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• 1913: Albert Einstein and Marcel Grossman used 
tensor calculus extensively in their work on general 
relativity: Entwurf einer verallgemeinerten 
Relativitätstheorie und einer Theorie der Gravitation

• 1915–17: Levi-Civita and Einstein have a 
correspondence where the former helped fix the 
mistakes in the use of tensor analysis.

• 1922: H. L. Brose’s English translation of Weyl’s 
book Raum, Zeit, Materie (Space-Time-Matter) 
uses “tensor analysis.”
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So what is a “tensor” anyway?
Tensors are many different things to many different people

For this talk, I will treat treat tensors 
“computationally” as multidimensional arrays:

X ∈ ℝm1×m2×⋯×mK

There are other (richer) perspectives:

• Point in the tensor product of vector spaces

• Multilinear operator

• Tensor representation of GL(n)
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Multidimensional arrays are everywhere!

• Medicine: Neuroimaging (and other kinds 
of imaging)

• Geosensing: Hyperspectral imaging

• Communications: Massive MIMO

• Probability: Joint PMFs on multiple 
variables

• Network science: Time-varying graphs

• Also quantum physics, chemometrics, 
numerical linear algebra, psychometrics, 
theoretical computer science…

Where do we see tensor-valued data?
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Task: given a collection of tensors , find a 
dictionary  such that

Y1, Y2, …, Yn ∈ ℝm1×m2×⋯×mK

d1, d2, …, dp

,Yi ≈
p

∑
j=1

xijdj

where each vector of coefficients  is -sparse.xi = (xi1, xi2, …, xip)⊤ s

Application: processing or storing hyperspectral images acquired from a drone.
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Why not use large “foundation” models?
For many applications, data is high-dimensional and expensive

Example: ADHD-200 sample aggregates 8 
international imaging sites (US, 
Netherlands, China) with fMRI images of 
children’s and adolescents’ brains.


• fMRI data: 121 x 145 x 121 tensor


• After vectorizing: 2,122,945 dimensional 
vector


• Sample size: 959 total images
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A baseline approach: reuse existing tools
We can always use reshape( )

 
121 x 145 x 121
m1 × m2 × m3

1 x 2,122,945

Regression: 2.1m 
ViT-Huge: 632m

121 x 17545

vectorize

matricize
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Taking a more structured approach
Reducing the parameter space

Standard approach: model data as high 
dimensional but with a “simpler” structure. For 
example, for a regression model:

yi = ⟨B, Xi⟩ + zi

• Vectors: model  as sparse.B

• Matrices: model  as low rank.B

• Tensors: a lot more choices!



What’s in this talk
A preview of the rest of the talk

1. Tensor decompositions and where to find them


2. Supervised learning with LSR tensor structures


3. Some current and future directions



Tensor decompositions 
(old and “new”)
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Some tensor terminology
A little jargon is unavoidable…

• Mode: each coordinate index


• Order: the number of modes of the tensor


• Fibers: 1-D vectors along each mode
m1

m2
m3

• Mode 1 = spectrum


• Mode 2 = longitude


• Mode 3 = latitude

Kolda and Bader (2009): https://doi.org/10.1137/07070111X 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Matrix-tensor product example
Filtering hyperspectral images

If  is a hyperspectral image and 
 is a Discrete Fourier Transform 

(DFT) matrix corresponding to a 
lowpass filter, then:





Applies the lowpass filter to the 
fiber (spectrum) at each physical 
location in space.

X
L

X ×1 L1

L×1X
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Chaining matrix-tensor products
Processing multiple modes

We can change the shape of a tensor with repeated matrix-
tensor products


G ×1 B1 ×2 B2⋯ ×K BK = X ∈ ℝm1×m2⋯×mK

=



Tensor Rank(s) and Tensor 
Decompositions/Factorizations
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Rank-1 tensors are outer products
Trying to get a handle on rank

• 2D: a rank-1 matrix

• rank-  matrix can be written as 
the sum of  rank-1 matrices.

r
r

• A matrix has a CANDECOMP/
PARAFAC (CP) representation 
of order  if we can write it as a 
sum of  rank-1 outer products.

r
r

CP Decomposition



CP factorization
Writing the decomposition with matrix-tensor products

Gather the factors from each mode into matrices and define an  
diagonal core tensor :





The total number of parameters is  as opposed to .

r × r × ⋯ × r
G

B𝖢𝖯 = G ×1 B1 ×2 B2⋯ ×K BK

r(1 +
K

∑
k=1

mk)
K

∏
k=1

mk
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Tucker decomposition
Filling out the core tensor

Suppose we have a core tensor 


 


and expand the dimensions using matrix-tensor 
products. This is the Tucker decomposition:





The total number of parameters is 


G ∈ ℝr1×r2×⋯×rK

B𝖳𝗎𝖼𝗄𝖾𝗋 = G ×1 B1 ×2 B ×3 B3

K

∏
k=1

rk +
K

∑
k=1

mkrk



Other tensor decompositions
A plethora of options

There are other tensor decompositions out there (see Cichocki 2016):


• Tensor Train


• Hierarchical Tucker/Tree Tensor Network States


Our proposal is to use a simpler form of a block tensor decomposition (Section 5.7, 
Kolda and Bader 2009), which can written as a mixture of Tucker models:


,


In general, each   can have a different size, so we need to choose  and  for 
each . We will assume a common  for all terms.

B𝖡𝖳𝖣 =
S

∑
s=1

Gs ×1 B1,s ×2 B2,s⋯ ×K BK,s

Gs S {mk,s, rk,s}
s ∈ [S] G



Issues with decompositions
There are many different definitions of “rank” for tensors

• CP rank of  = smallest number of terms in a CP decomposition (Hitchcock 
1927, Kruskal 1977). 


• 👍 The decomposition is (often) unique. 


• 👎 Computing the rank is NP-complete for finite fields and NP-hard for  
(Håstad 1990, resolving a conjecture of Gonzalez and Ja’Ja’ 1980).


• Tucker rank is a vector. Decomposition can be computed using the higher-
order SVD [HOSVD] or other algorithms (De Lathauwer et al. 2000, also others).


• Tucker rank is not unique.

B

ℚ



Matrix Equivalents of Tensor 
Factorizations



A different kind of vectorization
Matrix-tensor products as matrix vector products

Start with a Tucker factorization:





If we vectorzize , we get get the 
following equivalent model:





where  is the Kronecker product.

B𝖳𝗎𝖼𝗄𝖾𝗋 = G ×1 B1 ×2 B2⋯ ×K BK

B𝖳𝗎𝖼𝗄𝖾𝗋

vec(B𝖳𝗎𝖼𝗄𝖾𝗋) = (BK ⊗ ⋯ ⊗ B1) vec(G)

⊗



The Kronecker product
Matrix-tensor products as a matrix vector product

The Kronecker product makes “copies” of one matrix inside the other:





Vectorizing shows that the Tucker decomposition





Is somewhat restrictive.

A ⊗ B =
a11B ⋯ a1nB

⋮ ⋱ ⋮
am1B ⋯ amnB

vec(B𝖳𝗎𝖼𝗄𝖾𝗋) = (BK ⊗ ⋯ ⊗ B2 ⊗ B1) vec(G)



Special case of the BTD is a low separation rank (LSR) decomposition:





We use the same core tensor  for each term. We also assume that the factor 
matrices  have orthonormal columns.

B𝖫𝖲𝖱 =
S

∑
s=1

G ×1 B1,s ×2 B2,s⋯ ×K BK,s

G
{Bk,s}

Proposal: low separation rank (LSR) tensors
BTD with a common core tensor



The separation rank (Tsiligkaridis and Hero, 2013) of a matrix is the minimum 
number  of terms needed so that





Our LSR model corresponds assuming the matrix-vector product has a matrix 
with low separation rank


S

M =
S

∑
s=1

AK,s ⊗ ⋯ ⊗ A2,s ⊗ A1,s

S

∑
s=1

G ×1 B1,s ×2 B2,s⋯ ×K BK,s = B𝖫𝖲𝖱 ⟹ (∑
s

⨂
k

Bk) g

What does separation rank mean?
Writing matrices as sums of Kronecker products
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We look LSR models for GLMs:

• CP + logistic regression (Tan et al., 2012)

• CP + GLMs (Zhou et al. 2014)

• Tucker + linear regression (Zhang et al. 2020, Ahmed et al. 2020)

• Tucker + logistic regression (Zhang et al. 2016)

• Tucker + GLMs (Li et al., 2018; Zhou et al., 2013)



The benefits of more flexible modeling
Taking advantage of more data

LSR models let use scale the 
number of parameters to the 
data set size.


Synthetic data experiments 
show that with a modest 
number of samples, LSR 
models are better than 
vectorizing or using a Tucker 
model.



Comparing different decompositions

#LSR parameters =  

Does this give a more 
favorable tradeoff?
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We have a training set of  tensor-scalar pairs  following a generalized 
linear model (GLM). Model the responses  as coming from an exponential family:

n {(Xi, yi)}
y

.p(y; η) = b(y)exp (−ηT(y) − a(η))
Where the parameter . One example is logistic regression:η = ⟨B, X⟩

y ∼ 𝖡𝖾𝗋𝗇𝗈𝗎𝗅𝗅𝗂 ( 1
1 + exp( − ⟨B, X⟩) )

Our goal: estimate .B



Mapping the tensor to a matrix
Using the LSR matrix in the vectorized problem



Mapping the tensor to a matrix
Using the LSR matrix in the vectorized problem

Under an LSR model, we have 

η = ⟨
S

∑
s=1

G ×1 B(1,s) ×2 B(2,s) ×3 ⋯ ×K B(K,s), X⟩



Mapping the tensor to a matrix
Using the LSR matrix in the vectorized problem

Under an LSR model, we have 

η = ⟨
S

∑
s=1

G ×1 B(1,s) ×2 B(2,s) ×3 ⋯ ×K B(K,s), X⟩
Vectorizing:

η = ⟨(
S

∑
s=1

B(K,s) ⊗ B(K−1,s) ⊗ ⋯ ⊗ B(1,s)) g, x⟩



Maximum likelihood estimator (MLE)
Sorry, but it’s a bit messy…

The MLE comes from minimizing 





Over all  and . In practice this is not a nice 
optimization so we use alternating minimization on  and .


Question: does the MLE work and is it optimal?

n

∑
i=1 [⟨(
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⨂
k

B(k,s)) g, xi⟩ T(yi) − a (⟨(
S

∑
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⨂
k

B(k,s)) g, xi⟩)]
Bk,s ∈ 𝕆mk×rk g ∈ ℝr1r2⋯rK

{B(k,s)} g



Space of LSR models
Counting parameters

Suppose we are given . Then define


,


where for each , the columns of  are orthonormal.


Statistical/ML problems boil down to finding a “good” .


Question: does the # of parameters are  capture the complexity?

(r1, r2, …, rK, S)

𝒞𝖫𝖲𝖱 = {B : B =
S

∑
s=1

G ×1 B(1,s) ×2 ⋯ ×K B(K,s)}
(k, s) B(k,s)

B ∈ 𝒞𝖫𝖲𝖱

S∑
k

mkrk + ∏
k

rk
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Packing and covering LSR tensors
Statistical estimation and information theory

Packings: find a large set of points in  which are a packing in the Frobenius norm 
.

𝒞𝖫𝖲𝖱
∥ ⋅ ∥F

• Construction inspired by superposition codes (a bit) plus Gilbert-Varshamov coding.

Coverings: find a small set of -balls in  which cover .ϵ ∥ ⋅ ∥F 𝒞𝖫𝖲𝖱

• Glue together coverings for the factors  and (orthogonal) .G {B(k,s)}

Results: we get sets of the right size…

≈ exp (S∑
k

mkrk + ∏
k

rk)



Identifiability using Maximum Likelihood
Sorry, but it’s a bit messy…

Suppsse  are generated from a 
GLM with an LSR-structured parameter . Then if 


,


with probability  the Maximum Likelihood Estimator (MLE) will find a 
model  with excess risk no larger than .

{(Xi, yi) : i ∈ [n]} ⊂ ℝm1×m2×⋯×mK × ℝ
B*

n >
C
ϵ2 ((S∑

k

mkrk + ∏
k

rk) log ( C′￼

ϵ ) + log ( 1
δ ))

1 − δ
B̂ ϵ



A general lower bound for GLM + LSR
After much fun with algebra…

Suppose our data was generated with an LSR tensor  We have a lower 
bound on the MSE for any estimator of :





We can specialize this result to the Tucker and CP cases as well.

B*

B*

𝔼 [ B* − B̂
2

F] = Ω
S∑k (mk − 1)rk + ∏k (rk − 1) − 1

Σx 2
n

(Taki, Sarwate, Bajwa, 2023) 





Experiments and applications



Experiments on medical imaging data
Data sets and algorithms

Data sets: ABIDE Autism [fMRI] (Craddock et al., 2013 2020), Vessel MNIST 3D [MRA] 
(Yang et al., 2020). 


Other algorithms: 

• TTR: Tucker + GLMs using a ‘block relaxation’ algorithm (Li et al., 2018)


• LTuR: Tucker + logistic regression with Frobenius norm regularization (Zhang & 
Jiang, 2016)


• LR: Unstructured + logistic regression (Seber & Lee, 2003)


• LCPR: CP + logistic regression (Tan et al., 2013) 



ABIDE Autism data set
A tiny data set: , ,  K = 2 m = (111,116) n = 80

• Chose ranks  and  with .


• Unstructured models are quite bad in the undersampled regime.


• Adding one more Tucker component can give significant improvements.

r1 = 6 r2 = 6 S = 2



VesselMNIST 3D
Comparing against a DNN too: K = 3, r = (28,28,28), n = 1335

• Chose ranks , , , and 


• LSRTR has better accuracy but worse F1 and AUC (see paper).


• Issues such as overfitting, interpretability, etc. are still open.

r1 = 3 r2 = 3 r3 = 3 S = 2



Federated learning from tensor valued data
Tensor data are often hard to acquire

In “federated learning” we want to 
efficiently learn from data which 
are held at different sites.


Example: Given fMRI data collected by different 
research groups, learn a estimator of Alzheimer’s 
risk without sharing the “raw” data.



Balancing local and global updates
Empirical results are promising but preliminary

• Need tight coupling between 
local and centralized updates.


• Poses a challenge when 
communication reliability is a 
bottleneck.


• Lots of interesting work on the 
applications/engineering side!

(Sanchez, Taki, Bajwa, S., 2024)



Recap and looking forward



Recap of what we’ve seen
Structuring tensors using factorizations for simpler modeling

There is a whole continuum of tensor decompositions and LSR 
structured tensors can be very useful:


• Adapt parameterization to the data available.


• Efficiently (empirically) learnable/estimatable.



Other uses for LSR structures
Some past, current, and ongoing directions

• Dictionary learning: theory and algorithms





• Federated learning: applications in MRI


• Structuring latent space representations for generative models


• Reducing training and compute time

Y
⏟

∈ℝm1×⋯×mN

=
S

∑
s=1

Sparse
X
⏟

∈ℝp1×⋯×pN

×1 D1,s⏟
∈ℝm1×p1

×2 ⋯ ×N DK,s⏟
∈ℝmK×pK

+ W



Even a KS assumption can help
Even better results with LSR models (S > 1)
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Theory

• Algorithms for computing 

decompositions with good 
guarantees for approximation and 
denoising.


• Convex relaxations of LSR 
constraint for optimization (we 
have some for dictionary learning!)


• Random tensor theory and 
spectral analysis.

Practice

• More “real” applications in 

neuroimaging and other 
domains.


• Other data domains: 
hyperspectral imaging, 
chemometrics, etc.


• Selecting model order 
parameters.



谢谢大家的关注!


