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I am still trying to figure out how to talk about this work

This is (mostly) based on pretty empirical work: not sure if it 
counts as information theory.

 
I think there are lots of interesting questions for theory 
which this brings up!

 
There are a lot of metaphors and analogies (some science-
fictional) which are not always precise.

Real life is a bit messy…
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What do ML models have to do with science?

We often hear a lot about “AI for Science” but that can 
mean a lot of different things! Some examples:

• Using computer vision to do automated analysis of 
medical images.

• Use generative AI to build a “digital twin” of energy/utility 
networks for simulation/design

• Use LLM architectures to decode brain activity for 
assistive technology.

• Many more…
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Some gap between hype and reality

https://futuretech.mit.edu/news/ai-and-the-future-of-scientific-
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What about information/signal processing?
Some perspective from more solid ground

At the end of the day “artificial neural nets” are 
just a bunch of computational signal processing 
primitives chained together and jointly optimized 
with stochastic gradient methods. 

- Ben Recht (on argmin.net) 

ML/AI frameworks are evolving very quickly.

➜ Theory often lags behind practice. 

➜ IT, SP, control, etc. are still relevant!

http://argmin.net
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What is “AI as instrumentation”?
Putting neural networks into measurement devices

The data (images, time series, etc.) produced by a 
scientific instrument (camera/microscope/
scanner) can be described in terms of the science 
(physics, chemistry, biology).

We use the data in analytics pipelines for more 
complex tasks. This relies on assumptions:

• Data from the same camera is “consistent”.

• Data from different cameras are “consistent”.

If we put AI “into the camera” will these be true?

“raw”  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It already is not true in actual practice
Assumptions are wrong, but maybe correctable?

Data are almost never consistent in the ways we 
assume.

• Calibration issues

• “Batch effects” (c.f. DNA/RNA sequencing)

• Information forensics

• Sampling bias

• Etc…

Images: pngrepo.com, Tung et al. (2017), OpenMoji.org

https://www.nature.com/articles/srep39921
http://OpenMoji.org
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What about our assumptions?
What would it mean of them to hold (if they do)?

A futuristic thought experiment: every camera has a 
AI model that produces the actual image or a decision 
based on the image.

• If we build the camera twice, will it be the same?

• If we use two different cameras will they give 
similar results?

• How do we compare two models?

These questions are not new! We can use “classical” 
tools to try and understand them.

iOS 8.3 iOS 18.4

HarmonyOS 4.0 Samsung UI 7.0

MS 3D Fluent SerenityOS
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The standard statistical setup for modern ML
Machine learning as function-fitting

The traditional setup for estimating parameters in 
a statistical model (or training a neural network:

• Parameterized set of functions/models 
.{f(x |θ) : θ ∈ Θ}

• Training data used to estimate the 
parameters by minimizing some objective 
function.

• Stochastic optimization algorithm that does 
the actual minimization.
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How should we characterize a model?
Drawing samples from the function space

For a fixed training set, architecture, and training algorithm, we can think of  
an ML/AI model as a sample from a function space:

ℱ = {f : f representable by the NN}

Examples: 

• In classification, each   labels input data points.f : 𝒳 → [L]

• In representation learning, each   maps inputs to 
representations/embeddings.

f : 𝒳 → ℛ
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Some natural questions
Comparing models is not clear

If we have two different models we might have

 ℱ = {f : f representable by NN A}
𝒢 = {g : g representable by NN B}

Can we meaningfully compare these models?

• If  we can use their outputs to do a comparison.ℱ = 𝒢

• If  we need some way to do a comparison.ℱ ≠ 𝒢



Variability in the training process
Is training reliable?

If we have two different architectures  and  with 
different output spaces, how can we measure their 
similarity?


• Focus on performance: two models with the same 
error are “effectively the same”.


• Focus on features: come up with a mapping from one 
model to the other to show they are the same.


• Focus on approximations: use proxies for each 
model which are more comparable.

ℱ 𝒢

HarmonyOS 4.0

Samsung UI 7.0
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Not practical, but perhaps informative?

Suppose we compute some kernel 
function  associated to the model and 
fit a surrogate model :

K
(V, b)

yi = VK(xi, X) + b

where  and . Fitting 
is done with the same training data 
(double dipping).

yi, b ∈ ℝC V ∈ ℝC×N

One example: the neural tangent kernel.

≈
kGLM
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Neural Networks as Kernel Machines
Approximating an NN with a “simpler” model

Jacot et al. (2018) showed that infinitely wide NNs are equivalent to a kernel 
machine with with the “neural tangent kernel” (NTK):

K(x, x′ ) = ⟨∇θ f(x; θ), ∇θ f(x′ ; θ)⟩
Measures the (cosine) similarity between tangent hyperplanes for  and  at . x x′ θ

Finite width networks don’t really behave like infinite width networks… (Chizat et 
al., 2018; Yang & Hu, 2021; Wang et al., 2022). 

NTK ≠



Challenge: NTK is asymptotic (infinite width)
Writing an empirical version of the NTK

We would like to handle multi-class 
problems and large data sets. In the 
setting the empirical NTK becomes 
huge. For classes  and  define:





Then the NTK has a block structure, 
where each diagonal block has the 
“regular” NTK for each class and the 
off-diagonal blocks are cross terms.

i j

KNTK
(c,c′ )(xi, xj) = ⟨∇θ f c(xi; θ), ∇θ f c′ (xj; θ)⟩



Trace NTK: a proxy for the eNTK
Much lower computational overhead needed

We look at a simplification of the NTK:





This is different from other surrogate kernels: the pseudo NTK (pNTK) (Mohamadi & 
Sutherland, 2022), things based on the CK (Fan & Wang, 2020; Yeh et al., 2018), the 
un-normalized trNTK, and the embedding kernel (Akyürek et al., 2023).


Fast to compute, also with random projections (Novak et al., 2022, Park et al., 2023))

KtrNTK(xi, xj) =
∑C

c=1 ⟨∇θ f c(xi; θ), ∇θ f c(xj; θ)⟩
(∑C

c=1 fc(xi; θ)
2)

1/2

(∑C
c=1 fc(xj; θ)

2)
1/2
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Some takeaways from the setup
Formalization shows how under-specified model comparison is

Understanding a model by its NTK 
sounds OK but can we really compare 
two models by their NTKs? Maybe!

• Computing even the trNTK is 
expensive, especially for large 
models.

• Much easier if you have access to 
the training corpora.

• Challenging because of invariants.



Embedding spaces and model 
comparisons

Rm Palaniappan, Alien Planet-B 
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A question of interoperability 
Challenges in collaborating with AI instruments

Suppose we have two manufacturers of these AI scientific 
instruments based on generative AI.

You wan to collaborate with a lab which has a different 
model than you do.

Are these models producing outputs that “look the same?”

Challenges:

• To the human eye, they are functionally similar.

• Can we quantitatively see if they are different?

HarmonyOS 4.0

Samsung UI 7.0
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Embedding spaces of large models
Splitting a model into a feature extraction and decision

We can think of many models 
as having “feature embedding” 
stage followed by “downstream 
tasks.”

Fine-tuning works because 
these embeddings carry a lot 
of information.

Idea: can we compare the 
embedding spaces of models 
to tell the difference between 
them?

embedding
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Comparing embedding spaces directly?
Generally this is a non-starter

Given two models with different 
architectures, we cannot compare the 
embedding spaces directly.

• Different dimensions.

• Different compression strategies

• Different “semantics”

Unlike with classification, we need to 
compare the outputs of the generative 
models.
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Using a pre-trained model to distinguish
Use the embedding space to compare outputs of models

New idea: use the embedding space of a third AI model as a “microscope” to 
compare the outputs of two AI models.s



A specific example for GenAI
Compare the outputs using a 3rd model for embedding
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Using a large model as an instrument
It takes one to know one

Idea: Use a large model to embed the outputs of the models we want to compare.

• Mistral-7B: LLM, transformer-based, 32 layers, 13b parameters per token and 
32 token vocabulary. Embeddings from the final hidden layer of dimension 4,096. 

• Multilingual-e5-large: extracts sentence embeddings from text in different 
languages to 1024-dimensional embedding vectors. 60M parameters, context 
window of 512 tokens and long text is truncated to fit within this window.

• Data Filtering Network: a CLIP model trained on 5B images that were 
filtered from an uncurated dataset of image-text pairs. It has 1B parameters and 
can be used to encode both text and images. 
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A pre-trained model is a kind of instrument
But used to distinguish between other models

Simple tools (PCA, LDA ) applied to the embedding vectors reveal differences 
between samples generated by other models. Some applications:

1. Embed real data and AI-generated data to see if the embedding vectors 
cluster.

2. Unsupervised clustering of embedded data recreates the labels in the 
original.

3. Detect the difference between real and machine-translated data.







Claim: PCs reflect interpretable 
features/known hidden labels.


Took news articles in Spanish and 
German in two topics, economics 
and sports.


Used a ML translator to translate 
German to Spanish.


Translating news articles helps 
reduce the variation in one 
dimension (language).
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Some takeaways and ongoing work
Model forensics and model evolution

Preliminary experiments show that the embedding spaces of 
large “foundation models” can separate data generated from 
different sources.

• Forensics applications: comparing models, detecting 
deepfakes, etc.

• “Model DNA”: fine-tuned or “lightly modified” models 
make minor modifications to the embeddings.

• Use post processing to “align” embeddings for 
calibration, ensembling, federated learning, etc.

HarmonyOS 4.0

Samsung UI 7.0



Model comparisons in training

Rm Palaniappan, Alien Planet-D 
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Variability in the training process
Is training reliable?

Each time we run the training algorithm on the 
same training set, same architecture, same 
algorithm, we still use (pseudo-)independent 
randomness.


• Each training run is a sample from .


• Given samples  are they similar 
to each other or different?


This is related to how reproducible a model is. 

ℱ

f1, f2, …, fM
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Comparing two runs of training
Model comparisons are ad hoc and waste energy

• Determining if one model is "better" than 
another is not well-posed.

• In practice, end up running the training process 
many times. Wasted computation, time, 
energy, etc.

Terms like the Rashomon effect[1][2][3], 
predictive multiplicity[4], or prediction churn[5] 
have been used to describe this phenomena.

[1] Breiman, L. (2001). Statistical modeling: The two cultures (with comments and a rejoinder by the author). Statistical science, 16(3), 199-231
[2] Fisher, A., Rudin, C., & Dominici, F. (2019). All models are wrong, but many are useful: Learning a variable's importance by studying an entire class of prediction models 
simultaneously. Journal of Machine Learning Research, 20(177), 1-81.
[3] Hsu, H., & Calmon, F. (2022). Rashomon capacity: A metric for predictive multiplicity in classification. Advances in Neural Information Processing Systems, 35, 28988-29000.
[4] Milani Fard, M., Cormier, Q., Canini, K., & Gupta, M. (2016). Launch and iterate: Reducing prediction churn. Advances in Neural Information Processing Systems, 29.
[5] Marx, C., Calmon, F., & Ustun, B. (2020, November). Predictive multiplicity in classification. In International Conference on Machine Learning (pp. 6765-6774). PMLR.
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Hard decisions vs. soft decisions
Putting on a communications hat

Test error and churn measure differences in “hard decisions” .f : 𝒳 → [L]

• These are usually made using (softmax) probability estimates .̂p(y |x, θ)

• Instead look at pre-threshold “soft decision”  for the model.m(x |θ)
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Comparing two binary classifiers
Soft decisions are different even if decisions are the same

Measure the difference between the soft 
decisions/LLRs. 

The LLR  of a model is a random 
variable that depends on .

m(x |θ)
x

Assume the test set is made of i.i.d. draws 
from the input distribution.

Turn this into a hypothesis testing problem!



Two-sample tests for model similarity
Back to simple tools: hypothesis testing

Are the models the same are different? Answer this by testing:



ℋ0 : m(x; θ0) = m(x; θ1)

ℋ1 : m(x; θ0) ≠ m(x; θ1)

VS.
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-trimmings

Hypothesis testing for model comparisons
Use the test’s threshold as a measure of difference 

Need to use empirical CDFs  (candidate) 
and  (null).

Ĝ0̂G

Optimize to find the closest model to  in 
a ball around .

̂G
Ĝ0

This is a search over “ -trimmings” which 
can be done efficiently (del Barrio el 2020, 
Álvarez-Esteban et al. 2011).

α

Define a new discrepancy measure  as 
the minimum level for the test (= radius 

of the ball) to accept.

α̂
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Advantages over other measures
Other measures are pairwise or less information about the models

1. Test/validation accuracy: if two models have similar test performance, “one is as 
good as the other.”

2. Churn: the two models do not disagree on the test set.

3. Expected Calibration Error (ECE) (Naeini et al. 2015): measures the difference 
between accuracy and expected “confidence” (the LLR).

For our new  measure:α̂

• When  is large, at least one of the other metrics is also large.α̂

• Models with small  are generally low on all the other metrics as well.α̂
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Connecting back to our story
“Reliable” training algorithm should produce “typical” models

Measures like  (using  balls, Wasserstein 
balls, etc.) can let us measure “atypicality.”

α̂ ℓ1

• Use this to design new methods for model 
ensembling.

• Apply it to other features of trained models 
(e.g. NTK spectra) to find model differences.

• Connect it to process engineering and 
other industrial production ideas.

iOS 8.3 iOS 18.4

HarmonyOS 4.0 Samsung UI 7.0

MS 3D Fluent SerenityOS



Some final remarks

Rm Palaniappan, Intense Talk 
Mixed media on paper pasted on mount board
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Back to the original question
What does any of this mean for “AI for Science”?

To use large ML/AI models as part of a scientific workflow, we need 
“interpretability” and “reliability.”

We also need to understand “reliability” for the training/fine-tuning processes.

It’s more important to compare models directly and not just their performance.

sensor feature  
extraction prediction
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Where is this all going?
Maybe some strange new worlds

• Theory: can we instead compare surrogate 
models like “faithful” NTK representations 
(Engel et al. 2024)?

• Experiment: can we do these comparisons 
cheaply (e.g. using academic-level 
resources)?

• Application: how do we use model 
comparisons in forensics, process 
engineering, ensembling, and beyond?

Developing a good set of techniques for model comparisons requires thinking 
from several different directions:



谢谢大家的关注!


