
Optimization and privacy 

Most of “modern” machine learning involves optimization problems, including maximum likelihood 
estimation and empirical risk minimization:


.


We can use DP to approximate this in a number of ways:


• “Output perturbation”: compute the minimizer and add noise.


• “Objective perturbation”: Add a random term to the objective function and minimize it.


• “Functional mechanism”: Add noise to an approximation of the loss function .


[Chaudhuri, Monteleoni, Sarwate 2011]

[Zhang, Zhang, Xiao, Yang, Winslett 2012]

w* = argmin
w

1
n

n

∑
i=1

ℓ(w, xi)

ℓ( ⋅ )



Post-processing invariance and composition
Nice properties of differential privacy

• Side-information resilience: measures the additional risk regardless of what is 
known already.


• Post-processing invariance: once we publish something the risk cannot increase 
from additional computations.  


• Composition: quantifies how privacy loss “adds up” over multiple releases.


Private
data set
D

privacy barrier

(✏1, �1)

legitimate user 1

legitimate user 2

adversary

data derivative
(✏1, �1)

(✏1, �1)

(✏1, �1)

differentially
private

algorithm
data derivative

data derivativenon-private 
post-

processing



Deep Learning and DP
Privacy for neural networks

Deep neural networks (DNNs) also use optimization 
algorithms in training. To make these private we 
can add noise to the gradients in stochastic 
gradient descent (SGD):


• Adding noise to gradients provides differential 
privacy.


• For high-dimensional problems, Gaussian noise 
is very effective.


• Need to use privacy accounting.

[Song et.al. 2013, Duchi et.al. 2014, Abadi et.al. 2016, Mironov 2017] 
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Composing multiple mechanisms
Returning to our hypothesis testing roots

For any -DP mechanism we can always find [Sommer, Meiser, Mohammadi 
2019] a pair of dominating distributions  such that:


.


We can then define the privacy loss random variable (PLRV) for :


.


Each time we use use a DP mechanism we get another PLRV. Composition rules 
tell us how to “add up” these PLRVs.

(ϵ, δ)
(P, Q)

Q(𝒮 |x) − eϵQ(𝒮 |x′￼) ≤ P(𝒮) − eϵQ(𝒮)

Z ∼ P

L = log
dP
dQ

(Z)



Approaches to composition
Different ways to count up PLRVs

If we have PLRVs , how can we find the total privacy 
loss from running these on our data?


• Measure concentration [Dwork, Rothblum, Vadhan 2010]


• Exact composition [Kairouz, Oh, Vishwanath 2015][Murtagh, Vadhan 2016]


• Large deviations/MGF [Abadi et al. 2016][Mironov et al. 2017][Balle et al. 2019]


• CLT [Dong et al. 2019][Sommer et al. 2019]


• Numerical approximation [Koskela et al. 2019, 2021][Koskela, Honkela 2020][Gopi et al. 
2021][Ghazi et al. 2022][Doroshenko et al. 2022]


• Saddlepoint analysis [Alghamdi et al. 2022]

L1, L2, …, LT



Main takeaways for DP machine learning
The state of the art for DP and ML is constantly evolving

• Basic algorithmic ideas are the same: developing a differentially private ML 
algorithm for applications involves understanding where to introduce the 
noise. 


• The best algorithm for a task may be application-dependent: x is not 
drawn from some distribution since it’s in the conditioning. 


• Privacy accounting is complicated: but generally gives us tighter bounds on 
the overall privacy for the algorithms we already have.


• There is still a large gap between prototype and application: there are lots 
of issues to handle that are a mix research questions and engineering.



DP in federated learning



Federated learning from private data
Defining the challenge

• Consortium of internet-connected research groups (sites).


• Each site has a cohort of (private) data from research subjects.


• Want to leverage larger total sample size to advance understanding.


Privacy: researchers have to promise each subject that their data will not be 
copied and that they cannot be identified as participants. 


Federated learning: this is decentralized/distributed learning, which has been 
re-branded as “cross-silo federated learning.” [Kairouz et al. 2021]




Federated learning from private data
Defining the challenge

A consortium of  research groups/sites wants to collaborate


• Data:  individuals locally at each site  in datasets .


• Goal: compute some target function  without uploading data to the 
cloud.

S

Ms s Xs = {Xs,m : m = 1,2,…, Ms}

T(X1, X2, …, XS)



An example from neuroimaging
Independent component analysis is often used for MRI

We studied a decentralized joint ICA:


• Each subject measurement  is 
composed of  observations from  
statistically independent components


• Linear mixing process defined by a 
mixing matrix  with , 
which forms the observed data 

. 


We want to find an unmixing matrix jointly 
across the sites.

S ∈ ℝR×N

N R

A ∈ ℝD×R D ≥ R

X = AS



Algorithmic ingredients
Independent component analysis is often used for MRI

We used a distributed gradient descent 
(with noisy SGD) on a nonconvex objective:


• Sites send noisy local gradients.


• Aggregator updates the matrix and sends 
it back.


• Key contribution: use common 
randomness to allow sites to add 
anticorrelated noise that balances privacy 
and utility.


[Imtiaz et al. 2021][Tasnim et al. 2023]
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DP challenges for collaborative science
Broadening the scope of applications is hard

• Sample sizes are small: DP has had the most success in the “big data” 
setting whereas human health studies are small.


• Generic approaches only go so far: most algorithms have been “general 
purpose” and don’t use domain knowledge.


• Real applications are pipelines: almost all scientific analyses have a pipeline 
of processes and differential privacy is most often studied in isolation.


• Interpretability and validation are important: as with ML/AI more generally, 
we want to have scientifically meaningful results.



Conclusions and open questions



What we’ve seen so far
Let’s start simple

We started out with a simple story: protecting 
a single bit.


• Differential privacy both is and is not just as 
simple as hypothesis testing.


• Taking an information-theoretic view opens 
the door to better analyses.


• The gap between algorithms and analysis is 
shrinking.


• The gap between algorithms and 
applications is still large.

b ∈ {0,1}

Z ∼ p(z |b)

b̂ ∈ {0,1}



Where can we go from here?
Looking ahead, what are the major challenges

• Any lower bound is a type of privacy: which 
one is the easiest to work with?


• Optimality is hard to define in many 
applications (for example, visualization): what 
can do to find “good” mechanisms?


• How practical is DP in small sample, high-
dimensional, or other challenging settings?


• When is DP the right solution and when is it 
the wrong solution?
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