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Differential privacy is a way of quantifying how different two distributions are. 
Information theorists also think about this kind of thing.

But: the kinds of questions/settings can have a different flavor. Today:

hypothesis testing           f-Divergences           contraction coefficients

Goals:

• Describe some of these three connections for those less familiar

• Suggest some questions for discussion later?

Today’s talk
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The binary hypothesis test
Let’s start simple

Sasha Want to hide one bit  but 
have to reveal a random variable  
whose distribution depends on .

s ∈ {0,1}
Y

s
The privacy question is a 
hypothesis testing question:

ℋ0 : Y ∼ PY|S=0

ℋ1 : Y ∼ PY|S=1

s ∈ {0,1}

Y ∼ PY|S=s

̂s ∈ {0,1}
Blake



Vista 1 

hypothesis testing

The Lake of Hakone in 
Sagami Province 

相州箱根湖水 
Sōshū Hakone Kosui
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If the revealed information  is Lapace:Z

ℋ0 : X ∼ 𝖫𝖺𝗉𝗅𝖺𝖼𝖾(λ)

ℋ1 : X ∼ 1 + 𝖫𝖺𝗉𝗅𝖺𝖼𝖾(λ)

Where  has density𝖫𝖺𝗉𝗅𝖺𝖼𝖾(λ)

.p(z) =
λ
2

exp(−λ |z | )
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Privacy versus testing
We get to design the test!

The key difference between hypothesis testing (as we usually 
encounter it) and (differential) privacy is that we get to design 
the likelihoods but not the test!

secret "revealed" estimate

designed adversarial

unknown observed estimate

prescribed designed
hypothesis 

testing

differential 
privacy
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Vista 2 

differential privacy the normal way

Sunset Across Ryōgoku 
Bridge from 

Ommayagashi 

御廐川岸より両国橋夕陽
見 

Ommayagashi yori 
Ryōgoku-bashi yūhi-mi 
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Neighboring databases of individual records

In the textbook approach to describing DP we have several ingredients:

1. Data space: , often modeled as records from  individuals.𝒳 n

2. Neighborhood relationship : for  we write  if they are “neighbors”.∼ x, x′ ∈ 𝒳 x ∼ x′ 
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The “standard” approach to explaining DP
Neighboring databases of individual records

In the textbook approach to describing DP we have several ingredients:

1. Data space: , often modeled as records from  individuals.𝒳 n

2. Neighborhood relationship : for  we write  if they are “neighbors”.∼ x, x′ ∈ 𝒳 x ∼ x′ 

• Example: each person has 1 bit so  and  if they differ in one position.𝒳 = {0,1}n x ∼ x′ 

3. Output space: , depends on the functionality/what we want to release. 𝒴
• Example: If we want the average of data , we have .𝒳 = [0,1]n 𝒴 = [0,1]
• Example: If we want to train a classifier using data , 𝒳 = {ℝd × {0,1}}n 𝒴 = ℝd .

4. Algorithm: a randomized map/conditional distribution/channel .Q : 𝒳 → 𝒴
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DP makes many hypothesis tests hard

Compared to our single private bit , in DP 
we want many hypothesis tests to hard for 
the adversary. For every  the test

b

x ∼ x′ 
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DP makes many hypothesis tests hard

Compared to our single private bit , in DP 
we want many hypothesis tests to hard for 
the adversary. For every  the test

b

x ∼ x′ 

ℋ0 : y ∼ Q( ⋅ |x)
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DP makes many hypothesis tests hard

Compared to our single private bit , in DP 
we want many hypothesis tests to hard for 
the adversary. For every  the test

b

x ∼ x′ 

ℋ0 : y ∼ Q( ⋅ |x)

ℋ1 : y ∼ Q( ⋅ |x′ )
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DP makes many hypothesis tests hard

Compared to our single private bit , in DP 
we want many hypothesis tests to hard for 
the adversary. For every  the test

b

x ∼ x′ 

ℋ0 : y ∼ Q( ⋅ |x)

ℋ1 : y ∼ Q( ⋅ |x′ )

should have a large probability of error.

Protecting many single bits simultaneously
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DP makes many hypothesis tests hard

Compared to our single private bit , in DP 
we want many hypothesis tests to hard for 
the adversary. For every  the test

b

x ∼ x′ 

ℋ0 : y ∼ Q( ⋅ |x)

ℋ1 : y ∼ Q( ⋅ |x′ )

should have a large probability of error.

When can we do this? When neighboring 
data sets make similar output distributions.

Protecting many single bits simultaneously
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In a snapshot
Replacing a single bit with a database

Sasha



The hypothesis testing in DP

<latexit sha1_base64="wEe26dl5F4cKK0SXfsWX0SaumdQ=">AAAB/HicbVDLSsNAFL3xWesr6tLNYBVclUREXRbduKxgH9CEMplM2qGTBzOT0hLil7hUN+LWP3Hh3zhJu9DWAwOHc+7lnjlewplUlvVtrKyurW9sVraq2zu7e/vmwWFbxqkgtEViHouuhyXlLKItxRSn3URQHHqcdrzRXeF3xlRIFkePappQN8SDiAWMYKWlvmk6Q6wyJ8Rq6AXZJM/7Zs2qWyXQMrHnpNY4hRLNvvnl+DFJQxopwrGUPdtKlJthoRjhNK86qaQJJiM8oD1/zBIZ4ZBKN5uU4XN0pn0fBbHQL1KoVH8vZTiUchp6erJIKRe9QvzP66UquHEzFiWpohGZHQpSjlSMiiaQzwQlik81wUQwHReRIRaYKN1XVfdgL/56mbQv6vZV3X64rDVuZ4VABY7hBM7BhmtowD00oQUExvAMr/BmPBkvxrvxMRtdMeY7R/AHxucPMo2V5w==</latexit>

x̂Adversary
<latexit sha1_base64="KDrPpXErQFVRHlczfAz/lhc00AE=">AAAB63icbVBNSwMxEJ2tX7V+VT16CVbBU9kVUY9FLx5bsB/QLiWbzbahSXZJssWl9Bd4VC/i1Z/kwX9juu1BWx8MPN6bYWZekHCmjet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqCG2SmMeqE2BNOZO0aZjhtJMoikXAaTsY3c/89pgqzWL5aLKE+gIPJIsYwcZKjaxfrrhVNwdaJd6CVGpnkKPeL3/1wpikgkpDONa667mJ8SdYGUY4nZZ6qaYJJiM8oN1wzBItsaDanzzlt07RufVDFMXKljQoV38PTbDQOhOB7RTYDPWyNxP/87qpiW79CZNJaqgk80VRypGJ0exxFDJFieGZJZgoZs9FZIgVJsbGU7I5eMtfr5LWZdW7rnqNq0rtbh4IFOEETuECPLiBGjxAHZpAgMIzvMKbI5wX5935mLcWnMXMMfyB8/kDsLmOyg==</latexit>

y

<latexit sha1_base64="lyz82hhd81yVwEu44OJdq6DLj+M=">AAAB9HicbVBNT8JAEJ3iF+IX6tFLI5rghbTGqEeiF4+QyEeEhmy3W9iw3W12t8QG+Rce1Yvx6r/x4L9xKRwUfMkkL+/NZGaeHzOqtON8W7mV1bX1jfxmYWt7Z3evuH/QVCKRmDSwYEK2faQIo5w0NNWMtGNJUOQz0vKHt1O/NSJSUcHvdRoTL0J9TkOKkTbSQ72cPnVxIPRZr1hyKk4Ge5m4c1KqnkCGWq/41Q0ETiLCNWZIqY7rxNobI6kpZmRS6CaKxAgPUZ90ghGNFUcRUd74MTt6Yp8aP7BDIU1xbWfq76ExipRKI990RkgP1KI3Ff/zOokOr70x5XGiCcezRWHCbC3saQJ2QCXBmqWGICypOdfGAyQR1iangsnBXfx6mTTPK+5lxa1flKo3s0AgD0dwDGVw4QqqcAc1aAAGDs/wCm/WyHqx3q2PWWvOms8cwh9Ynz/ZnJJI</latexit>

Q(y|·)
<latexit sha1_base64="lyz82hhd81yVwEu44OJdq6DLj+M=">AAAB9HicbVBNT8JAEJ3iF+IX6tFLI5rghbTGqEeiF4+QyEeEhmy3W9iw3W12t8QG+Rce1Yvx6r/x4L9xKRwUfMkkL+/NZGaeHzOqtON8W7mV1bX1jfxmYWt7Z3evuH/QVCKRmDSwYEK2faQIo5w0NNWMtGNJUOQz0vKHt1O/NSJSUcHvdRoTL0J9TkOKkTbSQ72cPnVxIPRZr1hyKk4Ge5m4c1KqnkCGWq/41Q0ETiLCNWZIqY7rxNobI6kpZmRS6CaKxAgPUZ90ghGNFUcRUd74MTt6Yp8aP7BDIU1xbWfq76ExipRKI990RkgP1KI3Ff/zOokOr70x5XGiCcezRWHCbC3saQJ2QCXBmqWGICypOdfGAyQR1iangsnBXfx6mTTPK+5lxa1flKo3s0AgD0dwDGVw4QqqcAc1aAAGDs/wCm/WyHqx3q2PWWvOms8cwh9Ynz/ZnJJI</latexit>

Q(y|·)

<latexit sha1_base64="S+vMKsPVJuY9zkg/tmtrYpkIhPo=">AAAB9HicdVDLTgIxFL2DL8QX6tJNI5q4IjOKPHZENy4xkUcEQjqlAw2dzqTtEMiEv3Cpboxb/8aFf2MZMFGjJ2lycs69uafHDTlT2rY/rNTK6tr6Rnozs7W9s7uX3T9oqCCShNZJwAPZcrGinAla10xz2golxb7LadMdXc/95phKxQJxp6ch7fp4IJjHCNZGuu/4WA9dL57MetmcnbcTIDtfKJTsy4ohxUrZvqggZ2nlqieQoNbLvnf6AYl8KjThWKm2Y4e6G2OpGeF0lulEioaYjPCAtvtjFiqBfaq68SQJPUOnxu8jL5DmCY0S9ftSjH2lpr5rJuch1W9vLv7ltSPtlbsxE2GkqSCLQ17EkQ7QvAHUZ5ISzaeGYCKZiYvIEEtMtOkpY3r4+iz6nzTO804x79wWctWrRSGQhiM4hjNwoARVuIEa1IGAgAd4gmdrbD1aL9brYjRlLXcO4Qest08tzpMp</latexit>

x

<latexit sha1_base64="T9X2zg18GPuXsIFW61MMC9hY5zs=">AAAB9XicbVDLTsJAFL3FF+ILdelmIhpdkRYQcEd04xITeSSlIdNhChOmj8xMEdLwGS7VjXHr17jwb2wLJr5OMsnJOffmnjl2wJlUuv6hZVZW19Y3spu5re2d3b38/kFb+qEgtEV87ouujSXlzKMtxRSn3UBQ7NqcduzxdeJ3JlRI5nt3ahZQy8VDjzmMYBVLZs/FamQ70XR+1s8X9GK9fFG6rCC9WK7Wq6VaTPQUyFiSQuMEUjT7+ffewCehSz1FOJbSNPRAWREWihFO57leKGmAyRgPqTmYsEB62KXSiqZp6jk6jf0BcnwRP0+hVP2+FGFXyplrx5NJSvnbS8T/PDNUTt2KmBeEinpkccgJOVI+SipAAyYoUXwWE0wEi+MiMsICExUXlUt7WP76L/nqoV0qGtWicVspNK4WhUAWjuAYzsGAGjTgBprQAgI+PMATPGv32qP2or0uRjPacucQfkB7+wSSIZNW</latexit>

x0

DP is a property of the channel



The hypothesis testing in DP

A channel/“mechanism”/algorithm  is -differentially private if





For all measurable subsets  and all . 

Q (ϵ, δ)

Q(𝒯 |x) ≤ eϵQ(𝒯 |x′ ) + δ

𝒯 ⊆ 𝒴 x ∼ x′ 

<latexit sha1_base64="wEe26dl5F4cKK0SXfsWX0SaumdQ=">AAAB/HicbVDLSsNAFL3xWesr6tLNYBVclUREXRbduKxgH9CEMplM2qGTBzOT0hLil7hUN+LWP3Hh3zhJu9DWAwOHc+7lnjlewplUlvVtrKyurW9sVraq2zu7e/vmwWFbxqkgtEViHouuhyXlLKItxRSn3URQHHqcdrzRXeF3xlRIFkePappQN8SDiAWMYKWlvmk6Q6wyJ8Rq6AXZJM/7Zs2qWyXQMrHnpNY4hRLNvvnl+DFJQxopwrGUPdtKlJthoRjhNK86qaQJJiM8oD1/zBIZ4ZBKN5uU4XN0pn0fBbHQL1KoVH8vZTiUchp6erJIKRe9QvzP66UquHEzFiWpohGZHQpSjlSMiiaQzwQlik81wUQwHReRIRaYKN1XVfdgL/56mbQv6vZV3X64rDVuZ4VABY7hBM7BhmtowD00oQUExvAMr/BmPBkvxrvxMRtdMeY7R/AHxucPMo2V5w==</latexit>

x̂Adversary
<latexit sha1_base64="KDrPpXErQFVRHlczfAz/lhc00AE=">AAAB63icbVBNSwMxEJ2tX7V+VT16CVbBU9kVUY9FLx5bsB/QLiWbzbahSXZJssWl9Bd4VC/i1Z/kwX9juu1BWx8MPN6bYWZekHCmjet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqCG2SmMeqE2BNOZO0aZjhtJMoikXAaTsY3c/89pgqzWL5aLKE+gIPJIsYwcZKjaxfrrhVNwdaJd6CVGpnkKPeL3/1wpikgkpDONa667mJ8SdYGUY4nZZ6qaYJJiM8oN1wzBItsaDanzzlt07RufVDFMXKljQoV38PTbDQOhOB7RTYDPWyNxP/87qpiW79CZNJaqgk80VRypGJ0exxFDJFieGZJZgoZs9FZIgVJsbGU7I5eMtfr5LWZdW7rnqNq0rtbh4IFOEETuECPLiBGjxAHZpAgMIzvMKbI5wX5935mLcWnMXMMfyB8/kDsLmOyg==</latexit>

y

<latexit sha1_base64="lyz82hhd81yVwEu44OJdq6DLj+M=">AAAB9HicbVBNT8JAEJ3iF+IX6tFLI5rghbTGqEeiF4+QyEeEhmy3W9iw3W12t8QG+Rce1Yvx6r/x4L9xKRwUfMkkL+/NZGaeHzOqtON8W7mV1bX1jfxmYWt7Z3evuH/QVCKRmDSwYEK2faQIo5w0NNWMtGNJUOQz0vKHt1O/NSJSUcHvdRoTL0J9TkOKkTbSQ72cPnVxIPRZr1hyKk4Ge5m4c1KqnkCGWq/41Q0ETiLCNWZIqY7rxNobI6kpZmRS6CaKxAgPUZ90ghGNFUcRUd74MTt6Yp8aP7BDIU1xbWfq76ExipRKI990RkgP1KI3Ff/zOokOr70x5XGiCcezRWHCbC3saQJ2QCXBmqWGICypOdfGAyQR1iangsnBXfx6mTTPK+5lxa1flKo3s0AgD0dwDGVw4QqqcAc1aAAGDs/wCm/WyHqx3q2PWWvOms8cwh9Ynz/ZnJJI</latexit>

Q(y|·)
<latexit sha1_base64="lyz82hhd81yVwEu44OJdq6DLj+M=">AAAB9HicbVBNT8JAEJ3iF+IX6tFLI5rghbTGqEeiF4+QyEeEhmy3W9iw3W12t8QG+Rce1Yvx6r/x4L9xKRwUfMkkL+/NZGaeHzOqtON8W7mV1bX1jfxmYWt7Z3evuH/QVCKRmDSwYEK2faQIo5w0NNWMtGNJUOQz0vKHt1O/NSJSUcHvdRoTL0J9TkOKkTbSQ72cPnVxIPRZr1hyKk4Ge5m4c1KqnkCGWq/41Q0ETiLCNWZIqY7rxNobI6kpZmRS6CaKxAgPUZ90ghGNFUcRUd74MTt6Yp8aP7BDIU1xbWfq76ExipRKI990RkgP1KI3Ff/zOokOr70x5XGiCcezRWHCbC3saQJ2QCXBmqWGICypOdfGAyQR1iangsnBXfx6mTTPK+5lxa1flKo3s0AgD0dwDGVw4QqqcAc1aAAGDs/wCm/WyHqx3q2PWWvOms8cwh9Ynz/ZnJJI</latexit>

Q(y|·)

<latexit sha1_base64="S+vMKsPVJuY9zkg/tmtrYpkIhPo=">AAAB9HicdVDLTgIxFL2DL8QX6tJNI5q4IjOKPHZENy4xkUcEQjqlAw2dzqTtEMiEv3Cpboxb/8aFf2MZMFGjJ2lycs69uafHDTlT2rY/rNTK6tr6Rnozs7W9s7uX3T9oqCCShNZJwAPZcrGinAla10xz2golxb7LadMdXc/95phKxQJxp6ch7fp4IJjHCNZGuu/4WA9dL57MetmcnbcTIDtfKJTsy4ohxUrZvqggZ2nlqieQoNbLvnf6AYl8KjThWKm2Y4e6G2OpGeF0lulEioaYjPCAtvtjFiqBfaq68SQJPUOnxu8jL5DmCY0S9ftSjH2lpr5rJuch1W9vLv7ltSPtlbsxE2GkqSCLQ17EkQ7QvAHUZ5ISzaeGYCKZiYvIEEtMtOkpY3r4+iz6nzTO804x79wWctWrRSGQhiM4hjNwoARVuIEa1IGAgAd4gmdrbD1aL9brYjRlLXcO4Qest08tzpMp</latexit>

x

<latexit sha1_base64="T9X2zg18GPuXsIFW61MMC9hY5zs=">AAAB9XicbVDLTsJAFL3FF+ILdelmIhpdkRYQcEd04xITeSSlIdNhChOmj8xMEdLwGS7VjXHr17jwb2wLJr5OMsnJOffmnjl2wJlUuv6hZVZW19Y3spu5re2d3b38/kFb+qEgtEV87ouujSXlzKMtxRSn3UBQ7NqcduzxdeJ3JlRI5nt3ahZQy8VDjzmMYBVLZs/FamQ70XR+1s8X9GK9fFG6rCC9WK7Wq6VaTPQUyFiSQuMEUjT7+ffewCehSz1FOJbSNPRAWREWihFO57leKGmAyRgPqTmYsEB62KXSiqZp6jk6jf0BcnwRP0+hVP2+FGFXyplrx5NJSvnbS8T/PDNUTt2KmBeEinpkccgJOVI+SipAAyYoUXwWE0wEi+MiMsICExUXlUt7WP76L/nqoV0qGtWicVspNK4WhUAWjuAYzsGAGjTgBprQAgI+PMATPGv32qP2or0uRjPacucQfkB7+wSSIZNW</latexit>

x0

DP is a property of the channel



The hypothesis testing in DP

A channel/“mechanism”/algorithm  is -differentially private if





For all measurable subsets  and all . 

Q (ϵ, δ)

Q(𝒯 |x) ≤ eϵQ(𝒯 |x′ ) + δ

𝒯 ⊆ 𝒴 x ∼ x′ 

<latexit sha1_base64="wEe26dl5F4cKK0SXfsWX0SaumdQ=">AAAB/HicbVDLSsNAFL3xWesr6tLNYBVclUREXRbduKxgH9CEMplM2qGTBzOT0hLil7hUN+LWP3Hh3zhJu9DWAwOHc+7lnjlewplUlvVtrKyurW9sVraq2zu7e/vmwWFbxqkgtEViHouuhyXlLKItxRSn3URQHHqcdrzRXeF3xlRIFkePappQN8SDiAWMYKWlvmk6Q6wyJ8Rq6AXZJM/7Zs2qWyXQMrHnpNY4hRLNvvnl+DFJQxopwrGUPdtKlJthoRjhNK86qaQJJiM8oD1/zBIZ4ZBKN5uU4XN0pn0fBbHQL1KoVH8vZTiUchp6erJIKRe9QvzP66UquHEzFiWpohGZHQpSjlSMiiaQzwQlik81wUQwHReRIRaYKN1XVfdgL/56mbQv6vZV3X64rDVuZ4VABY7hBM7BhmtowD00oQUExvAMr/BmPBkvxrvxMRtdMeY7R/AHxucPMo2V5w==</latexit>

x̂Adversary
<latexit sha1_base64="KDrPpXErQFVRHlczfAz/lhc00AE=">AAAB63icbVBNSwMxEJ2tX7V+VT16CVbBU9kVUY9FLx5bsB/QLiWbzbahSXZJssWl9Bd4VC/i1Z/kwX9juu1BWx8MPN6bYWZekHCmjet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqCG2SmMeqE2BNOZO0aZjhtJMoikXAaTsY3c/89pgqzWL5aLKE+gIPJIsYwcZKjaxfrrhVNwdaJd6CVGpnkKPeL3/1wpikgkpDONa667mJ8SdYGUY4nZZ6qaYJJiM8oN1wzBItsaDanzzlt07RufVDFMXKljQoV38PTbDQOhOB7RTYDPWyNxP/87qpiW79CZNJaqgk80VRypGJ0exxFDJFieGZJZgoZs9FZIgVJsbGU7I5eMtfr5LWZdW7rnqNq0rtbh4IFOEETuECPLiBGjxAHZpAgMIzvMKbI5wX5935mLcWnMXMMfyB8/kDsLmOyg==</latexit>

y

<latexit sha1_base64="lyz82hhd81yVwEu44OJdq6DLj+M=">AAAB9HicbVBNT8JAEJ3iF+IX6tFLI5rghbTGqEeiF4+QyEeEhmy3W9iw3W12t8QG+Rce1Yvx6r/x4L9xKRwUfMkkL+/NZGaeHzOqtON8W7mV1bX1jfxmYWt7Z3evuH/QVCKRmDSwYEK2faQIo5w0NNWMtGNJUOQz0vKHt1O/NSJSUcHvdRoTL0J9TkOKkTbSQ72cPnVxIPRZr1hyKk4Ge5m4c1KqnkCGWq/41Q0ETiLCNWZIqY7rxNobI6kpZmRS6CaKxAgPUZ90ghGNFUcRUd74MTt6Yp8aP7BDIU1xbWfq76ExipRKI990RkgP1KI3Ff/zOokOr70x5XGiCcezRWHCbC3saQJ2QCXBmqWGICypOdfGAyQR1iangsnBXfx6mTTPK+5lxa1flKo3s0AgD0dwDGVw4QqqcAc1aAAGDs/wCm/WyHqx3q2PWWvOms8cwh9Ynz/ZnJJI</latexit>

Q(y|·)
<latexit sha1_base64="lyz82hhd81yVwEu44OJdq6DLj+M=">AAAB9HicbVBNT8JAEJ3iF+IX6tFLI5rghbTGqEeiF4+QyEeEhmy3W9iw3W12t8QG+Rce1Yvx6r/x4L9xKRwUfMkkL+/NZGaeHzOqtON8W7mV1bX1jfxmYWt7Z3evuH/QVCKRmDSwYEK2faQIo5w0NNWMtGNJUOQz0vKHt1O/NSJSUcHvdRoTL0J9TkOKkTbSQ72cPnVxIPRZr1hyKk4Ge5m4c1KqnkCGWq/41Q0ETiLCNWZIqY7rxNobI6kpZmRS6CaKxAgPUZ90ghGNFUcRUd74MTt6Yp8aP7BDIU1xbWfq76ExipRKI990RkgP1KI3Ff/zOokOr70x5XGiCcezRWHCbC3saQJ2QCXBmqWGICypOdfGAyQR1iangsnBXfx6mTTPK+5lxa1flKo3s0AgD0dwDGVw4QqqcAc1aAAGDs/wCm/WyHqx3q2PWWvOms8cwh9Ynz/ZnJJI</latexit>
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x0

DP is a property of the channel

[Dwork-Kenthapadi-McSherry-Mironov-Naor 2006]

[Wasserman-Zhou 2010] 
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• Guarantee is on conditional probabilities given the data: same risk holds 
regardless of side information (e.g. linkage attacks). 

• There is no statistical assumption on the data:  is not drawn from some 
(prior) distribution.

x

• The data itself is considered identifying: no notion of some parts being 
personally identifiable information (PII) and others not.
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function of the data.

Suppose we want . We want the test to 
be hard for any pair  which are “neighbors” 
( ).

f : 𝒳 → ℝ
(x, x′ )

x ∼ x′ 

If  is small for all neighbors, this should be 
easier.

f( ⋅ )

Example:  can change by at most  

for .

f(x) =
1
n

n

∑
i=1

xi
1
n

xi ∈ [0,1] 0 ø 1

H0 H1
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.Δ( f ) = max
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If we use additive noise (like in the Laplace and Gaussian case) we have

         vs.         ℋ0 : Z ∼ p(z − f(x)) ℋ1 : Z ∼ p(z − f(x′ ))

We can make a guarantee for all “neighbors” if following test is hard: 
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Example: the sample mean
Computing the MSE as a function of privacy risk

Suppose we have data in  and want to estimate the mean:𝒳 = [A, B]n

̂μ(xn) =
1
n

n

∑
j=1

xj + Z

• Sensitivity of  is .̂μ(xn) (B − A)/n

•  will guarantee -DP.Z ∼ 𝖫𝖺𝗉𝗅𝖺𝖼𝖾(nϵ/(B − A)) (ϵ,0)

• MSE of  is .̂μ(xn) 2/λ2 = 2
(B − A)2

n2ϵ2

I hate Laplace noise!
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The privacy-utility tradeoff
How much do we lose when we guarantee privacy?

Adding  noise guarantees privacy, but at what cost? The MSE is:𝖫𝖺𝗉𝗅𝖺𝖼𝖾(λ)

2/λ2 = 2
(B − A)2

n2ϵ2

So we can see that less privacy risk (smaller ) induces more MSE.ϵ

We can try to optimize the privacy mechanism if we know the utility function 
(like squared error).

This is what people call the privacy-utility tradeoff.
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Point estimation with differential privacy
Adding noise to sufficient statistics

 A typical DP approach to statistical estimation 
(Smith 2009):

• Model data as drawn i.i.d. . ∼ p(x |θ)

• Compute a sufficient statistic  for .T(xn) θ

• Add noise to  to guarantee DP.T(xn)

• Compute a “plug-in” estimate from noisy .T(xn)

We just need the sensitivity of .T( ⋅ )

θ
xn ∼ p(x |θ)

T( ⋅ )

Q( ⋅ | t)

̂θpriv
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Characterizing the distribution of the LLR
Privacy loss random variables

The fundamental quantity of interest is called the privacy loss random variable 
(PLRV). Switching notation a little bit, we can define the variable

Lx,x′ 
= log

dPY|X=x

dPY|X=x′ 

(Y)

𝔼[L] = DKL(PY|x∥PY|x′ 
)

The distribution of the PLRV is sometimes called the privacy loss distribution (PLD).

A challenge: this is defined for a single pair of inputs . We would like to only 
deal with the “worst case” pair of inputs.

(x, x′ )

Sommer, Meisner, Mohammadi (2020), Zhu, Dong, Wang (2022)
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How different are these two distributions?
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We would like to find a tight dominating pair of distributions  
corresponding to a pair of inputs  and :

(μ, ν)
x x′ 

.sup
x∼x′ 

𝖤γ(PY|X=x∥PY|X=x′ 
) = 𝖤γ(μ∥ν)

However, this does not mean  corresponds to a worst-case pair of 
neighboring inputs. In fact, a worst-case pair may not exist!

(μ, ν)

• It’s sufficient to look at  and  to be to univariate distributions on .μ ν [0,1)

• We can use these dominating pairs to bound the loss for compositions.

Zhu, Dong, Wang (2022)



Adding things up
Composition and divergences

With thanks to Flavio Calmon, Oliver Kosut, and Shahab Asoodeh!



Adding things up
Composition and divergences

If we have multiple releases with PLRVs :L1, L2, …, Lk

With thanks to Flavio Calmon, Oliver Kosut, and Shahab Asoodeh!



Adding things up
Composition and divergences

If we have multiple releases with PLRVs :L1, L2, …, Lk

.L = L1 + L2 + ⋯Lk

With thanks to Flavio Calmon, Oliver Kosut, and Shahab Asoodeh!



Adding things up
Composition and divergences

If we have multiple releases with PLRVs :L1, L2, …, Lk

.L = L1 + L2 + ⋯Lk

Building from measure concentration (Dwork, Rothblum, Vadhan (2010)) or exact 
composition (Kairouz, Oh, Viswanath (2015), Murtagh, Vadhan (2016)) there are (at 
least) three main branches of work on composition:

With thanks to Flavio Calmon, Oliver Kosut, and Shahab Asoodeh!



Adding things up
Composition and divergences

If we have multiple releases with PLRVs :L1, L2, …, Lk

.L = L1 + L2 + ⋯Lk

Building from measure concentration (Dwork, Rothblum, Vadhan (2010)) or exact 
composition (Kairouz, Oh, Viswanath (2015), Murtagh, Vadhan (2016)) there are (at 
least) three main branches of work on composition:

• Large deviations

With thanks to Flavio Calmon, Oliver Kosut, and Shahab Asoodeh!



Adding things up
Composition and divergences

If we have multiple releases with PLRVs :L1, L2, …, Lk

.L = L1 + L2 + ⋯Lk

Building from measure concentration (Dwork, Rothblum, Vadhan (2010)) or exact 
composition (Kairouz, Oh, Viswanath (2015), Murtagh, Vadhan (2016)) there are (at 
least) three main branches of work on composition:

• Large deviations

• Central limit theorem

With thanks to Flavio Calmon, Oliver Kosut, and Shahab Asoodeh!



Adding things up
Composition and divergences

If we have multiple releases with PLRVs :L1, L2, …, Lk

.L = L1 + L2 + ⋯Lk

Building from measure concentration (Dwork, Rothblum, Vadhan (2010)) or exact 
composition (Kairouz, Oh, Viswanath (2015), Murtagh, Vadhan (2016)) there are (at 
least) three main branches of work on composition:

• Large deviations

• Central limit theorem

• Numerical approaches

With thanks to Flavio Calmon, Oliver Kosut, and Shahab Asoodeh!
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Maintaining exactness for composition
Tilting a distribution

Look at the cumulant generating function:

KL(t) = log 𝔼 [etL]
and the “tilted” random variable (for continuous )L

L̃t ∼ pL̃(y) = e−KL(t)+typL(y)

Then under some mild assumptions 

.δ(ε) =
1

2πi ∫
t+∞i

t−∞i
eKL(z)−εz−log z−log(1+z)dz

Can use this to derive a “saddle-point” accountant in terms of the exponent.

Figure: Oliver Kosut

Alghamdi, Gomez, Asoodeh, Calmon, Kosut, Sankar (2023) 
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(Beyond Don Quixote) 
Tilting in other contexts

Tilting is an old idea (originally in Esscher (1932)) and 
used in risk analysis, rejection sampling/importance 
sampling, and elsewhere. Connections to:

• Exponential families

• Edgeworth expansion

• Temperature in Boltzman/Gibbs distributions

Perhaps of interest to folks here? Botev (2017) uses it 
to exact iid simulation from the truncated multivariate 
normal distribution.

A tiling (not tilting) by  
M.C. Escher, not F. Esscher
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.w* = argmin
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∑
i=1

ℓ(w, xi)

We can use DP to approximate this in a number of ways:

• “Output perturbation”: compute the minimizer and add noise.

• “Objective perturbation”: Add a random term to the objective function and minimize it.

• “Functional mechanism”: Add noise to an approximation of the loss function .ℓ( ⋅ )
[Chaudhuri, Monteleoni, Sarwate 2011]

[Zhang, Zhang, Xiao, Yang, Winslett 2012]
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Deep neural networks (DNNs) also use optimization 
algorithms in training. To make these private we can 
add noise to the gradients in stochastic gradient 
descent (SGD):

• Adding noise to gradients provides differential 
privacy.

• For high-dimensional problems, Gaussian noise is 
very effective.

• Need to use privacy accounting.

[Song et.al. 2013, Duchi et.al. 2014, Abadi et.al. 2016, Mironov 2017] 

ĝ
=
g
+
z t

g

zt



Quantifying the privacy gain from post-processing
Strong data processing inequalities

Dobrushin (1956), Ahlswede, Gács (1976)



Quantifying the privacy gain from post-processing
Strong data processing inequalities

The (Dobrushin) contraction coefficient of a channel  for a 
divergence  is

Ψ
Df

Dobrushin (1956), Ahlswede, Gács (1976)



Quantifying the privacy gain from post-processing
Strong data processing inequalities

The (Dobrushin) contraction coefficient of a channel  for a 
divergence  is

Ψ
Df

.ηf(Ψ) = sup
μ,ν:Df(μ∥ν)≠0

Df(Ψμ∥Ψν)
Df(μ∥ν)

Dobrushin (1956), Ahlswede, Gács (1976)



Quantifying the privacy gain from post-processing
Strong data processing inequalities

The (Dobrushin) contraction coefficient of a channel  for a 
divergence  is

Ψ
Df

.ηf(Ψ) = sup
μ,ν:Df(μ∥ν)≠0

Df(Ψμ∥Ψν)
Df(μ∥ν)

This quantifies the guaranteed gap (if it exists) in the data 
processing inequality (DPI):

Dobrushin (1956), Ahlswede, Gács (1976)



Quantifying the privacy gain from post-processing
Strong data processing inequalities

The (Dobrushin) contraction coefficient of a channel  for a 
divergence  is

Ψ
Df

.ηf(Ψ) = sup
μ,ν:Df(μ∥ν)≠0

Df(Ψμ∥Ψν)
Df(μ∥ν)

This quantifies the guaranteed gap (if it exists) in the data 
processing inequality (DPI):

.Df(Ψμ∥Ψν) ≤ Df(μ∥ν)

Dobrushin (1956), Ahlswede, Gács (1976)



Quantifying the privacy gain from post-processing
Strong data processing inequalities

The (Dobrushin) contraction coefficient of a channel  for a 
divergence  is

Ψ
Df

.ηf(Ψ) = sup
μ,ν:Df(μ∥ν)≠0

Df(Ψμ∥Ψν)
Df(μ∥ν)

This quantifies the guaranteed gap (if it exists) in the data 
processing inequality (DPI):

.Df(Ψμ∥Ψν) ≤ Df(μ∥ν)

If  this is a strong data processing inquality (SDPI).ηf(Ψ) > 0

Dobrushin (1956), Ahlswede, Gács (1976)
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Applications to DP-SGD and LDP
Contraction for the 🏒 divergence

The contraction coefficient for the  divergence admits a 2-point 
characterization:

𝖤γ

.ηf(Ψ) = sup
w,w′ 

𝖤γ(Ψ(w)∥Ψ(w′ ))

This is very similar to Dobrushin’s characterization for total variation:

.η𝖳𝖵(Ψ) = sup
w,w′ 

𝖳𝖵(Ψ(w), Ψ(w′ ))

Dobrushin (1956), Asoodeh, Diaz, Calmon (2020), Balle, Barthe, Gaboardi, Hsu, Sato (2020)



Iterations just tack on more Markov kernels
Application to noisy SGD

Asoodeh, Diaz, Calmon (2020/2023), Asoodeh, Diaz (2024)



Iterations just tack on more Markov kernels
Application to noisy SGD

In noisy SGD with iterates  compute clipped gradient updates  :{Wt} gt(Wt−1)

Asoodeh, Diaz, Calmon (2020/2023), Asoodeh, Diaz (2024)



Iterations just tack on more Markov kernels
Application to noisy SGD

In noisy SGD with iterates  compute clipped gradient updates  :{Wt} gt(Wt−1)

Wt ← Π𝒲(gt(Wt−1) + σZt)

Asoodeh, Diaz, Calmon (2020/2023), Asoodeh, Diaz (2024)



Iterations just tack on more Markov kernels
Application to noisy SGD

In noisy SGD with iterates  compute clipped gradient updates  :{Wt} gt(Wt−1)

Wt ← Π𝒲(gt(Wt−1) + σZt)

At each iteration, take ,  to be distributions of  and ,  to be distributions on 
.. We have two chains:

μ ν Wt−1 Ψtμ Ψtν
Wt

Asoodeh, Diaz, Calmon (2020/2023), Asoodeh, Diaz (2024)



Iterations just tack on more Markov kernels
Application to noisy SGD

In noisy SGD with iterates  compute clipped gradient updates  :{Wt} gt(Wt−1)

Wt ← Π𝒲(gt(Wt−1) + σZt)

At each iteration, take ,  to be distributions of  and ,  to be distributions on 
.. We have two chains:

μ ν Wt−1 Ψtμ Ψtν
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Iterations just tack on more Markov kernels
Application to noisy SGD

In noisy SGD with iterates  compute clipped gradient updates  :{Wt} gt(Wt−1)

Wt ← Π𝒲(gt(Wt−1) + σZt)

At each iteration, take ,  to be distributions of  and ,  to be distributions on 
.. We have two chains:

μ ν Wt−1 Ψtμ Ψtν
Wt

        ΨTΨT−1⋯Ψ1μ0 ΨTΨT−1⋯Ψ1ν0

Can analyze the privacy for the last iterate by understanding contraction for the  
divergence. Even better: can extend to some non convex problems by merging SDPIs 
with coupling arguments.

𝖤γ

Asoodeh, Diaz, Calmon (2020/2023), Asoodeh, Diaz (2024)
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An abbreviated timeline
Privacy amplification by iteration

If you hide the iterates, the privacy leakage converges (instead of increasing with the 
number of iterations.

• Feldman, Mironov, Talwar, Thakurta (2018) - convex, smooth

• Balle, Barthe, Gaboardi, Geumlek (2019) - strongly convex

• Chourasia, Ye, Shokri (2021/2022) Ryffel, Bach, Pointcheval (2022) - strongly convex, 
smooth for minibatch noisy SGD

• Altschuler, Talwar (2022)/Altschuler, Bok, Talwar (2024) - projected, convex, bounded

• Asoodeh, Diaz (2024) - use data processing inequalities to remove convexity and 
smoothness assumptions for projected DP-SGD and regularized DP-SGD.
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Focusing on the local model
Contraction and Bayesian estimation

Suppose we have  i.i.d.  with  prior  and privatized version  
with  (local DP). Then the Bayes risk

Xn
1 ∼ PX|θ θ ∼ PΘ Zn

1
Zi = Ψε,δ(Xi)

R(Θ, ε, δ) = inf
Ψϵ,δ

inf
̂θ

𝔼[ℓ(θ, ̂θ(Yn
1)]

can be lower bounded in terms of an -mutual information. In the language of 
“quantitative information flow”:

𝖤γ

 is a secret, the loss  is a negative gain, and we look for the maximally leaky 
channel subject to an  constraint…
θ ℓ

(ε, δ)

Asoodeh, Diaz, Calmon (2020/2023)
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Morning After a Snowfall 
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礫川雪の旦 
Koishikawa yuki no 

ashita



What we’ve seen so far
Let’s start simple

Sasha

s ∈ {0,1}

Y ∼ PY|S=s

̂s ∈ {0,1}
Blake



What we’ve seen so far
Let’s start simple

We started out with a simple story: protecting 
a single bit.

• Differential privacy both is and is not just as 
simple as hypothesis testing.

• Taking an information-theoretic view opens 
the door to better analyses.

• The gap between algorithms and analysis is 
shrinking.

• The gap between algorithms and 
applications is still large.

Sasha

s ∈ {0,1}

Y ∼ PY|S=s

̂s ∈ {0,1}
Blake
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The gap between theory and practice
It’s wider than you might think

There are lots of issues with implementing differential privacy 
in practice:

• Approximate versus exact sampling (and side channels)

• Approximate versus exact optimization

• “Privacy amplification” and it’s implementation

• Numerical precision and floating points

• Managing privacy budgets
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Several interesting  
challenges left for:

maths
computational stats

engineering
human-computer interaction

technology policy



Thank you!

The Great Wave off 
Kanagawa 

神奈川沖浪裏 
Kanagawa oki nami-ura


