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Our good friend the erasure channel

The erasure channel almost needs no introduction...

• Binary input, ternary output.

• Think of erasures as a state sequence s where 1 means “erase.”

• Fraction of erased bits upper bounded by p, either exactly (coding theory) or with

high probability (Shannon theory).
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Optimism versus pessimism

Optimistic: Random erasures (BEC):

erasures are i.i.d. Bernoulli. Shannon

capacity is 1− p.

Pessimistic: Adversarial erasures: erasures

can depend on transmitted codeword.

Capacity unknown!

• Lower bound: Gilbert-Varshamov (and

linear codes work.)

• Upper bound from linear programming

(MRRW “LP” bound).
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Models in the middle: causal and myopic
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Causal adversaries: erasures can depend

on the current and past input only.

Capacity is 1− 2p.

Myopic adversaries: erasures can depend

on a noisy (erased by BEC(q)) version of

the codeword.

• If p < q, capacity is 1− p.

• If p > q... see the paper.

Achievability arguments use stochastic

encoding and list decoding with

nonlinear codes.

(Chen, Jaggi, Langberg 2015) (Sarwate 2010) (Dey et al. 2016) (Dey et al. 2019)
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Main questions we address

Can we design efficient codes for causal and myopic models?

By efficient we mean that they take polynomial time to encode, decode, and store.

• random codes are inefficient to decode but linear codes are too easy jam!

−→ use a library of linear codebooks.

• common randomness is unrealistic.

−→ use limited encoder randomization to confuse the adversary.

• minimum distance coding is not efficient in general.

−→ use list decoding to permit efficient decoding.
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Causal and Myopic Adversaries



Causal/Online Adversaries

A causal adversary can eavesdrop noiselessly and in real time on the channel

inputs:

• Decision on whether to erase at time t can depend on (x1, x2, . . . , xt).

• Adversary’s budget: at most np erasures in codeword of length n.
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Myopic adversaries

A myopic adversary can eavesdrop noisily and noncausally on the channel inputs:

• Decision on whether to erase at time t can depend on z formed by passing x

through a BEC with erasure probability q

• Adversary’s budget: at most np erasures in codeword of length n.
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“Efficient” coding schemes

To get polynomial complexity, use

• a small amount of randomization to select from a

• library of random linear codes and

• uses list decoding to reduce the search space

There are different types of complexity we would like to control:

• Design: how many bits do we need to generate the code?

• Storage: how many bits do we need to store the code?

• Encoding: how many operations are needed to encode a message?

• Decoding: how many operations are needed to decode the message?
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Main results

Model

rate
Randomness Enc/Storage Decoding Perror

Myopic p < q

1− p− ϵ
λSM log(n) O(n2+λSM ) O(n3+λSM ) O(n−λSM )

Myopic q < p

small rate
O(n log log n) O(n2 log log n) O(n3 log log n) O(n−4/5)

Causal

1− 2p− ϵ
O
(
γ log n

ϵ

)
O(n3 log log n) O(n32/ϵ) O(n−(γ−1))

8/21



Sufficiently myopic adversaries



Encoding uses a library of linear codebooks

private
randomness

message

library of
linear codebooks

codeword

generator
matrix

Generating random linear codes: K = 2nλSM generator matrices Gi ∈ Fn×nR
2 generated

i.i.d. Bernoulli(1/2).
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James sees an erased version of the codeword
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Look at “unerased” rows of codebook

0

0

1

0

1

0

1

0

0

1

1

0

0

1

1

1

1

0

1

1

11/21



Decoder just tries every codebook
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Complexity: n3 per codebook, K = nnλSM codebooks.
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Myopia helps: if q > p, James cannot guess the correct codebook
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Causal adversaries



Encode splits block into a constant k = ⌈n
ϵ
⌉ chunks

private
randomness

per chunk
message

time/chunks
codeword

generator
matrix

Generate a library of linear codebooks independently for each chunk.
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James can erase with causal information only
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Bob decodes to a polynomial list after a certain time

list of consistent
messages for
any codebook
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Bob uses suffix to disambiguate the list

prefix suffix

check for unique message
over all codebooks
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Why does this work?

1. Bob can track James’s erasure budget.

2. List decoding creates a smaller set of messages to check for consistency.

3. James has a choice to make the list larger (erase more earlier, less later) or

conserve his budget (erase less earlier, more later).

4. Poor James, he can’t win.
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Recap and next steps



Recap

We design efficient (polynomial time) codes for both

causal and myopic models.

• Use libraries of linear codebooks for efficient decoding.

• Use limited encoder randomization to confuse the adversary.

• Use list decoding to permit efficient decoding.
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Open questions and future directions
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• Other adversary structres?

• Better degree for “polynomial”?

• Better error guarantees?

• General AVC models?
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private
randomness

message

library of
linear codebooks

codeword

generator
matrix

Thank you!
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