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| am still trying to figure out how to talk about this work

This is (mostly) based on pretty empirical work: not sure if it
counts as information theory.

| think there are lots of interesting questions for theory
which this brings up!

There are a lot of metaphors and analogies (some science-
fictional) which are not always precise.

Real life is a bit messy...
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What about information/signal processing?

Some perspective from more solid ground

At the end of the day “artificial neural nets” are
just a bunch of computational signal processing

O
() 2
6 primitives chained together and jointly optimized
with stochastic gradient methods.

- Ben Recht (on argmin.net)

ML/AIl frameworks are evolving very quickly.
=» Theory often lags behind practice.

=> IT, SP, control, etc. are still relevant!
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Putting neural networks into measurement devices

The (images, time series, etc.) produced by a
sensor post- scientific instrument (camera/microscope/
processing scanner) can be described in terms of the science

m\ * ' * * * (physics, chemistry, biology).

physical “raw’’

modeling measurements We use the data in analytics pipelines for more
complex tasks. This relies on assumptions:
"  Data from the same camera is “consistent”.
feature decision

extraction system

e Data from different cameras are “consistent”.
> ‘D> @ » N

foatures label If we put Al “into the camera” will these be true?
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It already Is not true in actual practice

Assumptions are wrong, but maybe correctable?

Data are almost never consistent in the ways we
assume.

The effect of technical batch on single cell gene
expression for raw counts data

e Calibration issues

PC2 (2.45%)
»

o “Batch effects” (c.f. DNA/RNA sequencing)
* Information forensics

e Sampling bias

* Etc...

Images: pngrepo.com, Tung et al. (2017), OpenMoiji.org
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What about our assumptions?
What would it mean of them to hold (if they do)?

A futuristic thought experiment: every camera has a
Al model that produces the actual image or a decision
based on the image.

* |f we build the camera twice, will it be the same? i0S 18.4
- - : - - =
* |f we use two different cameras will they give 2
similar results? °
* How do we compare two models? HarmonyOS 4.0 Samsung Ul 7.0

These questions are not nhew! \We can use “classical”
tools to try and understand them. [‘]

MS 3D Fluent SerenityOS
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The standard statistical setup for modern ML
Machine learning as function-fitting

random seed

Wo The traditional setup for estimating parameters in

. a statistical model (or training a neural network:

modade
arehiiecture  Parameterized set of functions/models
°g=i_> (f(x]6) : 6 € ©).
v v
T;;,»  Training data used to estimate the

— parameters parameters by minimizing some objective
> function.
"23‘29 o Stochastic optimization algorithm that does

training the actual minimization.
process
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How should we characterize a model?

Drawing samples from the function space

For a fixed training set, architecture, and training algorithm, we can think of
an ML/Al model as a sample from a function space:

F = {f : f representable by the NN}

Examples:
» In classification, each f: X — [L] labels input data points.

» In representation learning, each f: X — 9% maps inputs to
representations/embeddings.
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Some natural questions

Comparing models is not clear

If we have two different models we might have

F = {f: f representable by NN A}
G = {g : g representable by NN B}

Can we meaningfully compare these models?
e If & = & we can use their outputs to do a comparison.

e If F £ & we need some way to do a comparison.



Variability in the training process

Is training reliable?

HarmonyQOS 4.0

Samsung Ul 7.0

If we have two different architectures & and & with
different output spaces, how can we measure their
similarity?

 Focus on performance: two models with the same
error are “effectively the same”.

 Focus on features: come up with a mapping from one
model to the other to show they are the same.

 Focus on approximations: use proxies for each
model which are more comparable.
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Approximating the NN with a kernel machine

Not practical, but perhaps informative?

Suppose we compute some kernel
WL W g e e le o o M e .« TUNCtion K associated to the model and
fit a surrogate model (V, b):

yi — VK(XZ-, X) + b

where y;,b € R¢and V € R Fitting

IS done with the same training data
(double dipping).

One example: the neural tangent kernel.
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Jacot et al. (2018) showed that infinitely wide NNs are equivalent to a kernel
machine with with the “neural tangent kernel” (NTK):

K(x,X") = ( Vo f(x;0), Vo f(x';0))

Measures the (cosine) similarity between tangent hyperplanes for X and X" at 6.

Finite width networks don’t really behave like infinite width networks... (Chizat et
al., 2018; Yang & Hu, 2021; Wang et al., 2022).



Challenge: NTK is asymptotic (infinite width)

Writing an empirical version of the NTK

We would like to handle multi-class
problems and large data sets. In the
setting the empirical NTK becomes

huge. For classes 1 and J define:
KNS, ) = ( Vol 0, Vo f x:0))

Then the NTK has a block structure,
where each diagonal block has the

“regular” NTK for each class and the
off-diagonal blocks are cross terms.

~

K NTK

K NTK
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K NTK K NTK
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Trace NTK: a proxy for the eNTK

Much lower computational overhead needed

We look at a simplification of the NTK:
C
2 Vol a0, Vofx:0))
KtrNTK(Xi, Xj) —

= o T (2 o]

This is different from other surrogate kernels: the pseudo NTK (pNTK) (Mohamadi &
Sutherland, 2022), things based on the CK (Fan & Wang, 2020; Yeh et al., 2018), the
un-normalized trNTK, and the embedding kernel (Akyurek et al., 2023).

Fast to compute, also with random projections (Novak et al., 2022, Park et al., 2023))
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Understanding a model by its NTK
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 Computing even the trNTK is
expensive, especially for large
models.

 Much easier if you have access to
the training corpora.
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Some takeaways from the setup

Formalization shows how under-specified model comparison Is

Understanding a model by its NTK
sounds OK but can we really compare
two models by their NTKs? Maybe!

 Computing even the trNTK is
expensive, especially for large
models.

 Much easier if you have access to
the training corpora.

» Challenging because of invariants.

~

K NTK

K NTK

NTK NTK
K K
K NTK K NTK

o

@
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NTK NTK
K K
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Embedding spaces and model
omparisons

Rm Palaniappan, Alien Planet-B
Viscosity, pencil colour and ink on handmade paper
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A question of interoperability

Challenges in collaborating with Al instruments

Suppose we have two manufacturers of these Al scientific
iInstruments based on generative Al.

You wan to collaborate with a lab which has a different
model than you do.

HarmonyOS 4.0 _
Are these models producing outputs that “look the same?”

Challenges:

* Jo the human eye, they are functionally similar.

 Can we quantitatively see if they are different?

Samsung Ul 7.0
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Splitting a model into a feature extraction and decision

We can think of many models
as having “feature embedding”
stage followed by “downstream

T tasks.”
O =
QO O
< = S Jlt:rine—tunirg)g zlvdqus bec:auseI t
. O .= ese embeddings carry a lo
) f(X, '9) —> & S » of information.
embedding | © T
space n S
G o
0L




Embedding spaces of large models

Splitting a model into a feature extraction and decision

We can think of many models
as having “feature embedding”
stage followed by “downstream
tasks.”

Fine-tuning works because

these embeddings carry a lot
» of information.

X

—> f(x;0) ———>
embedding

space Idea: can we compare the

embedding spaces of models
to tell the difference between
them?

Classification head
for fine-tuning, etc.
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Comparing embedding spaces directly?

Generally this is a non-starter

—  f(x)
= g(x)

_)O

not directly
comparable!

Given two models with different
architectures, we cannot compare the
embedding spaces directly.

e Different dimensions.
* Different compression strategies
e Different

Unlike with classification, we need to
compare the outputs of the generative
models.
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Using a pre-trained model to distinguish

Use the embedding space to compare outputs of models

output embedding
of A vectors A

New idea: use the embedding space of a third Al model as a “microscope” to

compare the outputs of two Al models.s

classical
statistics




A specific example for GenAl

Compare the outputs using a 3rd model for embedding

sample
Llama-2 text A
— )
‘ 70B

prompt

| 3 Falcon 3

40B

Mistral-7B

embedding
vectors A

\
_—

PCA/LDA
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Using a large model as an instrument

It takes one to know one

Idea: Use a large model to embed the outputs of the models we want to compare.

e Mistral-7B: LLM, transformer-based, 32 layers, 13b parameters per token and
32 token vocabulary. Embeddings from the final hidden layer of dimension 4,096.

e Multilingual-e5-large: extracts sentence embeddings from text in different
languages to 1024-dimensional embedding vectors. 60M parameters, context
window of 512 tokens and long text is truncated to fit within this window.

e Data Filtering Network: a CLIP model trained on 5B images that were
filtered from an uncurated dataset of image-text pairs. It has 1B parameters and
can be used to encode both text and images.
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The generic approach in different contexts

The structure is similar, but the models are different

— PC2

El grupo italiano Enel dio ayer el paso A Cats and Dogs @ LSUN
definitivo para adquirir los activos

latinoamericanos de Endesa...

Foundation Model

Kak n3secTtHo, Bce peopmbl B PO
3aTeBaloTCA paav OOHOM Lenu:

“pacnuna” 6100>KEeTHbIX OEHer... Token Predliac(t:c;{]
[Mo6eO0oHOCHbIV ONA UcnaHUEeB MaTy B Random Forest] |
AnvkaHTe o6cny>xusana épuraga Nearest Ne'gh;‘;f ]]
POCCUNCKUX apbuTpos Noa -
PYKOBOACTBOM Anekcen EcbkoBsa... Feature Englneerlng _ib
Como se sabe, todas las reformas en

la Federaciodn se inician con un solo ‘

objetivo: gastar dinero presupuestario...
e © Econ Russian @ Sport Spanish

® Sport Russian @ Econ Russian (Transl.)

El partido ganador para los espanoles

en Alicante fue atendido por una . :
brigada de arbitros rusos bajo la Econ Spanish @ Sport Russian (Transl.)

direccion de Alexei Yeskov...



A pre-trained model is a kind of instrument

But used to distinguish between other models



A pre-trained model is a kind of instrument

But used to distinguish between other models

Simple tools (PCA, LDA ) applied to the embedding vectors reveal differences
between samples generated by other models. Some applications:



A pre-trained model is a kind of instrument

But used to distinguish between other models

Simple tools (PCA, LDA ) applied to the embedding vectors reveal differences
between samples generated by other models. Some applications:

1. Embed real data and Al-generated data to see if the embedding vectors
cluster.



A pre-trained model is a kind of instrument

But used to distinguish between other models

Simple tools (PCA, LDA ) applied to the embedding vectors reveal differences
between samples generated by other models. Some applications:

1. Embed real data and Al-generated data to see if the embedding vectors
cluster.

2. Unsupervised clustering of embedded data recreates the labels in the
original.



A pre-trained model is a kind of instrument

But used to distinguish between other models

Simple tools (PCA, LDA ) applied to the embedding vectors reveal differences
between samples generated by other models. Some applications:

1. Embed real data and Al-generated data to see if the embedding vectors
cluster.

2. Unsupervised clustering of embedded data recreates the labels in the
original.

3. Detect the difference between real and machine-translated data.



Stack exchange

PC2

PCA

PC1
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Economics abstracts

PC2

PC1

© Real

® Prompt 1
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Econ Spanish
Sport Spanish
Econ German
Sport German
Econ Spanish (Transl.)
Sport Spanish (Transl.)

Claim: PCs reflect interpretable
features/known hidden labels.

Took news articles in Spanish and
German in two topics, economics
and sports.

Used a ML translator to translate
German to Spanish.

Translating news articles helps
reduce the variation in one
dimension (language).
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Some takeaways and ongoing work

Model forensics and model evolution

° = M Preliminary experiments show that the embedding spaces of

m large “foundation models” can separate data generated from

different sources.
HarmonyOS 4.0

* Forensics applications: comparing models, detecting
deepfakes, etc.

- =  “Model DNA”: fine-tuned or “lightly modified” models

~ make minor modifications to the embeddings.
. » Use post processing to “align” embeddings for

calibration, ensembling, federated learning, etc.

Samsung Ul 7.0



Model comparisons in training

Rm Palaniappan, Alien Planet-D
Viscosity, pencil colour and ink on handmade paper



Variability in the training process

Is training reliable?

random seed

Wo Each time we run the training algorithm on the
¢ same training set, same architecture, same
algorithm, we still use (pseudo-)independent

architecture randomness
B v,

0 e Each training run Is a sample from .
m O
J,./ odel

e carameters ~ ® Given samples fi, />, ..., [, are they similar
= to each other or different

model

trainin .. :
datag This Is related to how a model Is.
training
process
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Comparing two runs of training

Terms like the Rashomon effect1li2l3],
predictive multiplicity!4l, or prediction churnis
have been used to describe this phenomena.

1]
2]
o

3]
4]
3]

Model comparisons are ad hoc and waste energy

Determining if one model is "better" than
another is not well-posed.

In practice, end up running the training process
many times. Wasted computation, time,

energy, etc.

Breiman, L. (2001). Statistical modeling: The two cultures (with comments and a rejoinder by the author). Statistical science, 16(3), 199-231
Fisher, A., Rudin, C., & Dominici, F. (2019). All models are wrong, but many are useful: Learning a variable's importance by studying an entire class of prediction models

imultaneously. Journal of Machine Learning Research, 20(177), 1-81.

Hsu, H., & Calmon, F. (2022). Rashomon capacity: A metric for predictive multiplicity in classification. Advances in Neural Information Processing Systems, 35, 28988-29000.
Milani Fard, M., Cormier, Q., Canini, K., & Gupta, M. (2016). Launch and iterate: Reducing prediction churn. Advances in Neural Information Processing Systems, 29.
Marx, C., Calmon, F., & Ustun, B. (2020, November). Predictive multiplicity in classification. In International Conference on Machine Learning (pp. 6765-6774). PMLR.
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Hard decisions vs. soft decisions

Putting on a communications hat

T estimate of | % bit-wise likelihoods |
—> m(z;0) 20 » threshold —> § —> p(y|z) >0 » decoder —> x
log p(y = 1|z) log p(z; = 1|y;)
p(y = O|z) p(z; = Oly;)
soft-decision channel

Test error and churn measure differences in “hard decisions” f : & — [L].
 These are usually made using (softmax) probability estimates p(y | x, 6).

» Instead look at m(x | @) for the model.
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Comparing two binary classifiers

Soft decisions are different even if decisions are the same

Wo
Measure the difference between the
AN m(x;60y)) ——O
=1|z,0 .
log zgy — o 92; The LLR m(x | &) of a model is a random
variable that depends on x.
W1 Assume the test set is made of i.i.d. draws
from the input distribution.
£
—> m(z;0,) —’O( e Turn this into a hypothesis testing problem!
P\Y = y V1




Two-sample tests for model similarity

Back to simple tools: hypothesis testing

Are the models the same are different? Answer this by testing:
Z . m(x; 0y = m(x;0,)
Z | . m(x;0y) # m(x; 0,)
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Use the test’s threshold as a measure of difference
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Hypothesis testing for model comparisons

Use the test’s threshold as a measure of difference

Need/io use empirical CDFs CA?O (candidate)

and G (null). |[F* =Gl <7 q-trimmings
Optimize to find the closest model to G in . ° A
a ball around G, A o— 0
\\ 5(: O G()
This is a search over “a-trimmings” which A=Kk Ro(Go) x
can be done efficiently (del Barrio el 2020, /T 5 * F
Alvarez-Esteban et al. 2011). v ’ A QG
Define a new discrepancy measure Q as 3/1( F’W‘mem, V) oF 7| Dparam

the minimum level for the test (= radius
of the ball) to accept.
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Advantages over other measures

Other measures are pairwise or less information about the models

1. Test/validation accuracy: if two models have similar test performance, “one is as
good as the other.”

2. Churn: the two models do not disagree on the test set.

3. Expected Calibration Error (ECE) (Naeini et al. 2015): measures the difference
between accuracy and expected “confidence” (the LLR).

For our new & measure:

» When a is large, at least one of the other metrics is also large.

« Models with small & are generally low on all the other metrics as well.
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balls, etc.) can let us measure “atypicality.”

* Use this to design new methods for model
ensembling.
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Connecting back to our story

“Reliable” training algorithm should produce “typical” models

3

I0S 18.4

Measures like & (using Z’; balls, Wasserstein
balls, etc.) can let us measure “atypicality.”

* Use this to design new methods for model
ensembling.

* Apply it to other features of trained models

(e.g. NTK spectra) to find model differences.
HarmonyOS 4.0 Samsung Ul 7.0

 Connect it to process engineering and
l‘] other industrial production ideas.

MS 3D Fluent SerenityOS




Some final remarks

Rm Palaniappan, Intense Talk
Mixed media on paper pasted on mount board
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Back to the original question

What does any of this mean for “Al for Science”?

Sensor feature
extraction

A P G —0 P )

To use large ML/AlI models as part of a scientific workflow, we need
“Interpretability” and “reliability.”

prediction

We also need to understand “reliability” for the training/fine-tuning processes.

It’s more important to compare models directly and not just their performance.
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Where is this all going?

Maybe some strange new worlds

Developing a good set of techniques for model comparisons requires thinking
from several different directions:

 Theory: can we instead compare surrogate
models like “faithful” NTK representations
(Engel et al. 2024)?

ElPEIIIMHI] S . Experiment: can we do these comparisons
' APPLICATION cheaply (e.g. using academic-level
. resources)?

 Application: how do we use model
comparisons in forensics, process
engineering, ensembling, and beyond?
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