
Center for Advanced Mathematical Sciences
American University of Beirut

Learning with Structured
Tensor Decompositions
Anand D. Sarwate, Rutgers University
18 July 2024

Waheed U. Bajwa

Zahra Shakeri

Mohsen Ghassemi

Batoul Taki

Jose Hoyos Sanchez

Tensors in the real world

The history of the word “tensor”
Let’s meet some 19th century physicists

All images: Wikipedia

The history of the word “tensor”
Let’s meet some 19th century physicists

• 1848: William Rowan Hamilton used the word
“tensor” to mean the absolute value (norm) of a
quaternion. His “tensor” is actually a scalar (!)

All images: Wikipedia

The history of the word “tensor”
Let’s meet some 19th century physicists

• 1848: William Rowan Hamilton used the word
“tensor” to mean the absolute value (norm) of a
quaternion. His “tensor” is actually a scalar (!)

• 1898: Woldemar Voigt used “tensor” in his paper
Die fundamentalen physikalischen Eigenschaften
der Krystalle in elementarer Darstellung

All images: Wikipedia

The history of the word “tensor”
Let’s meet some 19th century physicists

• 1848: William Rowan Hamilton used the word
“tensor” to mean the absolute value (norm) of a
quaternion. His “tensor” is actually a scalar (!)

• 1898: Woldemar Voigt used “tensor” in his paper
Die fundamentalen physikalischen Eigenschaften
der Krystalle in elementarer Darstellung

• 1892: Gregorio Ricci-Curbastro developed the
theory of tensors. In 1900 he and his student Tullio
Levi-Civita write a book on it called Méthodes de
calcul différentiel absolu et leurs applications

All images: Wikipedia

The history of the word “tensor”
Let’s meet some 19th century physicists

• 1848: William Rowan Hamilton used the word
“tensor” to mean the absolute value (norm) of a
quaternion. His “tensor” is actually a scalar (!)

• 1898: Woldemar Voigt used “tensor” in his paper
Die fundamentalen physikalischen Eigenschaften
der Krystalle in elementarer Darstellung

• 1892: Gregorio Ricci-Curbastro developed the
theory of tensors. In 1900 he and his student Tullio
Levi-Civita write a book on it called Méthodes de
calcul différentiel absolu et leurs applications

All images: Wikipedia

From 1900 to the present
A relatively general timeline

All images: Wikipedia

From 1900 to the present
A relatively general timeline

• 1913: Albert Einstein and Marcel Grossman used
tensor calculus extensively in their work on general
relativity: Entwurf einer verallgemeinerten
Relativitätstheorie und einer Theorie der Gravitation

All images: Wikipedia

From 1900 to the present
A relatively general timeline

• 1913: Albert Einstein and Marcel Grossman used
tensor calculus extensively in their work on general
relativity: Entwurf einer verallgemeinerten
Relativitätstheorie und einer Theorie der Gravitation

All images: Wikipedia

From 1900 to the present
A relatively general timeline

• 1913: Albert Einstein and Marcel Grossman used
tensor calculus extensively in their work on general
relativity: Entwurf einer verallgemeinerten
Relativitätstheorie und einer Theorie der Gravitation

• 1915–17: Levi-Civita and Einstein have a
correspondence where the former helped fix the
mistakes Einstein made in using tensor analysis.

All images: Wikipedia

From 1900 to the present
A relatively general timeline

• 1913: Albert Einstein and Marcel Grossman used
tensor calculus extensively in their work on general
relativity: Entwurf einer verallgemeinerten
Relativitätstheorie und einer Theorie der Gravitation

• 1915–17: Levi-Civita and Einstein have a
correspondence where the former helped fix the
mistakes Einstein made in using tensor analysis.

• 1922: H. L. Brose’s English translation of Weyl’s
book Raum, Zeit, Materie (Space-Time-Matter)
uses “tensor analysis.”

All images: Wikipedia

So what is a “tensor” anyway?
Tensors are many different things to many different people

So what is a “tensor” anyway?
Tensors are many different things to many different people

For today, we treat tensors “mechanically”
as multidimensional arrays.

So what is a “tensor” anyway?
Tensors are many different things to many different people

For today, we treat tensors “mechanically”
as multidimensional arrays.

So what is a “tensor” anyway?
Tensors are many different things to many different people

For today, we treat tensors “mechanically”
as multidimensional arrays.

So what is a “tensor” anyway?
Tensors are many different things to many different people

For today, we treat tensors “mechanically”
as multidimensional arrays.

So what is a “tensor” anyway?
Tensors are many different things to many different people

For today, we treat tensors “mechanically”
as multidimensional arrays.

X ∈ ℝm1×m2×⋯×mK

So what is a “tensor” anyway?
Tensors are many different things to many different people

For today, we treat tensors “mechanically”
as multidimensional arrays.

X ∈ ℝm1×m2×⋯×mK

Several other (richer?) perspectives:

So what is a “tensor” anyway?
Tensors are many different things to many different people

For today, we treat tensors “mechanically”
as multidimensional arrays.

X ∈ ℝm1×m2×⋯×mK

Several other (richer?) perspectives:

• Point in the tensor product of vector
spaces

So what is a “tensor” anyway?
Tensors are many different things to many different people

For today, we treat tensors “mechanically”
as multidimensional arrays.

X ∈ ℝm1×m2×⋯×mK

Several other (richer?) perspectives:

• Point in the tensor product of vector
spaces

• Multilinear operator (or a tensor
representation of)GL(n)

Multidimensional arrays are everywhere!
Where do we see tensors?

Multidimensional arrays are everywhere!

• Medicine: Neuroimaging and other
medical imaging

Where do we see tensors?

Multidimensional arrays are everywhere!

• Medicine: Neuroimaging and other
medical imaging

• Geosensing: Hyperspectral imaging

Where do we see tensors?

Multidimensional arrays are everywhere!

• Medicine: Neuroimaging and other
medical imaging

• Geosensing: Hyperspectral imaging

• Communications: Massive MIMO

Where do we see tensors?

Multidimensional arrays are everywhere!

• Medicine: Neuroimaging and other
medical imaging

• Geosensing: Hyperspectral imaging

• Communications: Massive MIMO

• Probability: Joint PMFs on multiple
variables

Where do we see tensors?

Multidimensional arrays are everywhere!

• Medicine: Neuroimaging and other
medical imaging

• Geosensing: Hyperspectral imaging

• Communications: Massive MIMO

• Probability: Joint PMFs on multiple
variables

• Network science: Time-varying graphs

Where do we see tensors?

Multidimensional arrays are everywhere!

• Medicine: Neuroimaging and other
medical imaging

• Geosensing: Hyperspectral imaging

• Communications: Massive MIMO

• Probability: Joint PMFs on multiple
variables

• Network science: Time-varying graphs

• Also chemometrics, numerical linear
algebra, psychometrics, theoretical
computer science…

Where do we see tensors?

What do we want to do with tensor data?
All the regular things we do with data…

What do we want to do with tensor data?
All the regular things we do with data…

• Signal recovery

What do we want to do with tensor data?
All the regular things we do with data…

• Signal recovery

What do we want to do with tensor data?
All the regular things we do with data…

• Signal recovery

What do we want to do with tensor data?
All the regular things we do with data…

• Signal recovery

What do we want to do with tensor data?
All the regular things we do with data…

• Signal recovery

What do we want to do with tensor data?
All the regular things we do with data…

• Signal recovery

• Unsupervised learning (representation learning)

What do we want to do with tensor data?
All the regular things we do with data…

• Signal recovery

• Unsupervised learning (representation learning)

What do we want to do with tensor data?
All the regular things we do with data…

• Signal recovery

• Unsupervised learning (representation learning)

What do we want to do with tensor data?
All the regular things we do with data…

• Signal recovery

• Unsupervised learning (representation learning)

• Supervised learning (prediction)

What do we want to do with tensor data?
All the regular things we do with data…

• Signal recovery

• Unsupervised learning (representation learning)

• Supervised learning (prediction)

Q: who makes  
the best baklava?

What do we want to do with tensor data?
All the regular things we do with data…

• Signal recovery

• Unsupervised learning (representation learning)

• Supervised learning (prediction)

Q: who makes  
the best baklava?

What do we want to do with tensor data?
All the regular things we do with data…

• Signal recovery

• Unsupervised learning (representation learning)

• Supervised learning (prediction)

Q: who makes  
the best baklava?

What do we want to do with tensor data?
All the regular things we do with data…

• Signal recovery

• Unsupervised learning (representation learning)

• Supervised learning (prediction)

• Compression, etc…

Q: who makes  
the best baklava?

What do we want to do with tensor data?
All the regular things we do with data…

• Signal recovery

• Unsupervised learning (representation learning)

• Supervised learning (prediction)

• Compression, etc…

Q: who makes  
the best baklava?

What do we want to do with tensor data?
All the regular things we do with data…

• Signal recovery

• Unsupervised learning (representation learning)

• Supervised learning (prediction)

• Compression, etc…

Q: who makes  
the best baklava?

Unsupervised learning with tensors
Using dictionary learning for sparse representation

Unsupervised learning with tensors
Using dictionary learning for sparse representation

Task: given a collection of tensors , find a
dictionary such that

Y1, Y2, …, Yn ∈ ℝm1×m2×⋯×mK

d1, d2, …, dp

Unsupervised learning with tensors
Using dictionary learning for sparse representation

Task: given a collection of tensors , find a
dictionary such that

Y1, Y2, …, Yn ∈ ℝm1×m2×⋯×mK

d1, d2, …, dp

,Yi ≈
p

∑
j=1

xijdj

Unsupervised learning with tensors
Using dictionary learning for sparse representation

Task: given a collection of tensors , find a
dictionary such that

Y1, Y2, …, Yn ∈ ℝm1×m2×⋯×mK

d1, d2, …, dp

,Yi ≈
p

∑
j=1

xijdj

where each vector of coefficients is -sparse.xi = (xi1, xi2, …, xip)⊤ s

Unsupervised learning with tensors
Using dictionary learning for sparse representation

Task: given a collection of tensors , find a
dictionary such that

Y1, Y2, …, Yn ∈ ℝm1×m2×⋯×mK

d1, d2, …, dp

,Yi ≈
p

∑
j=1

xijdj

where each vector of coefficients is -sparse.xi = (xi1, xi2, …, xip)⊤ s

Application: processing or storing hyperspectral images acquired from a drone.

Supervised learning with tensors
Regression with tensor-valued covariates

Supervised learning with tensors
Regression with tensor-valued covariates

Task: given a collection of tensor-scalar pairs ,
find a regression tensor such that

{(Xi, yi)} ⊂ ℝm1×m2×⋯×mK × ℝ
B

Supervised learning with tensors
Regression with tensor-valued covariates

Task: given a collection of tensor-scalar pairs ,
find a regression tensor such that

{(Xi, yi)} ⊂ ℝm1×m2×⋯×mK × ℝ
B

,yi ≈ ⟨B, Xi⟩ + noise

Supervised learning with tensors
Regression with tensor-valued covariates

Task: given a collection of tensor-scalar pairs ,
find a regression tensor such that

{(Xi, yi)} ⊂ ℝm1×m2×⋯×mK × ℝ
B

,yi ≈ ⟨B, Xi⟩ + noise

where is the element-wise inner product.⟨ ⋅ , ⋅ ⟩

Supervised learning with tensors
Regression with tensor-valued covariates

Task: given a collection of tensor-scalar pairs ,
find a regression tensor such that

{(Xi, yi)} ⊂ ℝm1×m2×⋯×mK × ℝ
B

,yi ≈ ⟨B, Xi⟩ + noise

where is the element-wise inner product.⟨ ⋅ , ⋅ ⟩

Application: predicting a brain health condition from an MRI scan.

Supervised learning with tensors
Regression with tensor-valued covariates

Task: given a collection of tensor-scalar pairs ,
find a regression tensor such that

{(Xi, yi)} ⊂ ℝm1×m2×⋯×mK × ℝ
B

,yi ≈ ⟨B, Xi⟩ + noise

where is the element-wise inner product.⟨ ⋅ , ⋅ ⟩

Application: predicting a brain health condition from an MRI scan.

A baseline approach: vectorization
We can always throw away the structure

A baseline approach: vectorization
We can always throw away the structure

A baseline approach: vectorization
We can always throw away the structure

Why (and why not) vectorize?
The problems with vectorization

Why (and why not) vectorize?
The problems with vectorization

1. Vectorization ignores the tensor structure.

Why (and why not) vectorize?
The problems with vectorization

1. Vectorization ignores the tensor structure.

2. Resulting problems have very high dimension.

Why (and why not) vectorize?
The problems with vectorization

1. Vectorization ignores the tensor structure.

2. Resulting problems have very high dimension.

Example: ADHD200 data set has fMRI images of
children’s brains.

Why (and why not) vectorize?
The problems with vectorization

1. Vectorization ignores the tensor structure.

2. Resulting problems have very high dimension.

Example: ADHD200 data set has fMRI images of
children’s brains.

• fMRI data: 121 x 141 x 121 tensor

Why (and why not) vectorize?
The problems with vectorization

1. Vectorization ignores the tensor structure.

2. Resulting problems have very high dimension.

Example: ADHD200 data set has fMRI images of
children’s brains.

• fMRI data: 121 x 141 x 121 tensor

• After vectorizing: 2,122,945 dimensional vector

Why (and why not) vectorize?
The problems with vectorization

1. Vectorization ignores the tensor structure.

2. Resulting problems have very high dimension.

Example: ADHD200 data set has fMRI images of
children’s brains.

• fMRI data: 121 x 141 x 121 tensor

• After vectorizing: 2,122,945 dimensional vector

• Sample size: 959 total images

Dealing with overparameterization
This is not just a problem with tensors!

Dealing with overparameterization
This is not just a problem with tensors!

We usually make models more tractable by
assuming that our parameters have more
structure. For example, for a regression
model:

Dealing with overparameterization
This is not just a problem with tensors!

We usually make models more tractable by
assuming that our parameters have more
structure. For example, for a regression
model:

yi = ⟨B, Xi⟩ + zi

Dealing with overparameterization
This is not just a problem with tensors!

We usually make models more tractable by
assuming that our parameters have more
structure. For example, for a regression
model:

yi = ⟨B, Xi⟩ + zi

• Vectors: model as sparse.B

Dealing with overparameterization
This is not just a problem with tensors!

We usually make models more tractable by
assuming that our parameters have more
structure. For example, for a regression
model:

yi = ⟨B, Xi⟩ + zi

• Vectors: model as sparse.B

• Matrices: model as low rank.B

Dealing with overparameterization
This is not just a problem with tensors!

We usually make models more tractable by
assuming that our parameters have more
structure. For example, for a regression
model:

yi = ⟨B, Xi⟩ + zi

• Vectors: model as sparse.B

• Matrices: model as low rank.B
How do we impose structure on tensors?

What’s in this talk
A preview of the rest of the talk

1. Tensor decompositions and where to find them

2. Regression with tensor-valued data and parameters

3. Dictionary learning with structured tensors

4. Some pointers to future directions

Tensor decompositions

Some tensor terminology
A little jargon is unavoidable…

Kolda and Bader (2019)

Some tensor terminology
A little jargon is unavoidable…

m1

m2

m3

Kolda and Bader (2019)

Some tensor terminology
A little jargon is unavoidable…

• Mode: each coordinate index

• Order: the number of modes of the tensor

m1

m2

m3

Kolda and Bader (2019)

Some tensor terminology
A little jargon is unavoidable…

• Mode: each coordinate index

• Order: the number of modes of the tensor

m1

m2

m3

Kolda and Bader (2019)

Some tensor terminology
A little jargon is unavoidable…

• Mode: each coordinate index

• Order: the number of modes of the tensor

m1

m2

m3

• Mode 1 = spectrum

• Mode 2 = longitude

• Mode 3 = latitude

Kolda and Bader (2019)

Matrix-tensor products
Mode-wise products

We can multiply a tensor by a matrix along mode :

The result is a order- tensor whose -th mode is dimensional.

G ∈ ℝr1×r2×⋯×rK Bk ∈ ℝmk×rk k

G ×k Bk

K k mk

Matrix-tensor products
Mode-wise products

We can multiply a tensor by a matrix along mode :

The result is a order- tensor whose -th mode is dimensional.

G ∈ ℝr1×r2×⋯×rK Bk ∈ ℝmk×rk k

G ×k Bk

K k mk

G

Matrix-tensor products
Mode-wise products

We can multiply a tensor by a matrix along mode :

The result is a order- tensor whose -th mode is dimensional.

G ∈ ℝr1×r2×⋯×rK Bk ∈ ℝmk×rk k

G ×k Bk

K k mk

r1

r3

r2 G

Matrix-tensor products
Mode-wise products

We can multiply a tensor by a matrix along mode :

The result is a order- tensor whose -th mode is dimensional.

G ∈ ℝr1×r2×⋯×rK Bk ∈ ℝmk×rk k

G ×k Bk

K k mk

r1

r3

r2

×1

G

Matrix-tensor products
Mode-wise products

We can multiply a tensor by a matrix along mode :

The result is a order- tensor whose -th mode is dimensional.

G ∈ ℝr1×r2×⋯×rK Bk ∈ ℝmk×rk k

G ×k Bk

K k mk

r1

B1

r3

r2

r1

m1×1

G

Matrix-tensor products
Mode-wise products

We can multiply a tensor by a matrix along mode :

The result is a order- tensor whose -th mode is dimensional.

G ∈ ℝr1×r2×⋯×rK Bk ∈ ℝmk×rk k

G ×k Bk

K k mk

r1

B1

r3

r2

r1

m1×1 =

G

Matrix-tensor products
Mode-wise products

We can multiply a tensor by a matrix along mode :

The result is a order- tensor whose -th mode is dimensional.

G ∈ ℝr1×r2×⋯×rK Bk ∈ ℝmk×rk k

G ×k Bk

K k mk

r1

B1

r3

r2

r1

m1×1 =

G

Matrix-tensor products
Mode-wise products

We can multiply a tensor by a matrix along mode :

The result is a order- tensor whose -th mode is dimensional.

G ∈ ℝr1×r2×⋯×rK Bk ∈ ℝmk×rk k

G ×k Bk

K k mk

r1

B1

r3

r2

r1

m1×1 =

G

Chaining matrix-tensor products
Processing multiple modes

Chaining matrix-tensor products
Processing multiple modes

Chaining matrix-tensor products
Processing multiple modes

=

Chaining matrix-tensor products
Processing multiple modes

We can change the shape of a tensor with repeated matrix-
tensor products

G ×1 B1 ×2 B2⋯ ×K BK = X ∈ ℝm1×m2⋯×mK

=

Matrix-tensor product example
Filtering hyperspectral images

If is a hyperspectral image
and corresponds to the DFT
of a lowpass filter, then

Applies the lowpass filter to the
spectrum at each location.

X
L

X ×1 L1

L×1X

Rank-1 tensors are outer products
Trying to get a handle on rank

Rank-1 tensors are outer products
Trying to get a handle on rank

• In 2D this is a rank-1 matrix,
and a rank- matrix can be
written as the sum of rank-1
matrices.

r
r

Rank-1 tensors are outer products
Trying to get a handle on rank

• In 2D this is a rank-1 matrix,
and a rank- matrix can be
written as the sum of rank-1
matrices.

r
r

• A matrix has a CANDECOMP/
PARAFAC (CP) representation
of order if we can write it as a
sum of rank-1 outer products.

r
r

CP Decomposition

CP factorization
Writing the decomposition with matrix-tensor products

Gather the factors from each mode into matrices and define an
diagonal core tensor :

The total number of parameters is as opposed to .

r × r × ⋯ × r
G

B𝖢𝖯 = G ×1 B1 ×2 B2⋯ ×K BK

r(1 +
K

∑
k=1

mk)
K

∏
k=1

mk

Tucker decomposition
Filling out the core tensor

Tucker decomposition
Filling out the core tensor

Suppose we have a core tensor

and expand the dimensions using matrix-tensor
products. This is the Tucker decomposition:

The total number of parameters is

G ∈ ℝr1×r2×⋯×rK

B𝖳𝗎𝖼𝗄𝖾𝗋 = G ×1 B1 ×2 B ×3 B3

K

∏
k=1

rk +
K

∑
k=1

mkrk

Issues with decompositions
There are many different definitions of “rank” for tensors

• CP rank of = smallest number of terms in a CP decomposition (Hitchcock
1927, Kruskal 1977).

• The decomposition is (often) unique.

• Computing the rank is NP-complete for finite fields and NP-hard for
(Håstad 1990, resolving a conjecture of Gonzalez and Ja’Ja’ 1980).

• Tucker rank is a vector. Decomposition can be computed using the higher-
order SVD [HOSVD] or other algorithms (De Lathauwer et al. 2000, also
others).

• Tucker rank is not unique.

B

ℚ

Matricization
Unfolding or flattening a tensor

An order- tensor can be rearranged into a matrix in different ways by
rearranging the 1-dimensional fibers in each dimension into a matrix.

We call these the mode- unfoldings of the original tensor.

K K

k

A different kind of matricization
Matrix-tensor products as a matrix vector product

Start with a Tucker factorization:

If we vectorize , we get get the
following:

where is the Kronecker product.

B𝖳𝗎𝖼𝗄𝖾𝗋 = G ×1 B1 ×2 B2⋯ ×K BK

B𝖳𝗎𝖼𝗄𝖾𝗋

vec(B𝖳𝗎𝖼𝗄𝖾𝗋) = (BK ⊗ ⋯ ⊗ B1) vec(G)

⊗

The Kronecker product
Matrix-tensor products as a matrix vector product

The Kronecker product makes “copies” of one matrix inside the other:

Vectorizing shows that the Tucker decomposition

Is somewhat restrictive.

A ⊗ B =
a11B ⋯ a1nB

⋮ ⋱ ⋮
am1B ⋯ amnB

vec(B𝖳𝗎𝖼𝗄𝖾𝗋) = (BK ⊗ ⋯ ⊗ B2 ⊗ B1) vec(G)

Block tensor decompositions
Yet more generality

More recent work has studied block tensor decompositions
(Section 5.7, Kolda and Bader 2009), which can written as a
mixture of Tucker models:

,

This is definitely more flexible! But perhaps too flexible…

B𝖡𝖳𝖣 =
S

∑
s=1

Gs ×1 B1,s ×2 B2,s⋯ ×K BK,s

Special case of the BTD is a low separation rank (LSR) decomposition:

We use the same core tensor for each term. We also assume (wlog) that the
factor matrices have orthonormal columns.

B𝖫𝖲𝖱 =
S

∑
s=1

G ×1 B1,s ×2 B2,s⋯ ×K BK,s

G
{Bk,s}

Proposal: low separation rank (LSR) tensors
BTD with a common core tensor

The separation rank (Tsiligkaridis and Hero, 2013) of a matrix is the minimum
number of terms needed so that

Our LSR model corresponds assuming the matrix-vector product has a matrix with
low separation rank

S

M =
S

∑
s=1

AK,s ⊗ ⋯ ⊗ A2,s ⊗ A1,s

S

∑
s=1

G ×1 B1,s ×2 B2,s⋯ ×K BK,s = B𝖫𝖲𝖱 ⟹ (∑
s

⨂
k

Bk) g

What does separation rank mean?
Back to the matricization

Comparing different decompositions

#LSR parameters =

Q: Does this extra flexibility
help?

K

∏
k=1

rk + S
K

∑
k=1

mkrk

Regression and classification
with structured tensors

Generalized linear models for regression
Includes linear, logistic, Poisson, etc.

Generalized linear models for regression
Includes linear, logistic, Poisson, etc.

We have a training set of tensor-scalar pairs following a
generalized linear model (GLM). Our goal: estimate s.t. if
then

n {(Xi, yi)}
B η = ⟨B, X⟩

Generalized linear models for regression
Includes linear, logistic, Poisson, etc.

We have a training set of tensor-scalar pairs following a
generalized linear model (GLM). Our goal: estimate s.t. if
then

n {(Xi, yi)}
B η = ⟨B, X⟩

.p(y; η) = b(y)exp (−ηT(y) − a(η))

Generalized linear models for regression
Includes linear, logistic, Poisson, etc.

We have a training set of tensor-scalar pairs following a
generalized linear model (GLM). Our goal: estimate s.t. if
then

n {(Xi, yi)}
B η = ⟨B, X⟩

.p(y; η) = b(y)exp (−ηT(y) − a(η))
That is, is from an exponential family. One example is logistic regression:y

Generalized linear models for regression
Includes linear, logistic, Poisson, etc.

We have a training set of tensor-scalar pairs following a
generalized linear model (GLM). Our goal: estimate s.t. if
then

n {(Xi, yi)}
B η = ⟨B, X⟩

.p(y; η) = b(y)exp (−ηT(y) − a(η))
That is, is from an exponential family. One example is logistic regression:y

y ∼ 𝖡𝖾𝗋𝗇𝗈𝗎𝗅𝗅𝗂 (1
1 + exp(− ⟨B, X⟩))

Prior work using CP and Tucker tensors
Generalized linear models

Prior work using CP and Tucker tensors
Generalized linear models

We look LSR models for GLMs:

Prior work using CP and Tucker tensors
Generalized linear models

We look LSR models for GLMs:

• CP + logistic regression (Tan et al., 2012)

Prior work using CP and Tucker tensors
Generalized linear models

We look LSR models for GLMs:

• CP + logistic regression (Tan et al., 2012)

• CP + GLMs (Zhou et al. 2014)

Prior work using CP and Tucker tensors
Generalized linear models

We look LSR models for GLMs:

• CP + logistic regression (Tan et al., 2012)

• CP + GLMs (Zhou et al. 2014)

• Tucker + linear regression (Zhang et al. 2020, Ahmed et al. 2020)

Prior work using CP and Tucker tensors
Generalized linear models

We look LSR models for GLMs:

• CP + logistic regression (Tan et al., 2012)

• CP + GLMs (Zhou et al. 2014)

• Tucker + linear regression (Zhang et al. 2020, Ahmed et al. 2020)

• Tucker + logistic regression (Zhang et al. 2016)

Prior work using CP and Tucker tensors
Generalized linear models

We look LSR models for GLMs:

• CP + logistic regression (Tan et al., 2012)

• CP + GLMs (Zhou et al. 2014)

• Tucker + linear regression (Zhang et al. 2020, Ahmed et al. 2020)

• Tucker + logistic regression (Zhang et al. 2016)

• Tucker + GLMs (Li et al., 2018; Zhou et al., 2013)

The benefits of more flexible modeling
Taking advantage of more data

LSR models let use scale the
number of parameters to the
data set size.

Synthetic data experiments
show that with a modest
number of samples, LSR
models are better than
vectorizing or using a Tucker
model.

Mapping the tensor to a matrix
Using the LSR matrix in the vectorized problem

Mapping the tensor to a matrix
Using the LSR matrix in the vectorized problem

Under an LSR model, we have

η = ⟨
S

∑
s=1

G ×1 B(1,s) ×2 B(2,s) ×3 ⋯ ×K B(K,s), X⟩

Mapping the tensor to a matrix
Using the LSR matrix in the vectorized problem

Under an LSR model, we have

η = ⟨
S

∑
s=1

G ×1 B(1,s) ×2 B(2,s) ×3 ⋯ ×K B(K,s), X⟩
Vectorizing:

η = ⟨(
S

∑
s=1

B(K,s) ⊗ B(K−1,s) ⊗ ⋯ ⊗ B(1,s)) g, x⟩

Space of LSR models
Using the LSR matrix in the vectorized problem

Suppose we are given . Then define

,

where for each , the columns of are orthonormal.

This the the space we have to optimize over to select an LSR model for
our regression parameter.

(r1, r2, …, rK, S)

𝒞𝖫𝖲𝖱,S = {B : B =
S

∑
s=1

G ×1 B(1,s) ×2 ⋯ ×K B(K,s)}
(k, s) B(k,s)

Maximum likelihood
Sorry, but it’s really messy

The MLE can is computed by minimizing

,

Over all and .

Note: if we fix all matrices but one and then optimize over that one, it is
tractable…

n

∑
i=1 [⟨(

S

∑
s=1

⨂
k

B(k,s)) g, xi⟩ T(yi) − a (⟨(
S

∑
s=1

⨂
k

B(k,s)) g, xi⟩)]
Bk,s ∈ 𝕆mk×rk g ∈ ℝr1r2⋯rK

Alternating minimization: LSR-TR
Seems to work well in practice

Use alternating minimization cycling through each and then .

In particular, use projected gradient descent on each and regular gradient
descent on .

Convergence guarantees: work in progress.

B(k,s) g

B(k,s)
g

Experiments on medical imaging data
Data sets and algorithms

Data sets: ABIDE Autism [fMRI] (Craddock et al., 2013 2020), Vessel MNIST 3D [MRA]
(Yang et al., 2020).

Other algorithms:

• TTR: Tucker + GLMs using a ‘block relaxation’ algorithm (Li et al., 2018)

• LTuR: Tucker + logistic regression with Frobenius norm regularization (Zhang &
Jiang, 2016)

• LR: Unstructured + logistic regression (Seber & Lee, 2003)

• LCPR: CP + logistic regression (Tan et al., 2013)

ABIDE Autism data set
A tiny data set: , , K = 2 m = (111,116) n = 80

• Chose ranks and with .

• Unstructured models are quite bad in the undersampled regime.

• Adding one more Tucker component can give significant improvements.

r1 = 6 r2 = 6 S = 2

VesselMNIST 3D
Comparing against a DNN too: K = 3, r = (28,28,28), n = 1335

• Chose ranks , , , and

• LSRTR has better accuracy but worse F1 and AUC (see paper).

• Issues such as overfitting, interpretability, etc. are still open.

r1 = 3 r2 = 3 r3 = 3 S = 2

What about the theory?
Lower bounds yes, upper bounds in progress…

Suppose our data was generated with an LSR tensor We (Taki, S.
Bajwa, 2023) can prove a lower bound on the MSE of estimating :

We can specialize this result to the Tucker and CP cases as well.

B*

B*

𝔼 [B* − B̂
2

F] = Ω
S∑k (mk − 1)rk + ∏k (rk − 1) − 1

Σx 2
n

Ongoing/future work
Identifiability and beyond

Ongoing/future work
Identifiability and beyond

• Determine conditions so that LSR factors are (locally) identifiable.

Ongoing/future work
Identifiability and beyond

• Determine conditions so that LSR factors are (locally) identifiable.

• Understand the analytical properties of the LSR set.

Ongoing/future work
Identifiability and beyond

• Determine conditions so that LSR factors are (locally) identifiable.

• Understand the analytical properties of the LSR set.

• Find a convergence analysis for alternating minimization.

Federated learning from tensor valued data
Tensor data are often hard to acquire

In “federated learning” we want to
efficiently learn from data which
are held at different sites.

If we have MRI data at different
research groups, can we still train
a regression model with limited
communication?

Balancing local and global updates
Empirical results are promising but preliminary

• Need tight coupling between
local and centralized updates.

• Poses a challenge when
communication reliability is a
bottleneck.

• Lots of interesting work on the
applications/engineering side!

(Sanchez, Taki, Bajwa, S., 2024)

Representation learning
with structured tensors (optional)

Dictionary learning
Sparse representation in one slide

Dictionary learning
Sparse representation in one slide

Given data , learn a
sparse representation:

{yi}

Dictionary learning
Sparse representation in one slide

Given data , learn a
sparse representation:

{yi}

.yi = Dxi + wi

Dictionary learning
Sparse representation in one slide

Given data , learn a
sparse representation:

{yi}

.yi = Dxi + wi

 is a dictionary whose
columns are atoms.
D

Dictionary learning
Sparse representation in one slide

Given data , learn a
sparse representation:

{yi}

.yi = Dxi + wi

 is a dictionary whose
columns are atoms.
D

Coefficient vector selects
 columns of .

xi
s D

Dictionary learning for tensor data
How can we do the same thing but for tensors?

Dictionary learning for tensor data
How can we do the same thing but for tensors?

We observe tensor data . Can we learn a
sparse representation for this data?

Y1, Y2, …, YL ∈ ℝm1×m2×⋯×mK

Dictionary learning for tensor data
How can we do the same thing but for tensors?

We observe tensor data . Can we learn a
sparse representation for this data?

Y1, Y2, …, YL ∈ ℝm1×m2×⋯×mK

Look at the vectorized model:

Dictionary learning for tensor data
How can we do the same thing but for tensors?

We observe tensor data . Can we learn a
sparse representation for this data?

Y1, Y2, …, YL ∈ ℝm1×m2×⋯×mK

Look at the vectorized model:

vec(Yi) = yi ≈ Dxi

Dictionary learning for tensor data
How can we do the same thing but for tensors?

We observe tensor data . Can we learn a
sparse representation for this data?

Y1, Y2, …, YL ∈ ℝm1×m2×⋯×mK

Look at the vectorized model:

vec(Yi) = yi ≈ Dxi

We want to estimate a dictionary such that the coefficient
vectors are sparse. Here .

D ∈ ℝm×p

xi m = ∏
k

mk

Default approach: vectorize
What if we ignore the tensor structure?

Tensor decompositions to the rescue
What if our dictionary has a Tucker structure?

Tensor decompositions to the rescue
What if our dictionary has a Tucker structure?

A Tucker-structured dictionary:

Y
⏟

∈ℝm1×⋯×mN

=
Sparse core tensor

X
⏟

∈ℝp1×⋯×pN

×1 D1⏟
∈ℝm1×p1

×2 ⋯ ×N DK⏟
∈ℝmK×pK

+ W

Tensor decompositions to the rescue
What if our dictionary has a Tucker structure?

A Tucker-structured dictionary:

Y
⏟

∈ℝm1×⋯×mN

=
Sparse core tensor

X
⏟

∈ℝp1×⋯×pN

×1 D1⏟
∈ℝm1×p1

×2 ⋯ ×N DK⏟
∈ℝmK×pK

+ W

What happens when we vectorize?

y
⏟

∈ℝm

= (DK ⊗ DK−1 ⊗ ⋯ ⊗ D1) x
⏟

∈ℝp

+ w

• Traditional (unstructured) dictionary learning: MOD (Engan, Rao, Kreutz-
Delgado ’99), K-SVD (Aharon, Elad, Bruckstein ’06), Online DL (Mairal et al.
’09)

• KS dictionary learning: K-HOSVD (Roemer, Del Galdo, Haardt ’14),
GradTensor (Zubair and Wang ’13), SeDiL (Hawe, Seibert, Kleinsteuber ’13),
SuKro (Dantas, Da Costa, Lopes ’17)

• Our work: use LSR structure for the dictionary to allow more flexible
parameterization.

Kronecker-structured (KS) dictionary learning
The difference that structure can make

• Traditional (unstructured) dictionary learning: MOD (Engan, Rao, Kreutz-
Delgado ’99), K-SVD (Aharon, Elad, Bruckstein ’06), Online DL (Mairal et al.
’09)

• KS dictionary learning: K-HOSVD (Roemer, Del Galdo, Haardt ’14),
GradTensor (Zubair and Wang ’13), SeDiL (Hawe, Seibert, Kleinsteuber ’13),
SuKro (Dantas, Da Costa, Lopes ’17)

• Our work: use LSR structure for the dictionary to allow more flexible
parameterization.

p2p3

m2m3

D2D3

D

m

p

x i

Yi
Vectorize

Traditional DL

Separable DL

y i

p p1

m1

D1

p

Kronecker-structured (KS) dictionary learning
The difference that structure can make

Even a KS assumption can help
Reducing the number of parameters can make a huge difference

Comparison to unstructured dictionaries
Using decompositions helps a lot!

Minimax bound for the vector case: Jung et al. (2015)

Achievability bound for the vector case: Gribonval et al. (2015)

Generative model for structured dictionaries
Defining the set of all LSR matrices

Generative model for structured dictionaries
Defining the set of all LSR matrices

Define the set of all LSR dictionaries:

Generative model for structured dictionaries
Defining the set of all LSR matrices

Define the set of all LSR dictionaries:

𝒟𝖫𝖲𝖱,S = {D ∈ ℝm×p : D =
S

∑
s=1

⨂
k

D(k,s)}

Generative model for structured dictionaries
Defining the set of all LSR matrices

Define the set of all LSR dictionaries:

𝒟𝖫𝖲𝖱,S = {D ∈ ℝm×p : D =
S

∑
s=1

⨂
k

D(k,s)}
where each has unit norm columns. D(k,s) ∈ ℝmk×pk

Generative model for structured dictionaries
Defining the set of all LSR matrices

Define the set of all LSR dictionaries:

𝒟𝖫𝖲𝖱,S = {D ∈ ℝm×p : D =
S

∑
s=1

⨂
k

D(k,s)}
where each has unit norm columns. D(k,s) ∈ ℝmk×pk

Assume our data comes from a true model :D0 ∈ 𝒟𝖫𝖲𝖱,S

yi = D0xi + wi

But can we do better with higher ?S
Extending to LSR dictionaries

Because the core tensor (coefficient vector) is sparse, we can
apply the LSR decomposition to the dictionary:

D =
S

∑
s=1

D(K,s) ⊗ ⋯ ⊗ D(2,s) ⊗ D(1,s)

Identifiability for general S
Local recovery guarantees

For general and LSR structured dictionaries, we can show
(Ghassemi et al, 2020) the following upper bound on :

Proof ingredients: need to understand topological properties of
 and related spaces as well as covering numbers, etc.

S
n

n = O (
p2 ∑k mkpk

ε2
k)

𝒟𝖫𝖲𝖱,S

Practical algorithms
Unfortunately, separation rank is also NP hard

We propose two estimators for learning LSR dictionaries
(Ghassemi et al, 2020):

• Regularization-based: use a sum-trace-norm on unfolding
together with ADMM.

• Factorization-based: explicitly optimize over the factors in the
LSR decomposition.

Compares well to K-SVD (Aharon et al. 2006) and SediL (Hawe et
al. 2013): see Ghassemi et al. (2020) for details.

Recap and looking forward

Recap of what we’ve seen
Tensor decompositions for everyone!

There is a whole continuum of tensor decompositions and LSR
structured tensors can be very useful:

• Adapt parameterization to the data available.

• Efficiently (empirically) learnable/estimatable.

Many mathematical questions remain
So many fun (and fundamental) questions!

Many mathematical questions remain
So many fun (and fundamental) questions!

Approximation theory: how can we find a good approximation to
a given tensor?

Many mathematical questions remain
So many fun (and fundamental) questions!

Approximation theory: how can we find a good approximation to
a given tensor?

Topology: How can we practically manage pathologies in tensor-
land?

Many mathematical questions remain
So many fun (and fundamental) questions!

Approximation theory: how can we find a good approximation to
a given tensor?

Topology: How can we practically manage pathologies in tensor-
land?

Optimization: What are the right ways to do a convex relaxation of
an LSR constraint?

Many mathematical questions remain
So many fun (and fundamental) questions!

Approximation theory: how can we find a good approximation to
a given tensor?

Topology: How can we practically manage pathologies in tensor-
land?

Optimization: What are the right ways to do a convex relaxation of
an LSR constraint?

RTT: What about random tensors or random tensors with low
“rank” or “simpler” structure?

شُكْراً جَزيلاً

Parameters of interest
Along with some assumptions on the model

• Sample size: number of observations

• Tensor order:

• Dictionary sizes:

• Coefficient energy: the are i.i.d. with variance

• SNR: , where is the sparsity level

n

K

{(mk, pk) : k = 1,2,…, K}

xi σ2
x

qσ2
x

mσ2
q

Minimax lower bounds for S = 1
The special case of Kronecker-structured (KS) dictionaries

Minimax lower bounds for S = 1
The special case of Kronecker-structured (KS) dictionaries

Define the error of an dictionary estimator :D̂

Minimax lower bounds for S = 1
The special case of Kronecker-structured (KS) dictionaries

Define the error of an dictionary estimator :D̂

.ε = D − D̂(Y)
F

Minimax lower bounds for S = 1
The special case of Kronecker-structured (KS) dictionaries

Define the error of an dictionary estimator :D̂

.ε = D − D̂(Y)
F

For fixed SNR, and we have the following lower bound on (Zakeri, Bajwa, S.
2018):

S = 1 n

Minimax lower bounds for S = 1
The special case of Kronecker-structured (KS) dictionaries

Define the error of an dictionary estimator :D̂

.ε = D − D̂(Y)
F

For fixed SNR, and we have the following lower bound on (Zakeri, Bajwa, S.
2018):

S = 1 n

n = Ω (
p∑k mkpk

Kε2)

Minimax lower bounds for S = 1
The special case of Kronecker-structured (KS) dictionaries

Define the error of an dictionary estimator :D̂

.ε = D − D̂(Y)
F

For fixed SNR, and we have the following lower bound on (Zakeri, Bajwa, S.
2018):

S = 1 n

n = Ω (
p∑k mkpk

Kε2)
Proof idea: construct a packing in and use Fano’s inquality.𝒟𝖫𝖲𝖱,1

Identifiability when S = 1
Local recovery guarantees

Identifiability when S = 1
Local recovery guarantees

Suppose we want to recover each factor dictionary :Dk

Identifiability when S = 1
Local recovery guarantees

Suppose we want to recover each factor dictionary :Dk

.εk = Dk − D̂k(Y)
F

Identifiability when S = 1
Local recovery guarantees

Suppose we want to recover each factor dictionary :Dk

.εk = Dk − D̂k(Y)
F

Then we have (Zakeri, S., Bajwa, 2018) the following upper bound on :n

Identifiability when S = 1
Local recovery guarantees

Suppose we want to recover each factor dictionary :Dk

.εk = Dk − D̂k(Y)
F

Then we have (Zakeri, S., Bajwa, 2018) the following upper bound on :n

n = O (max
k

mkp3
k

ε2
k)

