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• 1913: Albert Einstein and Marcel Grossman used 
tensor calculus extensively in their work on general 
relativity: Entwurf einer verallgemeinerten 
Relativitätstheorie und einer Theorie der Gravitation

• 1915–17: Levi-Civita and Einstein have a 
correspondence where the former helped fix the 
mistakes Einstein made in using tensor analysis.

• 1922: H. L. Brose’s English translation of Weyl’s 
book Raum, Zeit, Materie (Space-Time-Matter) 
uses “tensor analysis.”
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So what is a “tensor” anyway?
Tensors are many different things to many different people

For today, we treat tensors “mechanically” 
as multidimensional arrays.

X ∈ ℝm1×m2×⋯×mK

Several other (richer?) perspectives:

• Point in the tensor product of vector 
spaces

• Multilinear operator (or a tensor 
representation of )GL(n)
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Multidimensional arrays are everywhere!

• Medicine: Neuroimaging and other 
medical imaging

• Geosensing: Hyperspectral imaging

• Communications: Massive MIMO

• Probability: Joint PMFs on multiple 
variables

• Network science: Time-varying graphs

• Also chemometrics, numerical linear 
algebra, psychometrics, theoretical 
computer science…

Where do we see tensors?
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Using dictionary learning for sparse representation

Task: given a collection of tensors , find a 
dictionary  such that

Y1, Y2, …, Yn ∈ ℝm1×m2×⋯×mK

d1, d2, …, dp

,Yi ≈
p

∑
j=1

xijdj

where each vector of coefficients  is -sparse.xi = (xi1, xi2, …, xip)⊤ s

Application: processing or storing hyperspectral images acquired from a drone.
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Why (and why not) vectorize?
The problems with vectorization

1. Vectorization ignores the tensor structure.

2. Resulting problems have very high dimension.

Example: ADHD200 data set has fMRI images of 
children’s brains.

• fMRI data: 121 x 141 x 121 tensor

• After vectorizing: 2,122,945 dimensional vector

• Sample size: 959 total images
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Dealing with overparameterization
This is not just a problem with tensors!

We usually make models more tractable by 
assuming that our parameters have more 
structure. For example, for a regression 
model:

yi = ⟨B, Xi⟩ + zi

• Vectors: model  as sparse.B

• Matrices: model  as low rank.B
How do we impose structure on tensors?



What’s in this talk
A preview of the rest of the talk

1. Tensor decompositions and where to find them


2. Regression with tensor-valued data and parameters


3. Dictionary learning with structured tensors


4. Some pointers to future directions



Tensor decompositions
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Some tensor terminology
A little jargon is unavoidable…

• Mode: each coordinate index


• Order: the number of modes of the tensor

m1

m2

m3

• Mode 1 = spectrum


• Mode 2 = longitude


• Mode 3 = latitude

Kolda and Bader (2019)
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Chaining matrix-tensor products
Processing multiple modes

We can change the shape of a tensor with repeated matrix-
tensor products


G ×1 B1 ×2 B2⋯ ×K BK = X ∈ ℝm1×m2⋯×mK

=



Matrix-tensor product example
Filtering hyperspectral images

If  is a hyperspectral image 
and  corresponds to the DFT 
of a lowpass filter, then





Applies the lowpass filter to the 
spectrum at each location.

X
L

X ×1 L1

L×1X
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Rank-1 tensors are outer products
Trying to get a handle on rank

• In 2D this is a rank-1 matrix, 
and a rank-  matrix can be 
written as the sum of  rank-1 
matrices.

r
r

• A matrix has a CANDECOMP/
PARAFAC (CP) representation 
of order  if we can write it as a 
sum of  rank-1 outer products.

r
r

CP Decomposition



CP factorization
Writing the decomposition with matrix-tensor products

Gather the factors from each mode into matrices and define an  
diagonal core tensor :





The total number of parameters is  as opposed to .

r × r × ⋯ × r
G

B𝖢𝖯 = G ×1 B1 ×2 B2⋯ ×K BK

r(1 +
K

∑
k=1

mk)
K

∏
k=1

mk
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Filling out the core tensor

Suppose we have a core tensor 


 


and expand the dimensions using matrix-tensor 
products. This is the Tucker decomposition:





The total number of parameters is 


G ∈ ℝr1×r2×⋯×rK

B𝖳𝗎𝖼𝗄𝖾𝗋 = G ×1 B1 ×2 B ×3 B3

K

∏
k=1

rk +
K

∑
k=1

mkrk



Issues with decompositions
There are many different definitions of “rank” for tensors

• CP rank of  = smallest number of terms in a CP decomposition (Hitchcock 
1927, Kruskal 1977). 


• The decomposition is (often) unique. 


• Computing the rank is NP-complete for finite fields and NP-hard for  
(Håstad 1990, resolving a conjecture of Gonzalez and Ja’Ja’ 1980).


• Tucker rank is a vector. Decomposition can be computed using the higher-
order SVD [HOSVD] or other algorithms (De Lathauwer et al. 2000, also 
others).


• Tucker rank is not unique.

B

ℚ



Matricization
Unfolding or flattening a tensor

An order-  tensor can be rearranged into a matrix in  different ways by 
rearranging the 1-dimensional fibers in each dimension into a matrix.


We call these the mode-  unfoldings of the original tensor.

K K

k



A different kind of matricization
Matrix-tensor products as a matrix vector product

Start with a Tucker factorization:





If we vectorize , we get get the 
following:





where  is the Kronecker product.

B𝖳𝗎𝖼𝗄𝖾𝗋 = G ×1 B1 ×2 B2⋯ ×K BK

B𝖳𝗎𝖼𝗄𝖾𝗋

vec(B𝖳𝗎𝖼𝗄𝖾𝗋) = (BK ⊗ ⋯ ⊗ B1) vec(G)

⊗



The Kronecker product
Matrix-tensor products as a matrix vector product

The Kronecker product makes “copies” of one matrix inside the other:





Vectorizing shows that the Tucker decomposition





Is somewhat restrictive.

A ⊗ B =
a11B ⋯ a1nB

⋮ ⋱ ⋮
am1B ⋯ amnB

vec(B𝖳𝗎𝖼𝗄𝖾𝗋) = (BK ⊗ ⋯ ⊗ B2 ⊗ B1) vec(G)



Block tensor decompositions
Yet more generality

More recent work has studied block tensor decompositions 
(Section 5.7, Kolda and Bader 2009), which can written as a 
mixture of Tucker models:


,


This is definitely more flexible! But perhaps too flexible…

B𝖡𝖳𝖣 =
S

∑
s=1

Gs ×1 B1,s ×2 B2,s⋯ ×K BK,s



Special case of the BTD is a low separation rank (LSR) decomposition:





We use the same core tensor  for each term. We also assume (wlog) that the 
factor matrices  have orthonormal columns.

B𝖫𝖲𝖱 =
S

∑
s=1

G ×1 B1,s ×2 B2,s⋯ ×K BK,s

G
{Bk,s}

Proposal: low separation rank (LSR) tensors
BTD with a common core tensor



The separation rank (Tsiligkaridis and Hero, 2013) of a matrix is the minimum 
number  of terms needed so that





Our LSR model corresponds assuming the matrix-vector product has a matrix with 
low separation rank


S

M =
S

∑
s=1

AK,s ⊗ ⋯ ⊗ A2,s ⊗ A1,s

S

∑
s=1

G ×1 B1,s ×2 B2,s⋯ ×K BK,s = B𝖫𝖲𝖱 ⟹ (∑
s

⨂
k

Bk) g

What does separation rank mean?
Back to the matricization



Comparing different decompositions

#LSR parameters =  

Q: Does this extra flexibility 
help?

K

∏
k=1

rk + S
K

∑
k=1

mkrk



Regression and classification 
with structured tensors
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Generalized linear models for regression
Includes linear, logistic, Poisson, etc.

We have a training set of  tensor-scalar pairs  following a 
generalized linear model (GLM). Our goal: estimate  s.t. if  
then

n {(Xi, yi)}
B η = ⟨B, X⟩

.p(y; η) = b(y)exp (−ηT(y) − a(η))
That is,  is from an exponential family. One example is logistic regression:y

y ∼ 𝖡𝖾𝗋𝗇𝗈𝗎𝗅𝗅𝗂 ( 1
1 + exp( − ⟨B, X⟩) )
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Prior work using CP and Tucker tensors
Generalized linear models

We look LSR models for GLMs:

• CP + logistic regression (Tan et al., 2012)

• CP + GLMs (Zhou et al. 2014)

• Tucker + linear regression (Zhang et al. 2020, Ahmed et al. 2020)

• Tucker + logistic regression (Zhang et al. 2016)

• Tucker + GLMs (Li et al., 2018; Zhou et al., 2013)



The benefits of more flexible modeling
Taking advantage of more data

LSR models let use scale the 
number of parameters to the 
data set size.


Synthetic data experiments 
show that with a modest 
number of samples, LSR 
models are better than 
vectorizing or using a Tucker 
model.
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Mapping the tensor to a matrix
Using the LSR matrix in the vectorized problem

Under an LSR model, we have 

η = ⟨
S

∑
s=1

G ×1 B(1,s) ×2 B(2,s) ×3 ⋯ ×K B(K,s), X⟩
Vectorizing:

η = ⟨(
S

∑
s=1

B(K,s) ⊗ B(K−1,s) ⊗ ⋯ ⊗ B(1,s)) g, x⟩



Space of LSR models
Using the LSR matrix in the vectorized problem

Suppose we are given . Then define


,


where for each , the columns of  are orthonormal.


This the the space we have to optimize over to select an LSR model for 
our regression parameter.

(r1, r2, …, rK, S)

𝒞𝖫𝖲𝖱,S = {B : B =
S

∑
s=1

G ×1 B(1,s) ×2 ⋯ ×K B(K,s)}
(k, s) B(k,s)



Maximum likelihood
Sorry, but it’s really messy

The MLE can is computed by minimizing 


,


Over all  and .


Note: if we fix all matrices but one and then optimize over that one, it is 
tractable…

n

∑
i=1 [⟨(

S

∑
s=1

⨂
k

B(k,s)) g, xi⟩ T(yi) − a (⟨(
S

∑
s=1

⨂
k

B(k,s)) g, xi⟩)]
Bk,s ∈ 𝕆mk×rk g ∈ ℝr1r2⋯rK



Alternating minimization: LSR-TR
Seems to work well in practice

Use alternating minimization cycling through each  and then . 


In particular, use projected gradient descent on each  and regular gradient 
descent on .


Convergence guarantees: work in progress.

B(k,s) g

B(k,s)
g



Experiments on medical imaging data
Data sets and algorithms

Data sets: ABIDE Autism [fMRI] (Craddock et al., 2013 2020), Vessel MNIST 3D [MRA] 
(Yang et al., 2020). 


Other algorithms: 

• TTR: Tucker + GLMs using a ‘block relaxation’ algorithm (Li et al., 2018)


• LTuR: Tucker + logistic regression with Frobenius norm regularization (Zhang & 
Jiang, 2016)


• LR: Unstructured + logistic regression (Seber & Lee, 2003)


• LCPR: CP + logistic regression (Tan et al., 2013) 



ABIDE Autism data set
A tiny data set: , ,  K = 2 m = (111,116) n = 80

• Chose ranks  and  with .


• Unstructured models are quite bad in the undersampled regime.


• Adding one more Tucker component can give significant improvements.

r1 = 6 r2 = 6 S = 2



VesselMNIST 3D
Comparing against a DNN too: K = 3, r = (28,28,28), n = 1335

• Chose ranks , , , and 


• LSRTR has better accuracy but worse F1 and AUC (see paper).


• Issues such as overfitting, interpretability, etc. are still open.

r1 = 3 r2 = 3 r3 = 3 S = 2



What about the theory?
Lower bounds yes, upper bounds in progress…

Suppose our data was generated with an LSR tensor  We (Taki, S. 
Bajwa, 2023) can prove a lower bound on the MSE of estimating :





We can specialize this result to the Tucker and CP cases as well.

B*

B*

𝔼 [ B* − B̂
2

F] = Ω
S∑k (mk − 1)rk + ∏k (rk − 1) − 1

Σx 2
n
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Ongoing/future work
Identifiability and beyond

• Determine conditions so that LSR factors are (locally) identifiable.

• Understand the analytical properties of the LSR set.

• Find a convergence analysis for alternating minimization.



Federated learning from tensor valued data
Tensor data are often hard to acquire

In “federated learning” we want to 
efficiently learn from data which 
are held at different sites.


If we have MRI data at different 
research groups, can we still train 
a regression model with limited 
communication?



Balancing local and global updates
Empirical results are promising but preliminary

• Need tight coupling between 
local and centralized updates.


• Poses a challenge when 
communication reliability is a 
bottleneck.


• Lots of interesting work on the 
applications/engineering side!

(Sanchez, Taki, Bajwa, S., 2024)



Representation learning  
with structured tensors (optional)
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Dictionary learning
Sparse representation in one slide

Given data , learn a 
sparse representation:

{yi}

.yi = Dxi + wi

 is a dictionary whose 
columns are atoms.
D

Coefficient vector  selects 
 columns of .

xi
s D



Dictionary learning for tensor data
How can we do the same thing but for tensors?



Dictionary learning for tensor data
How can we do the same thing but for tensors?

We observe tensor data . Can we learn a 
sparse representation for this data?

Y1, Y2, …, YL ∈ ℝm1×m2×⋯×mK



Dictionary learning for tensor data
How can we do the same thing but for tensors?

We observe tensor data . Can we learn a 
sparse representation for this data?

Y1, Y2, …, YL ∈ ℝm1×m2×⋯×mK

Look at the vectorized model:



Dictionary learning for tensor data
How can we do the same thing but for tensors?

We observe tensor data . Can we learn a 
sparse representation for this data?

Y1, Y2, …, YL ∈ ℝm1×m2×⋯×mK

Look at the vectorized model:

vec(Yi) = yi ≈ Dxi



Dictionary learning for tensor data
How can we do the same thing but for tensors?

We observe tensor data . Can we learn a 
sparse representation for this data?

Y1, Y2, …, YL ∈ ℝm1×m2×⋯×mK

Look at the vectorized model:

vec(Yi) = yi ≈ Dxi

We want to estimate a dictionary  such that the coefficient 
vectors  are sparse. Here .

D ∈ ℝm×p

xi m = ∏
k

mk



Default approach: vectorize
What if we ignore the tensor structure?



Tensor decompositions to the rescue
What if our dictionary has a Tucker structure?



Tensor decompositions to the rescue
What if our dictionary has a Tucker structure?

A Tucker-structured dictionary:

Y
⏟

∈ℝm1×⋯×mN

=
Sparse core tensor

X
⏟

∈ℝp1×⋯×pN

×1 D1⏟
∈ℝm1×p1

×2 ⋯ ×N DK⏟
∈ℝmK×pK

+ W



Tensor decompositions to the rescue
What if our dictionary has a Tucker structure?

A Tucker-structured dictionary:

Y
⏟

∈ℝm1×⋯×mN

=
Sparse core tensor

X
⏟

∈ℝp1×⋯×pN

×1 D1⏟
∈ℝm1×p1

×2 ⋯ ×N DK⏟
∈ℝmK×pK

+ W

What happens when we vectorize?

y
⏟

∈ℝm

= (DK ⊗ DK−1 ⊗ ⋯ ⊗ D1) x
⏟

∈ℝp

+ w



• Traditional (unstructured) dictionary learning: MOD (Engan, Rao, Kreutz-
Delgado ’99), K-SVD (Aharon, Elad, Bruckstein ’06), Online DL (Mairal et al. 
’09)


• KS dictionary learning: K-HOSVD (Roemer, Del Galdo, Haardt ’14), 
GradTensor (Zubair and Wang ’13), SeDiL (Hawe, Seibert, Kleinsteuber ’13), 
SuKro (Dantas, Da Costa, Lopes ’17)


• Our work: use LSR structure for the dictionary to allow more flexible 
parameterization.

Kronecker-structured (KS) dictionary learning
The difference that structure can make



• Traditional (unstructured) dictionary learning: MOD (Engan, Rao, Kreutz-
Delgado ’99), K-SVD (Aharon, Elad, Bruckstein ’06), Online DL (Mairal et al. 
’09)


• KS dictionary learning: K-HOSVD (Roemer, Del Galdo, Haardt ’14), 
GradTensor (Zubair and Wang ’13), SeDiL (Hawe, Seibert, Kleinsteuber ’13), 
SuKro (Dantas, Da Costa, Lopes ’17)


• Our work: use LSR structure for the dictionary to allow more flexible 
parameterization.

p2p3

m2m3
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x i

Yi
Vectorize

Traditional DL

Separable DL

y i

p p1

m1

D1

p

Kronecker-structured (KS) dictionary learning
The difference that structure can make



Even a KS assumption can help
Reducing the number of parameters can make a huge difference



Comparison to unstructured dictionaries
Using decompositions helps a lot!

Minimax bound for the vector case: Jung et al. (2015)


Achievability bound for the vector case: Gribonval et al. (2015)
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Generative model for structured dictionaries
Defining the set of all LSR matrices

Define the set of all LSR dictionaries:

𝒟𝖫𝖲𝖱,S = {D ∈ ℝm×p : D =
S

∑
s=1

⨂
k

D(k,s)}
where each  has unit norm columns. D(k,s) ∈ ℝmk×pk

Assume our data comes from a true model :D0 ∈ 𝒟𝖫𝖲𝖱,S

yi = D0xi + wi



But can we do better with higher ?S
Extending to LSR dictionaries

Because the core tensor (coefficient vector) is sparse, we can 
apply the LSR decomposition to the dictionary:


D =
S

∑
s=1

D(K,s) ⊗ ⋯ ⊗ D(2,s) ⊗ D(1,s)



Identifiability for general S
Local recovery guarantees

For general  and LSR structured dictionaries, we can show 
(Ghassemi et al, 2020) the following upper bound on :





Proof ingredients: need to understand topological properties of 
 and related spaces as well as covering numbers, etc.

S
n

n = O (
p2 ∑k mkpk

ε2
k )

𝒟𝖫𝖲𝖱,S



Practical algorithms
Unfortunately, separation rank is also NP hard

We propose two estimators for learning LSR dictionaries 
(Ghassemi et al, 2020):


• Regularization-based: use a sum-trace-norm on unfolding 
together with ADMM.


• Factorization-based: explicitly optimize over the factors in the 
LSR decomposition.


Compares well to K-SVD (Aharon et al. 2006) and SediL (Hawe et 
al. 2013): see Ghassemi et al. (2020) for details.



Recap and looking forward



Recap of what we’ve seen
Tensor decompositions for everyone!

There is a whole continuum of tensor decompositions and LSR 
structured tensors can be very useful:


• Adapt parameterization to the data available.


• Efficiently (empirically) learnable/estimatable.



Many mathematical questions remain
So many fun (and fundamental) questions!
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Many mathematical questions remain
So many fun (and fundamental) questions!

Approximation theory: how can we find a good approximation to 
a given tensor?

Topology: How can we practically manage pathologies in tensor-
land?

Optimization: What are the right ways to do a convex relaxation of 
an LSR constraint?

RTT: What about random tensors or random tensors with low 
“rank” or “simpler” structure?



شُكْراً جَزيلاً



Parameters of interest
Along with some assumptions on the model

• Sample size: number of observations 


• Tensor order: 


• Dictionary sizes: 


• Coefficient energy: the  are i.i.d. with variance 


• SNR: , where  is the sparsity level

n

K

{(mk, pk) : k = 1,2,…, K}

xi σ2
x

qσ2
x

mσ2
q
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Minimax lower bounds for S = 1
The special case of Kronecker-structured (KS) dictionaries

Define the error of an dictionary estimator :D̂

.ε = D − D̂(Y)
F

For fixed SNR, and  we have the following lower bound on  (Zakeri, Bajwa, S. 
2018):

S = 1 n

n = Ω (
p∑k mkpk

Kε2 )
Proof idea: construct a packing in  and use Fano’s inquality.𝒟𝖫𝖲𝖱,1
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Identifiability when S = 1
Local recovery guarantees

Suppose we want to recover each factor dictionary :Dk

.εk = Dk − D̂k(Y)
F

Then we have (Zakeri, S., Bajwa, 2018) the following upper bound on :n

n = O (max
k

mkp3
k

ε2
k )


