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Reliable communication, revisited

• Alice wants to send a message m ∈ [M] to Bob using a codeword of n symbols.

• The link between Alice and Bob is unreliable.
• What is the maximum rate (capacity) 1

n log2(M) such that Bob can decode
reliably?

This problem has been studied to death! What more is there to understand?

Let’s zoom in on binary channels with erasures.
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Binary input channels with erasures

• Alice encodes a message m ∈ {1, 2, . . . , 2nR} into a codeword x = {0, 1}n.
• Channel state si indicates whether yi = xi or is erased.
• Only np erasures can happen.

How is s chosen?
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Shannon theory: the channel is random

010111011

001001100

01e11ee11

In the Shannon theory view, the channel acts randomly: ≈ pn positions are
erased. The channel’s actions are oblivious to the input.

3 / 44



Shannon theory: the channel is random

010111011

001001100

01e11ee11

In the Shannon theory view, the channel acts randomly: ≈ pn positions are
erased. The channel’s actions are oblivious to the input.

3 / 44



Shannon theory: the channel is random

010111011

001001100

01e11ee11

In the Shannon theory view, the channel acts randomly: ≈ pn positions are
erased. The channel’s actions are oblivious to the input.

3 / 44



Shannon theory: the channel is random

010111011

001001100

01e11ee11

In the Shannon theory view, the channel acts randomly: ≈ pn positions are
erased. The channel’s actions are oblivious to the input.

3 / 44



Coding theory (“Hamming”): the erasures are random

010111011

010111011

001110000

01eee1011

In the coding theory view, the channel acts adversarially: ≤ pn positions are
erased. The channel’s actions are omniscient w.r.t. to the input.
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The erasure channel: adversarial vs. random

With the (Shannon-like) oblivious average-case model,
the capacity is

C = 1− p.

There are many different ways to achieve this rate.

With the (Hamming-like) omniscient worst-case model,
the capacity upper bounded:

C < 1− 2p.

Lower bound: Gilbert-Varshamov (random) codes.

That’s a big gap... where does it come from?
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Why more is there to explore here?

?

We want to explore this gap through modeling:

1. Use arbitrarily varying channels (AVCs) to develop a unified framework for
both the Shannon and Hamming models.

2. Explore intermediate models to see what causes the gap.
3. Discover coding strategies to see what resources are needed to

communicate reliably.
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AVCs model channel “noise” as a state variable

In an adversarial channel model, Alice wants to communicate with Bob over a
channel whose time-varying state is controlled by an adversarial jammer James.

• Alice and James may be constrained in how they communicate.
• Capacity depends on what James knows about m and x.

7 / 44



Shameless self-promotion

We have a monograph (December 2024!) on this topic (on
which this talk is based).

✔ Unified treatment of random noise
(Shannon-theoretic) and worst-case noise
(coding-theoretic).

✔ Intermediate models for jammers who can
eavesdrop: online and myopic.

✔ Examples, open problems, and more!

8 / 44



What’s coming up next

1. Arbitrarily varying channels (AVCs)

2. Some key ingredients

3. Causal adversarial models

4. Myopic adversarial models

5. Computationally efficient codes for causal adversaries

6. Looking forward

9 / 44



Arbitrarily varying channels (AVCs)



The basic channel model

Let X , S , and Y be discrete alphabets. An AVC is a discrete channel Wy|x,s(y|x, s)
such that

Wy|x,s(y|x, s) =
n∏
i=1

Wy|x,s(yi|xi, si)

The state s ∈ Sn is controlled by an adversarial jammer (James).
Examples: For binary channels s could be the error erasure pattern.
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Input and cost constraints for AVCs

We impose that the types Tx and Ts of the codeword x and the state s lie be in
convex subsets of the probability simplices ∆(X ) and ∆(S):

Tx ∈ Γ ⊆ ∆(X )

Ts ∈ Λ ⊆ ∆(S)
Example: For binary channels x and s have bounded Hamming weight.
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Defining codes and input constraints

Deterministic

Stochastic Encoding

Randomized

An (n,M, Γ) code is

ϕ : [M] → X n (encoder)
ψ : Yn → [M] (decoder)

such that

Tϕ(m) ∈ Γ

The rate is R = 1
n log2(M).

A randomized code lets Alice and Bob
choose their code in secret. If Alice and
Bob do not share common randomness,
Alice can still use stochastic encoding.

12 / 44



What James knows: Shannon, Hamming, and in between

James wants to choose s to maximize the probability of error for Bob. What James
can do depends on what he knows:

• The message: target small maximal (over messages) error.
• The codeword (fully or partially).
• The randomness used by Alice (and/or Bob).

These constrain the set of strategies James can use.
• Oblivious (Shannon): the message only.
• Omniscient (Hamming): the message and the codeword.
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Maximal error and capacity

Maximal and average error:

Perr(m,ϕ, ψ) = max
jamming strategies

∑
x∈X n

P (ψ(y) ̸= m | x)Pϕ (ϕ(m) = x)

A rate R is achievable if for any ϵ > 0 there exists an infinite sequence of rate R
codes such that Perr(m,ϕ, ψ) < ϵ for all m.

The capacities Cobl and Comni for oblivious and omniscient cases satisfy:

(Hamming) Comni ≤ Cobl (Shannon)

14 / 44



Common randomness makes the problem easier

Blackwell et al. (1960) proposed the AVC model and studied randomized codes,
where Alice and Bob share common randomness. James just minimizes the
mutual information over equivalent DMCs:

• Oblivious: find
∑

sWy|x,s(y|x, s)Qs(s) with lowest Shannon capacity.
• Omniscient: find

∑
sWy|x,s(y|x, s)Us|x(s|x) with lowest Shannon capacity.
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Deterministic codes and ECN Symmetrizability

An AVC is Ericson-Csiszár-Narayan (ECN) symmetrizable if James can spoof Alice’s
codeword. That is, for all (y, x, x′), we have∑

s
Us|x′Wy|x,s =

∑
s
Us|xWy|x′,s.

Without common randomness, the capacity of a symmetrizable AVC Cobl = 0.
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Intermediate model 1: delayed information for James

• ∆ = n (oblivious): capacity = 1− p (“Shannon”)
• ∆ = 1 (“one bit delay”): capacity = 1− p
• ∆ = 0 (“causal”): capacity = 1− 2p
• ∆ = −n (omniscient): capacity ≤ 1− 2p (“Hamming”)

Knowing the current input gives James a lot of power!
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Intermediate model 2: Myopic adversarial models

010111011

010111011e1e1e101e

110001011

010111011ee011e0ee

Myopic: James gets a noisy view of the transmitted codeword.
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The impact of myopia in the erasure setting

• Sufficiently myopic: (p < q): capacity = 1− p
• Otherwise: (p > q): it’s more complicated...
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Some key ingredients



Ingredient 1: stochastic encoding

In stochastic encoding, Alice
uses private randomness to
create uncertainty for James

• Noise injection (c.f. secrecy).
• Low weight “fuzz” as a side

channel.
• Select a codebook from a

smaller “library”.
It can be necessary:
deterministic erasure codes
cannot do better than 1− 2p
against a James who has a
single bit of delay.
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Ingredient 2: list decoding

In list decoding we allow Bob to output a list L.

• Decoding is successful if the transmitted m ∈ L.
• Require the list size is no larger than than L.
• Different L are useful in different cases: constant, poly(n), or exp(ϵn)

In some cases the list decoding capacity allows strictly larger rates:
Clist(L) > Cobl.
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List decoding appears in many ways

list of consistent
messages for
any codebook

List decoding to a “small list” as a first stage often leads to optimal decoders:

• With O(log n) bits of common randomness we get rates as good as infinite
common randomness.

• James can list decode to jam more effectively.
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Ingredient 3: Completely Positive (CP) Couplings and the Plotkin Bound

A more technical ingredient which is particularly useful is the notion of
completely positive couplings.

• Start with a marginal distribution Px ∈ ∆(X ).
• A self-coupling is a joint distribution Px,x′ where each marginal is Px.
• A self-coupling is completely positive if it is a mixture of independent

self-couplings:

Px,x′(x, x′) =
|U|∑
i=1

Pu(i)Pxi(x)Pxi(x
′).
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Generalizing the Plotkin bound

Question: can we have a codebook where all codewords have pairwise types that
are ρ-far from a CP self-coupling?

∥Tx,x′ − P(CP)x,x′ ∥∞ > ρ ∀x, x′,P(CP)x,x′ (1)

• It turns out that any codes with this property cannot be too large (for large n)!
• Compare this to the Plotkin bound: an upper bound on the size of binary

codes with a given distance.
• If our rate is too high, then there will a constant fraction of codeword pairs

whose type is close to CP.
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Causal adversarial models



Causal adversaries: James can see the current input

When can James “symmetrize” the channel and what does that mean? Think of
James’s constraint as a “power limitation”:

• Spend less power at the beginning to save it up and then push hard in the
second half? Bob will get a better initial estimate.

• Spend more power at the beginning in the hope of leading Bob astray? But
then the suffix might resolve Bob’s uncertainty.
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Babble and push: an attack for James

"babble" "push"

pick alternative codeword

Alice and Bob pick a coding strategy and reveal it to James). James:

1. Splits time into K blocks of length ϵcn.
2. “Distills” a large (constant fraction) subcode where x ≈ the same type.
3. “Babbles” by using a random attack Vs|x,u=u for u ≤ αK.
4. “Pushes” using codeword-dependent Vs|x,x′u=u for u > αK.

Use the generalized Plotkin bound (plus more) to show this will work.
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Achievability

"babble" "push"

check for unique message
over all codebooks

We can match the converse by using the same structure.

• Encode m using independent randomness in each chunk.
• After each chunk, Bob tries to list decode by sequentially assuming James is

using some random attacks {Vs|x,u=u}.
• If there is a message m̂ and s such that the assumed attack and observed y

he has seen so far are “feasible” then decode. Otherwise try another attack.
Basically have to define what “feasible” means in this setting (quite involved).
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A multi-letter block characterization

Pros and cons:

✗ We end up with a multi-letter expression for the capacity.
✔ Significantly generalizes prior arguments to general channels.
✔ Plotkin results may be useful elsewhere.
✗ Relies on some additional assumptions.
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Myopic adversarial models



Myopic adversaries: James sees the whole codeword in noise

In a myopic AVC, James gets to see the entire codeword corrupted by a DMC Wz|x.

• Jamming strategies are maps [M]×Zn → Sn.
• For randomized codes we can again look for the worst DMC∑

sWy|x,s(y|x, s)Wz|xVs|z(s|z).
• By changing Wz|x we can get the oblivious and omniscient settings.
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Symmetrizability for myopic AVCs

A myopic AVC is said to be symmetrizable under input distribution Px ∈ Γ if there
exists a channel Ux′,s|z such that for all x, x′, y,

∑
z,s

Px(x)Wz|x(z|x)Ux′,s|z(x′, s|z)Wy|x,s(y|x, s)

=
∑
z′,s′

Px(x′)Wz|x(z′|x′)Ux′,s|z(x, s′|z′)Wy|x,s(y|x′, s′),

and the resulting state distribution given by

Ps(s) =
∑
x,z,x′

Px(x)Wz|x(z|x)Ux′,s|z(x′, s|z)

belongs to Λ. Let

PSym = {Px ∈ Γ : Px is symmetrizable}.
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Sufficient myopia and achievability

James can create an “effective DMC”

W =
∑
s
Wy|x,s(y|x, s)Wz|xVs|z(s|z).

Alice/Bob cannot use any Px ∈ PSym. For Px ∈ Γ \ PSym
they could target:

C(Px) = min
W

I(x; y).

If I(z; x) < C(Px) we say James is sufficiently myopic. In
that case we can achieve any rate

R < max
Px∈Γ\PSym

C(Px).

allowable
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Myopic adversaries in the erasure setting

In the erasure setting the eavesdropping channel
is a BEC(q) and James can erase at most pn bits.
If p < q, James is sufficiently myopic.

If p < q,

Cobl = 1− p.

If p > q we have two cases:
1. If q > 2p− 1,

C ∈
(
0, (1− q)ᾱ

(
p− q
1− q

)]
,

where ᾱ is the LP bound for
normalized distance.

2. If q < 2p− 1,

C = 0.
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(
p− q
1− q

)]
,
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Myopic adversaries in the erasure setting
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Computationally efficient codes for causal
adversaries



Main questions we address

Can we design efficient codes for causal and myopic models?
By efficient we mean that they take polynomial time to encode, decode, and
store.

• random codes are inefficient to decode but linear codes are too easy jam!
−→ use a library of linear codebooks.

• common randomness is unrealistic.
−→ use limited encoder randomization to confuse the adversary.

• minimum distance coding is not efficient in general.
−→ use list decoding to permit efficient decoding.
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“Efficient” coding schemes

To get polynomial complexity, use
• a small amount of randomization to select from a

• library of random linear codes and
• uses list decoding to reduce the search space

There are different types of complexity we would like to control:
• Design: how many bits do we need to generate the code?
• Storage: how many bits do we need to store the code?
• Encoding: how many operations are needed to encode a message?
• Decoding: how many operations are needed to decode the message?
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Main results

Model

rate
Randomness Enc/Storage Decoding Perror

Myopic p < q

1− p− ϵ
λSM log(n) O(n2+λSM) O(n3+λSM) O(n−λSM)

Myopic q < p

small rate
O(n log log n) O(n2 log log n) O(n3 log log n) O(n−4/5)

Causal

1− 2p− ϵ
O
(
γ log n

ϵ

)
O(n3 log log n) O(n32/ϵ) O(n−(γ−1))
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Encode splits block into a constant k = ⌈n
ϵ
⌉ chunks

private
randomness

per chunk
message

time/chunks
codeword

generator
matrix

Generate a library of linear codebooks independently for each chunk.
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James can erase with causal information only
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Bob decodes to a polynomial list

list of consistent
messages for
any codebook
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Bob uses suffix to disambiguate the list

prefix suffix

check for unique message
over all codebooks
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Why does this work?

1. Bob can track James’s erasure budget.
2. List decoding creates a smaller set of messages to check for consistency.
3. James has a choice to make the list larger (erase more earlier, less later) or

conserve his budget (erase less earlier, more later).
4. Poor James, he can’t win.
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Looking forward



Other intermediate models

There are lots of other intermediate models one could look at:

• Causal and myopic together!
• Constraints that apply locally (sliding windows)
• Allow James to pick a fraction of locations to observe before acting.
• Etc. etc.

Each model will reveal something about what the worst-case channel looks like.
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And for the theory folks...

Understanding AVCs has lots of connections (perhaps less well described here) to
many interesting areas:

• zero-error capacity
• high dimensional geometry
• completely positive tensors and mixture models
• adversarial machine learning
• extremal graph theory
• other fun combinatorial problems
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A final recap and takeaways

AVCs can capture models between average and worst-case channels.
• Causal: capacity depends on what James knows about the current input.
• Myopic: capacity depends on whether James can (partially) “decode.”

Some insights:
• Stochastic encoding and list decoding can help!
• Adversarial attacks are more powerful at the end of decoding.
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Thank you!
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