
IEEE ITSOC Distinguished Lecture
Chengdu ITSOC Chapter

Southwest Jiaotong University
Chengdu, China

Flexible Tensor Decompositions
for Learning and Optimization
Anand D. Sarwate, Rutgers University
31 July 2025

Tensors: what are they good for?

The history of the word “tensor”
Let’s meet some 19th century physicists

All images: Wikipedia

The history of the word “tensor”
Let’s meet some 19th century physicists

• 1848: William Rowan Hamilton used the word
“tensor” to mean the absolute value (norm) of a
quaternion. His “tensor” is actually a scalar (!)

All images: Wikipedia

The history of the word “tensor”
Let’s meet some 19th century physicists

• 1848: William Rowan Hamilton used the word
“tensor” to mean the absolute value (norm) of a
quaternion. His “tensor” is actually a scalar (!)

• 1898: Woldemar Voigt used “tensor” in his paper
Die fundamentalen physikalischen Eigenschaften
der Krystalle in elementarer Darstellung

All images: Wikipedia

The history of the word “tensor”
Let’s meet some 19th century physicists

• 1848: William Rowan Hamilton used the word
“tensor” to mean the absolute value (norm) of a
quaternion. His “tensor” is actually a scalar (!)

• 1898: Woldemar Voigt used “tensor” in his paper
Die fundamentalen physikalischen Eigenschaften
der Krystalle in elementarer Darstellung

• 1892: Gregorio Ricci-Curbastro developed the
theory of tensors. In 1900 he and his student Tullio
Levi-Civita write a book on it called Méthodes de
calcul différentiel absolu et leurs applications

All images: Wikipedia

The history of the word “tensor”
Let’s meet some 19th century physicists

• 1848: William Rowan Hamilton used the word
“tensor” to mean the absolute value (norm) of a
quaternion. His “tensor” is actually a scalar (!)

• 1898: Woldemar Voigt used “tensor” in his paper
Die fundamentalen physikalischen Eigenschaften
der Krystalle in elementarer Darstellung

• 1892: Gregorio Ricci-Curbastro developed the
theory of tensors. In 1900 he and his student Tullio
Levi-Civita write a book on it called Méthodes de
calcul différentiel absolu et leurs applications

All images: Wikipedia

From 1900 to the present
A relatively general timeline

All images: Wikipedia

From 1900 to the present
A relatively general timeline

• 1913: Albert Einstein and Marcel Grossman used
tensor calculus extensively in their work on general
relativity: Entwurf einer verallgemeinerten
Relativitätstheorie und einer Theorie der Gravitation

All images: Wikipedia

From 1900 to the present
A relatively general timeline

• 1913: Albert Einstein and Marcel Grossman used
tensor calculus extensively in their work on general
relativity: Entwurf einer verallgemeinerten
Relativitätstheorie und einer Theorie der Gravitation

All images: Wikipedia

From 1900 to the present
A relatively general timeline

• 1913: Albert Einstein and Marcel Grossman used
tensor calculus extensively in their work on general
relativity: Entwurf einer verallgemeinerten
Relativitätstheorie und einer Theorie der Gravitation

• 1915–17: Levi-Civita and Einstein have a
correspondence where the former helped fix the
mistakes in the use of tensor analysis.

All images: Wikipedia

From 1900 to the present
A relatively general timeline

• 1913: Albert Einstein and Marcel Grossman used
tensor calculus extensively in their work on general
relativity: Entwurf einer verallgemeinerten
Relativitätstheorie und einer Theorie der Gravitation

• 1915–17: Levi-Civita and Einstein have a
correspondence where the former helped fix the
mistakes in the use of tensor analysis.

• 1922: H. L. Brose’s English translation of Weyl’s
book Raum, Zeit, Materie (Space-Time-Matter)
uses “tensor analysis.”

All images: Wikipedia

So what is a “tensor” anyway?
Tensors are many different things to many different people

So what is a “tensor” anyway?
Tensors are many different things to many different people

For this talk, I will treat treat tensors
“computationally” as multidimensional arrays:

So what is a “tensor” anyway?
Tensors are many different things to many different people

For this talk, I will treat treat tensors
“computationally” as multidimensional arrays:

So what is a “tensor” anyway?
Tensors are many different things to many different people

For this talk, I will treat treat tensors
“computationally” as multidimensional arrays:

So what is a “tensor” anyway?
Tensors are many different things to many different people

For this talk, I will treat treat tensors
“computationally” as multidimensional arrays:

So what is a “tensor” anyway?
Tensors are many different things to many different people

For this talk, I will treat treat tensors
“computationally” as multidimensional arrays:

X ∈ ℝm1×m2×⋯×mK

So what is a “tensor” anyway?
Tensors are many different things to many different people

For this talk, I will treat treat tensors
“computationally” as multidimensional arrays:

X ∈ ℝm1×m2×⋯×mK

There are other (richer) perspectives:

So what is a “tensor” anyway?
Tensors are many different things to many different people

For this talk, I will treat treat tensors
“computationally” as multidimensional arrays:

X ∈ ℝm1×m2×⋯×mK

There are other (richer) perspectives:

• Point in the tensor product of vector spaces

So what is a “tensor” anyway?
Tensors are many different things to many different people

For this talk, I will treat treat tensors
“computationally” as multidimensional arrays:

X ∈ ℝm1×m2×⋯×mK

There are other (richer) perspectives:

• Point in the tensor product of vector spaces

• Multilinear operator

So what is a “tensor” anyway?
Tensors are many different things to many different people

For this talk, I will treat treat tensors
“computationally” as multidimensional arrays:

X ∈ ℝm1×m2×⋯×mK

There are other (richer) perspectives:

• Point in the tensor product of vector spaces

• Multilinear operator

• Tensor representation of GL(n)

Multidimensional arrays are everywhere!
Where do we see tensor-valued data?

Multidimensional arrays are everywhere!

• Medicine: Neuroimaging (and other kinds
of imaging)

Where do we see tensor-valued data?

Multidimensional arrays are everywhere!

• Medicine: Neuroimaging (and other kinds
of imaging)

• Geosensing: Hyperspectral imaging

Where do we see tensor-valued data?

Multidimensional arrays are everywhere!

• Medicine: Neuroimaging (and other kinds
of imaging)

• Geosensing: Hyperspectral imaging

• Communications: Massive MIMO

Where do we see tensor-valued data?

Multidimensional arrays are everywhere!

• Medicine: Neuroimaging (and other kinds
of imaging)

• Geosensing: Hyperspectral imaging

• Communications: Massive MIMO

• Probability: Joint PMFs on multiple
variables

Where do we see tensor-valued data?

Multidimensional arrays are everywhere!

• Medicine: Neuroimaging (and other kinds
of imaging)

• Geosensing: Hyperspectral imaging

• Communications: Massive MIMO

• Probability: Joint PMFs on multiple
variables

• Network science: Time-varying graphs

Where do we see tensor-valued data?

Multidimensional arrays are everywhere!

• Medicine: Neuroimaging (and other kinds
of imaging)

• Geosensing: Hyperspectral imaging

• Communications: Massive MIMO

• Probability: Joint PMFs on multiple
variables

• Network science: Time-varying graphs

• Also quantum physics, chemometrics,
numerical linear algebra, psychometrics,
theoretical computer science…

Where do we see tensor-valued data?

What do we want to do with tensor data?
All the regular things we do with data…

What do we want to do with tensor data?
All the regular things we do with data…

• Signal recovery

What do we want to do with tensor data?
All the regular things we do with data…

• Signal recovery

What do we want to do with tensor data?
All the regular things we do with data…

• Signal recovery

What do we want to do with tensor data?
All the regular things we do with data…

• Signal recovery

What do we want to do with tensor data?
All the regular things we do with data…

• Signal recovery

What do we want to do with tensor data?
All the regular things we do with data…

• Signal recovery

• Supervised learning (prediction)

What do we want to do with tensor data?
All the regular things we do with data…

• Signal recovery

• Supervised learning (prediction)

What do we want to do with tensor data?
All the regular things we do with data…

• Signal recovery

• Supervised learning (prediction)

What do we want to do with tensor data?
All the regular things we do with data…

• Signal recovery

• Supervised learning (prediction)

What do we want to do with tensor data?
All the regular things we do with data…

• Signal recovery

• Supervised learning (prediction)

• Representation learning (compression)

What do we want to do with tensor data?
All the regular things we do with data…

• Signal recovery

• Supervised learning (prediction)

• Representation learning (compression)

What do we want to do with tensor data?
All the regular things we do with data…

• Signal recovery

• Supervised learning (prediction)

• Representation learning (compression)

Unsupervised learning with tensors
Example: dictionary learning and sparse representations

Unsupervised learning with tensors
Example: dictionary learning and sparse representations

Task: given a collection of tensors , find a
dictionary such that

Y1, Y2, …, Yn ∈ ℝm1×m2×⋯×mK

d1, d2, …, dp

Unsupervised learning with tensors
Example: dictionary learning and sparse representations

Task: given a collection of tensors , find a
dictionary such that

Y1, Y2, …, Yn ∈ ℝm1×m2×⋯×mK

d1, d2, …, dp

,Yi ≈
p

∑
j=1

xijdj

Unsupervised learning with tensors
Example: dictionary learning and sparse representations

Task: given a collection of tensors , find a
dictionary such that

Y1, Y2, …, Yn ∈ ℝm1×m2×⋯×mK

d1, d2, …, dp

,Yi ≈
p

∑
j=1

xijdj

where each vector of coefficients is -sparse.xi = (xi1, xi2, …, xip)⊤ s

Unsupervised learning with tensors
Example: dictionary learning and sparse representations

Task: given a collection of tensors , find a
dictionary such that

Y1, Y2, …, Yn ∈ ℝm1×m2×⋯×mK

d1, d2, …, dp

,Yi ≈
p

∑
j=1

xijdj

where each vector of coefficients is -sparse.xi = (xi1, xi2, …, xip)⊤ s

Application: processing or storing hyperspectral images acquired from a drone.

Supervised learning with tensors
Exampled: regression with tensor-valued covariates

Supervised learning with tensors
Exampled: regression with tensor-valued covariates

Task: given a collection of tensor-scalar pairs ,
find a regression tensor such that

{(Xi, yi)} ⊂ ℝm1×m2×⋯×mK × ℝ
B

Supervised learning with tensors
Exampled: regression with tensor-valued covariates

Task: given a collection of tensor-scalar pairs ,
find a regression tensor such that

{(Xi, yi)} ⊂ ℝm1×m2×⋯×mK × ℝ
B

,yi ≈ ⟨B, Xi⟩ + noise

Supervised learning with tensors
Exampled: regression with tensor-valued covariates

Task: given a collection of tensor-scalar pairs ,
find a regression tensor such that

{(Xi, yi)} ⊂ ℝm1×m2×⋯×mK × ℝ
B

,yi ≈ ⟨B, Xi⟩ + noise

where is the element-wise inner product.⟨ ⋅ , ⋅ ⟩

Supervised learning with tensors
Exampled: regression with tensor-valued covariates

Task: given a collection of tensor-scalar pairs ,
find a regression tensor such that

{(Xi, yi)} ⊂ ℝm1×m2×⋯×mK × ℝ
B

,yi ≈ ⟨B, Xi⟩ + noise

where is the element-wise inner product.⟨ ⋅ , ⋅ ⟩

Application: predicting a brain health condition from an MRI scan.

Supervised learning with tensors
Exampled: regression with tensor-valued covariates

Task: given a collection of tensor-scalar pairs ,
find a regression tensor such that

{(Xi, yi)} ⊂ ℝm1×m2×⋯×mK × ℝ
B

,yi ≈ ⟨B, Xi⟩ + noise

where is the element-wise inner product.⟨ ⋅ , ⋅ ⟩

Application: predicting a brain health condition from an MRI scan.

Why not use large “foundation” models?
For many applications, data is high-dimensional and expensive

Example: ADHD-200 sample aggregates 8
international imaging sites (US,
Netherlands, China) with fMRI images of
children’s and adolescents’ brains.

• fMRI data: 121 x 145 x 121 tensor

• After vectorizing: 2,122,945 dimensional
vector

• Sample size: 959 total images

A baseline approach: reuse existing tools
We can always use reshape()

A baseline approach: reuse existing tools
We can always use reshape()

121 x 145 x 121
m1 × m2 × m3

A baseline approach: reuse existing tools
We can always use reshape()

121 x 145 x 121
m1 × m2 × m3

1 x 2,122,945

vectorize

A baseline approach: reuse existing tools
We can always use reshape()

121 x 145 x 121
m1 × m2 × m3

1 x 2,122,945

121 x 17545

vectorize

matricize

A baseline approach: reuse existing tools
We can always use reshape()

121 x 145 x 121
m1 × m2 × m3

1 x 2,122,945

121 x 17545

vectorize

matricize

A baseline approach: reuse existing tools
We can always use reshape()

121 x 145 x 121
m1 × m2 × m3

1 x 2,122,945

Regression: 2.1m
ViT-Huge: 632m

121 x 17545

vectorize

matricize

Taking a more structured approach
Reducing the parameter space

Taking a more structured approach
Reducing the parameter space

Standard approach: model data as high
dimensional but with a “simpler” structure. For
example, for a regression model:

Taking a more structured approach
Reducing the parameter space

Standard approach: model data as high
dimensional but with a “simpler” structure. For
example, for a regression model:

yi = ⟨B, Xi⟩ + zi

Taking a more structured approach
Reducing the parameter space

Standard approach: model data as high
dimensional but with a “simpler” structure. For
example, for a regression model:

yi = ⟨B, Xi⟩ + zi

• Vectors: model as sparse.B

Taking a more structured approach
Reducing the parameter space

Standard approach: model data as high
dimensional but with a “simpler” structure. For
example, for a regression model:

yi = ⟨B, Xi⟩ + zi

• Vectors: model as sparse.B

• Matrices: model as low rank.B

Taking a more structured approach
Reducing the parameter space

Standard approach: model data as high
dimensional but with a “simpler” structure. For
example, for a regression model:

yi = ⟨B, Xi⟩ + zi

• Vectors: model as sparse.B

• Matrices: model as low rank.B

• Tensors: a lot more choices!

What’s in this talk
A preview of the rest of the talk

1. Tensor decompositions and where to find them

2. Supervised learning with LSR tensor structures

3. Some current and future directions

Tensor decompositions
(old and “new”)

Some tensor terminology
A little jargon is unavoidable…

Kolda and Bader (2009): https://doi.org/10.1137/07070111X 
Cichocki (2016): https://dx.doi.org/10.1561/2200000059  

Sidiropolous et al. (2017): https://doi.org/10.1109/TSP.2017.2690524

https://doi.org/10.1137/07070111X
https://dx.doi.org/10.1561/2200000059
https://doi.org/10.1109/TSP.2017.2690524

Some tensor terminology
A little jargon is unavoidable…

m1

m2
m3

Kolda and Bader (2009): https://doi.org/10.1137/07070111X 
Cichocki (2016): https://dx.doi.org/10.1561/2200000059  

Sidiropolous et al. (2017): https://doi.org/10.1109/TSP.2017.2690524

https://doi.org/10.1137/07070111X
https://dx.doi.org/10.1561/2200000059
https://doi.org/10.1109/TSP.2017.2690524

Some tensor terminology
A little jargon is unavoidable…

m1

m2
m3

Kolda and Bader (2009): https://doi.org/10.1137/07070111X 
Cichocki (2016): https://dx.doi.org/10.1561/2200000059  

Sidiropolous et al. (2017): https://doi.org/10.1109/TSP.2017.2690524

m1

m2

m3

https://doi.org/10.1137/07070111X
https://dx.doi.org/10.1561/2200000059
https://doi.org/10.1109/TSP.2017.2690524

Some tensor terminology
A little jargon is unavoidable…

• Mode: each coordinate index

• Order: the number of modes of the tensor

• Fibers: 1-D vectors along each mode
m1

m2
m3

Kolda and Bader (2009): https://doi.org/10.1137/07070111X 
Cichocki (2016): https://dx.doi.org/10.1561/2200000059  

Sidiropolous et al. (2017): https://doi.org/10.1109/TSP.2017.2690524

m1

m2

m3

https://doi.org/10.1137/07070111X
https://dx.doi.org/10.1561/2200000059
https://doi.org/10.1109/TSP.2017.2690524

Some tensor terminology
A little jargon is unavoidable…

• Mode: each coordinate index

• Order: the number of modes of the tensor

• Fibers: 1-D vectors along each mode
m1

m2
m3

Kolda and Bader (2009): https://doi.org/10.1137/07070111X 
Cichocki (2016): https://dx.doi.org/10.1561/2200000059  

Sidiropolous et al. (2017): https://doi.org/10.1109/TSP.2017.2690524

m1

m2

m3

https://doi.org/10.1137/07070111X
https://dx.doi.org/10.1561/2200000059
https://doi.org/10.1109/TSP.2017.2690524

Some tensor terminology
A little jargon is unavoidable…

• Mode: each coordinate index

• Order: the number of modes of the tensor

• Fibers: 1-D vectors along each mode
m1

m2
m3

• Mode 1 = spectrum

• Mode 2 = longitude

• Mode 3 = latitude

Kolda and Bader (2009): https://doi.org/10.1137/07070111X 
Cichocki (2016): https://dx.doi.org/10.1561/2200000059  

Sidiropolous et al. (2017): https://doi.org/10.1109/TSP.2017.2690524

m1

m2

m3

https://doi.org/10.1137/07070111X
https://dx.doi.org/10.1561/2200000059
https://doi.org/10.1109/TSP.2017.2690524

Matrix-tensor products
Mode-wise products

Multiply a tensor by a matrix along mode :

The result is a order- tensor whose -th mode is dimensional.

G ∈ ℝr1×r2×⋯×rK Bk ∈ ℝmk×rk k
G ×k Bk

K k mk

Matrix-tensor products
Mode-wise products

Multiply a tensor by a matrix along mode :

The result is a order- tensor whose -th mode is dimensional.

G ∈ ℝr1×r2×⋯×rK Bk ∈ ℝmk×rk k
G ×k Bk

K k mk

r1
r3

r2

G

Matrix-tensor products
Mode-wise products

Multiply a tensor by a matrix along mode :

The result is a order- tensor whose -th mode is dimensional.

G ∈ ℝr1×r2×⋯×rK Bk ∈ ℝmk×rk k
G ×k Bk

K k mk

r1
r3

r2

×1

G

Matrix-tensor products
Mode-wise products

Multiply a tensor by a matrix along mode :

The result is a order- tensor whose -th mode is dimensional.

G ∈ ℝr1×r2×⋯×rK Bk ∈ ℝmk×rk k
G ×k Bk

K k mk

r1

B1

r3

r2
r1

m1×1

G

Matrix-tensor products
Mode-wise products

Multiply a tensor by a matrix along mode :

The result is a order- tensor whose -th mode is dimensional.

G ∈ ℝr1×r2×⋯×rK Bk ∈ ℝmk×rk k
G ×k Bk

K k mk

r1

B1

r3

r2
r1

m1×1 =

G

Matrix-tensor products
Mode-wise products

Multiply a tensor by a matrix along mode :

The result is a order- tensor whose -th mode is dimensional.

G ∈ ℝr1×r2×⋯×rK Bk ∈ ℝmk×rk k
G ×k Bk

K k mk

r1

B1

r3

r2
r1

m1×1 =

G

Matrix-tensor products
Mode-wise products

Multiply a tensor by a matrix along mode :

The result is a order- tensor whose -th mode is dimensional.

G ∈ ℝr1×r2×⋯×rK Bk ∈ ℝmk×rk k
G ×k Bk

K k mk

r1

B1

r3

r2
r1

m1×1 =

G

Matrix-tensor product example
Filtering hyperspectral images

If is a hyperspectral image and
 is a Discrete Fourier Transform

(DFT) matrix corresponding to a
lowpass filter, then:

Applies the lowpass filter to the
fiber (spectrum) at each physical
location in space.

X
L

X ×1 L1

L×1X

Chaining matrix-tensor products
Processing multiple modes

Chaining matrix-tensor products
Processing multiple modes

Chaining matrix-tensor products
Processing multiple modes

=

Chaining matrix-tensor products
Processing multiple modes

We can change the shape of a tensor with repeated matrix-
tensor products

G ×1 B1 ×2 B2⋯ ×K BK = X ∈ ℝm1×m2⋯×mK

=

Tensor Rank(s) and Tensor
Decompositions/Factorizations

Rank-1 tensors are outer products
Trying to get a handle on rank

Rank-1 tensors are outer products
Trying to get a handle on rank

• 2D: a rank-1 matrix

Rank-1 tensors are outer products
Trying to get a handle on rank

• 2D: a rank-1 matrix

• rank- matrix can be written as
the sum of rank-1 matrices.

r
r

Rank-1 tensors are outer products
Trying to get a handle on rank

• 2D: a rank-1 matrix

• rank- matrix can be written as
the sum of rank-1 matrices.

r
r

• A matrix has a CANDECOMP/
PARAFAC (CP) representation
of order if we can write it as a
sum of rank-1 outer products.

r
r

CP Decomposition

CP factorization
Writing the decomposition with matrix-tensor products

Gather the factors from each mode into matrices and define an
diagonal core tensor :

The total number of parameters is as opposed to .

r × r × ⋯ × r
G

B𝖢𝖯 = G ×1 B1 ×2 B2⋯ ×K BK

r(1 +
K

∑
k=1

mk)
K

∏
k=1

mk

Tucker decomposition
Filling out the core tensor

Tucker decomposition
Filling out the core tensor

Suppose we have a core tensor

and expand the dimensions using matrix-tensor
products. This is the Tucker decomposition:

The total number of parameters is

G ∈ ℝr1×r2×⋯×rK

B𝖳𝗎𝖼𝗄𝖾𝗋 = G ×1 B1 ×2 B ×3 B3

K

∏
k=1

rk +
K

∑
k=1

mkrk

Other tensor decompositions
A plethora of options

There are other tensor decompositions out there (see Cichocki 2016):

• Tensor Train

• Hierarchical Tucker/Tree Tensor Network States

Our proposal is to use a simpler form of a block tensor decomposition (Section 5.7,
Kolda and Bader 2009), which can written as a mixture of Tucker models:

,

In general, each can have a different size, so we need to choose and for
each . We will assume a common for all terms.

B𝖡𝖳𝖣 =
S

∑
s=1

Gs ×1 B1,s ×2 B2,s⋯ ×K BK,s

Gs S {mk,s, rk,s}
s ∈ [S] G

Issues with decompositions
There are many different definitions of “rank” for tensors

• CP rank of = smallest number of terms in a CP decomposition (Hitchcock
1927, Kruskal 1977).

• 👍 The decomposition is (often) unique.

• 👎 Computing the rank is NP-complete for finite fields and NP-hard for
(Håstad 1990, resolving a conjecture of Gonzalez and Ja’Ja’ 1980).

• Tucker rank is a vector. Decomposition can be computed using the higher-
order SVD [HOSVD] or other algorithms (De Lathauwer et al. 2000, also others).

• Tucker rank is not unique.

B

ℚ

Matrix Equivalents of Tensor
Factorizations

A different kind of vectorization
Matrix-tensor products as matrix vector products

Start with a Tucker factorization:

If we vectorzize , we get get the
following equivalent model:

where is the Kronecker product.

B𝖳𝗎𝖼𝗄𝖾𝗋 = G ×1 B1 ×2 B2⋯ ×K BK

B𝖳𝗎𝖼𝗄𝖾𝗋

vec(B𝖳𝗎𝖼𝗄𝖾𝗋) = (BK ⊗ ⋯ ⊗ B1) vec(G)

⊗

The Kronecker product
Matrix-tensor products as a matrix vector product

The Kronecker product makes “copies” of one matrix inside the other:

Vectorizing shows that the Tucker decomposition

Is somewhat restrictive.

A ⊗ B =
a11B ⋯ a1nB

⋮ ⋱ ⋮
am1B ⋯ amnB

vec(B𝖳𝗎𝖼𝗄𝖾𝗋) = (BK ⊗ ⋯ ⊗ B2 ⊗ B1) vec(G)

Special case of the BTD is a low separation rank (LSR) decomposition:

We use the same core tensor for each term. We also assume that the factor
matrices have orthonormal columns.

B𝖫𝖲𝖱 =
S

∑
s=1

G ×1 B1,s ×2 B2,s⋯ ×K BK,s

G
{Bk,s}

Proposal: low separation rank (LSR) tensors
BTD with a common core tensor

The separation rank (Tsiligkaridis and Hero, 2013) of a matrix is the minimum
number of terms needed so that

Our LSR model corresponds assuming the matrix-vector product has a matrix
with low separation rank

S

M =
S

∑
s=1

AK,s ⊗ ⋯ ⊗ A2,s ⊗ A1,s

S

∑
s=1

G ×1 B1,s ×2 B2,s⋯ ×K BK,s = B𝖫𝖲𝖱 ⟹ (∑
s

⨂
k

Bk) g

What does separation rank mean?
Writing matrices as sums of Kronecker products

Prior work using CP and Tucker tensors
Generalized linear models

Prior work using CP and Tucker tensors
Generalized linear models

We look LSR models for GLMs:

Prior work using CP and Tucker tensors
Generalized linear models

We look LSR models for GLMs:

• CP + logistic regression (Tan et al., 2012)

Prior work using CP and Tucker tensors
Generalized linear models

We look LSR models for GLMs:

• CP + logistic regression (Tan et al., 2012)

• CP + GLMs (Zhou et al. 2014)

Prior work using CP and Tucker tensors
Generalized linear models

We look LSR models for GLMs:

• CP + logistic regression (Tan et al., 2012)

• CP + GLMs (Zhou et al. 2014)

• Tucker + linear regression (Zhang et al. 2020, Ahmed et al. 2020)

Prior work using CP and Tucker tensors
Generalized linear models

We look LSR models for GLMs:

• CP + logistic regression (Tan et al., 2012)

• CP + GLMs (Zhou et al. 2014)

• Tucker + linear regression (Zhang et al. 2020, Ahmed et al. 2020)

• Tucker + logistic regression (Zhang et al. 2016)

Prior work using CP and Tucker tensors
Generalized linear models

We look LSR models for GLMs:

• CP + logistic regression (Tan et al., 2012)

• CP + GLMs (Zhou et al. 2014)

• Tucker + linear regression (Zhang et al. 2020, Ahmed et al. 2020)

• Tucker + logistic regression (Zhang et al. 2016)

• Tucker + GLMs (Li et al., 2018; Zhou et al., 2013)

The benefits of more flexible modeling
Taking advantage of more data

LSR models let use scale the
number of parameters to the
data set size.

Synthetic data experiments
show that with a modest
number of samples, LSR
models are better than
vectorizing or using a Tucker
model.

Comparing different decompositions

#LSR parameters =

Does this give a more
favorable tradeoff?

K

∏
k=1

rk + S
K

∑
k=1

mkrk

re
pr

es
en

ta
tio

n
po

w
er

of parameters / model compactness

Regression and classification
with LSR tensors

Generalized linear models for regression
Includes linear, logistic, Poisson, etc.

Generalized linear models for regression
Includes linear, logistic, Poisson, etc.

We have a training set of tensor-scalar pairs following a generalized
linear model (GLM). Model the responses as coming from an exponential family:

n {(Xi, yi)}
y

Generalized linear models for regression
Includes linear, logistic, Poisson, etc.

We have a training set of tensor-scalar pairs following a generalized
linear model (GLM). Model the responses as coming from an exponential family:

n {(Xi, yi)}
y

.p(y; η) = b(y)exp (−ηT(y) − a(η))

Generalized linear models for regression
Includes linear, logistic, Poisson, etc.

We have a training set of tensor-scalar pairs following a generalized
linear model (GLM). Model the responses as coming from an exponential family:

n {(Xi, yi)}
y

.p(y; η) = b(y)exp (−ηT(y) − a(η))
Where the parameter . One example is logistic regression:η = ⟨B, X⟩

Generalized linear models for regression
Includes linear, logistic, Poisson, etc.

We have a training set of tensor-scalar pairs following a generalized
linear model (GLM). Model the responses as coming from an exponential family:

n {(Xi, yi)}
y

.p(y; η) = b(y)exp (−ηT(y) − a(η))
Where the parameter . One example is logistic regression:η = ⟨B, X⟩

y ∼ 𝖡𝖾𝗋𝗇𝗈𝗎𝗅𝗅𝗂 (1
1 + exp(− ⟨B, X⟩))

Generalized linear models for regression
Includes linear, logistic, Poisson, etc.

We have a training set of tensor-scalar pairs following a generalized
linear model (GLM). Model the responses as coming from an exponential family:

n {(Xi, yi)}
y

.p(y; η) = b(y)exp (−ηT(y) − a(η))
Where the parameter . One example is logistic regression:η = ⟨B, X⟩

y ∼ 𝖡𝖾𝗋𝗇𝗈𝗎𝗅𝗅𝗂 (1
1 + exp(− ⟨B, X⟩))

Our goal: estimate .B

Mapping the tensor to a matrix
Using the LSR matrix in the vectorized problem

Mapping the tensor to a matrix
Using the LSR matrix in the vectorized problem

Under an LSR model, we have

η = ⟨
S

∑
s=1

G ×1 B(1,s) ×2 B(2,s) ×3 ⋯ ×K B(K,s), X⟩

Mapping the tensor to a matrix
Using the LSR matrix in the vectorized problem

Under an LSR model, we have

η = ⟨
S

∑
s=1

G ×1 B(1,s) ×2 B(2,s) ×3 ⋯ ×K B(K,s), X⟩
Vectorizing:

η = ⟨(
S

∑
s=1

B(K,s) ⊗ B(K−1,s) ⊗ ⋯ ⊗ B(1,s)) g, x⟩

Maximum likelihood estimator (MLE)
Sorry, but it’s a bit messy…

The MLE comes from minimizing

Over all and . In practice this is not a nice
optimization so we use alternating minimization on and .

Question: does the MLE work and is it optimal?

n

∑
i=1 [⟨(

S

∑
s=1

⨂
k

B(k,s)) g, xi⟩ T(yi) − a (⟨(
S

∑
s=1

⨂
k

B(k,s)) g, xi⟩)]
Bk,s ∈ 𝕆mk×rk g ∈ ℝr1r2⋯rK

{B(k,s)} g

Space of LSR models
Counting parameters

Suppose we are given . Then define

,

where for each , the columns of are orthonormal.

Statistical/ML problems boil down to finding a “good” .

Question: does the # of parameters are capture the complexity?

(r1, r2, …, rK, S)

𝒞𝖫𝖲𝖱 = {B : B =
S

∑
s=1

G ×1 B(1,s) ×2 ⋯ ×K B(K,s)}
(k, s) B(k,s)

B ∈ 𝒞𝖫𝖲𝖱

S∑
k

mkrk + ∏
k

rk

Packing and covering LSR tensors
Statistical estimation and information theory

Packing and covering LSR tensors
Statistical estimation and information theory

Packings: find a large set of points in which are a packing in the Frobenius norm
.

𝒞𝖫𝖲𝖱
∥ ⋅ ∥F

Packing and covering LSR tensors
Statistical estimation and information theory

Packings: find a large set of points in which are a packing in the Frobenius norm
.

𝒞𝖫𝖲𝖱
∥ ⋅ ∥F

• Construction inspired by superposition codes (a bit) plus Gilbert-Varshamov coding.

Packing and covering LSR tensors
Statistical estimation and information theory

Packings: find a large set of points in which are a packing in the Frobenius norm
.

𝒞𝖫𝖲𝖱
∥ ⋅ ∥F

• Construction inspired by superposition codes (a bit) plus Gilbert-Varshamov coding.

Coverings: find a small set of -balls in which cover .ϵ ∥ ⋅ ∥F 𝒞𝖫𝖲𝖱

Packing and covering LSR tensors
Statistical estimation and information theory

Packings: find a large set of points in which are a packing in the Frobenius norm
.

𝒞𝖫𝖲𝖱
∥ ⋅ ∥F

• Construction inspired by superposition codes (a bit) plus Gilbert-Varshamov coding.

Coverings: find a small set of -balls in which cover .ϵ ∥ ⋅ ∥F 𝒞𝖫𝖲𝖱

• Glue together coverings for the factors and (orthogonal) .G {B(k,s)}

Packing and covering LSR tensors
Statistical estimation and information theory

Packings: find a large set of points in which are a packing in the Frobenius norm
.

𝒞𝖫𝖲𝖱
∥ ⋅ ∥F

• Construction inspired by superposition codes (a bit) plus Gilbert-Varshamov coding.

Coverings: find a small set of -balls in which cover .ϵ ∥ ⋅ ∥F 𝒞𝖫𝖲𝖱

• Glue together coverings for the factors and (orthogonal) .G {B(k,s)}

Results: we get sets of the right size…

Packing and covering LSR tensors
Statistical estimation and information theory

Packings: find a large set of points in which are a packing in the Frobenius norm
.

𝒞𝖫𝖲𝖱
∥ ⋅ ∥F

• Construction inspired by superposition codes (a bit) plus Gilbert-Varshamov coding.

Coverings: find a small set of -balls in which cover .ϵ ∥ ⋅ ∥F 𝒞𝖫𝖲𝖱

• Glue together coverings for the factors and (orthogonal) .G {B(k,s)}

Results: we get sets of the right size…

≈ exp (S∑
k

mkrk + ∏
k

rk)

Identifiability using Maximum Likelihood
Sorry, but it’s a bit messy…

Suppsse are generated from a
GLM with an LSR-structured parameter . Then if

,

with probability the Maximum Likelihood Estimator (MLE) will find a
model with excess risk no larger than .

{(Xi, yi) : i ∈ [n]} ⊂ ℝm1×m2×⋯×mK × ℝ
B*

n >
C
ϵ2 ((S∑

k

mkrk + ∏
k

rk) log (C′￼

ϵ) + log (1
δ))

1 − δ
B̂ ϵ

A general lower bound for GLM + LSR
After much fun with algebra…

Suppose our data was generated with an LSR tensor We have a lower
bound on the MSE for any estimator of :

We can specialize this result to the Tucker and CP cases as well.

B*

B*

𝔼 [B* − B̂
2

F] = Ω
S∑k (mk − 1)rk + ∏k (rk − 1) − 1

Σx 2
n

(Taki, Sarwate, Bajwa, 2023)

Experiments and applications

Experiments on medical imaging data
Data sets and algorithms

Data sets: ABIDE Autism [fMRI] (Craddock et al., 2013 2020), Vessel MNIST 3D [MRA]
(Yang et al., 2020).

Other algorithms:

• TTR: Tucker + GLMs using a ‘block relaxation’ algorithm (Li et al., 2018)

• LTuR: Tucker + logistic regression with Frobenius norm regularization (Zhang &
Jiang, 2016)

• LR: Unstructured + logistic regression (Seber & Lee, 2003)

• LCPR: CP + logistic regression (Tan et al., 2013)

ABIDE Autism data set
A tiny data set: , , K = 2 m = (111,116) n = 80

• Chose ranks and with .

• Unstructured models are quite bad in the undersampled regime.

• Adding one more Tucker component can give significant improvements.

r1 = 6 r2 = 6 S = 2

VesselMNIST 3D
Comparing against a DNN too: K = 3, r = (28,28,28), n = 1335

• Chose ranks , , , and

• LSRTR has better accuracy but worse F1 and AUC (see paper).

• Issues such as overfitting, interpretability, etc. are still open.

r1 = 3 r2 = 3 r3 = 3 S = 2

Federated learning from tensor valued data
Tensor data are often hard to acquire

In “federated learning” we want to
efficiently learn from data which
are held at different sites.

Example: Given fMRI data collected by different
research groups, learn a estimator of Alzheimer’s
risk without sharing the “raw” data.

Balancing local and global updates
Empirical results are promising but preliminary

• Need tight coupling between
local and centralized updates.

• Poses a challenge when
communication reliability is a
bottleneck.

• Lots of interesting work on the
applications/engineering side!

(Sanchez, Taki, Bajwa, S., 2024)

Recap and looking forward

Recap of what we’ve seen
Structuring tensors using factorizations for simpler modeling

There is a whole continuum of tensor decompositions and LSR
structured tensors can be very useful:

• Adapt parameterization to the data available.

• Efficiently (empirically) learnable/estimatable.

Other uses for LSR structures
Some past, current, and ongoing directions

• Dictionary learning: theory and algorithms

• Federated learning: applications in MRI

• Structuring latent space representations for generative models

• Reducing training and compute time

Y
⏟

∈ℝm1×⋯×mN

=
S

∑
s=1

Sparse
X
⏟

∈ℝp1×⋯×pN

×1 D1,s⏟
∈ℝm1×p1

×2 ⋯ ×N DK,s⏟
∈ℝmK×pK

+ W

Even a KS assumption can help
Even better results with LSR models (S > 1)

Many questions remain!
Lots to understand on the theory and practical side

Many questions remain!
Lots to understand on the theory and practical side

Theory

• Algorithms for computing

decompositions with good
guarantees for approximation and
denoising.

• Convex relaxations of LSR
constraint for optimization (we
have some for dictionary learning!)

• Random tensor theory and
spectral analysis.

Many questions remain!
Lots to understand on the theory and practical side

Theory

• Algorithms for computing

decompositions with good
guarantees for approximation and
denoising.

• Convex relaxations of LSR
constraint for optimization (we
have some for dictionary learning!)

• Random tensor theory and
spectral analysis.

Practice

• More “real” applications in

neuroimaging and other
domains.

• Other data domains:
hyperspectral imaging,
chemometrics, etc.

• Selecting model order
parameters.

谢谢大家的关注!

