

Communication against restricted adversaries: between Shannon and Hamming

University of Sydney

Anand D. Sarwate

Rutgers University / ITSOC DL Program

07 August 2025

• Alice wants to send a message $m \in [M]$ to Bob using a *codeword* of n symbols.

- Alice wants to send a message $m \in [M]$ to Bob using a *codeword* of n symbols.
- The link between Alice and Bob is unreliable.

- Alice wants to send a message $m \in [M]$ to Bob using a *codeword* of n symbols.
- The link between Alice and Bob is unreliable.
- What is the maximum rate (capacity) $\frac{1}{n} \log_2(M)$ such that Bob can decode reliably?

- Alice wants to send a message $m \in [M]$ to Bob using a *codeword* of n symbols.
- The link between Alice and Bob is unreliable.
- What is the maximum rate (capacity) $\frac{1}{n} \log_2(M)$ such that Bob can decode reliably?

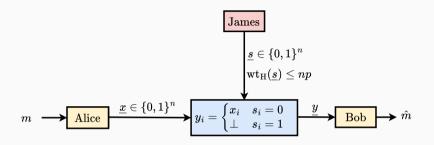
This problem has been studied to death! What more is there to understand?

- Alice wants to send a message $m \in [M]$ to Bob using a *codeword* of n symbols.
- The link between Alice and Bob is unreliable.
- What is the maximum rate (capacity) $\frac{1}{n} \log_2(M)$ such that Bob can decode reliably?

This problem has been studied to death! What more is there to understand?

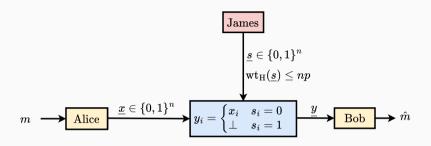
Let's zoom in on binary channels with erasures.

Binary input channels with erasures



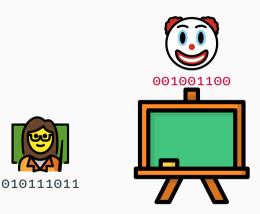
- Alice encodes a message $m \in \{1, 2, ..., 2^{nR}\}$ into a codeword $\underline{x} = \{0, 1\}^n$.
- Channel state s_i indicates whether $y_i = x_i$ or is erased.
- Only *np* erasures can happen.

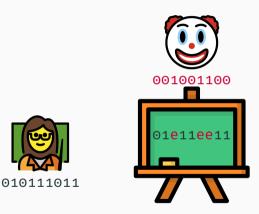
Binary input channels with erasures

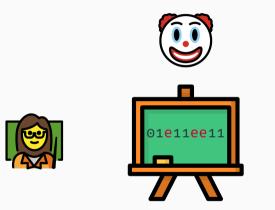


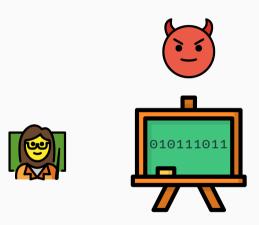
- Alice encodes a message $m \in \{1, 2, ..., 2^{nR}\}$ into a codeword $\underline{x} = \{0, 1\}^n$.
- Channel state s_i indicates whether $y_i = x_i$ or is erased.
- Only *np* erasures can happen.

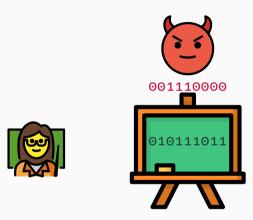
How is s chosen?

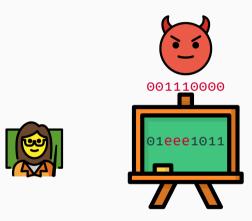


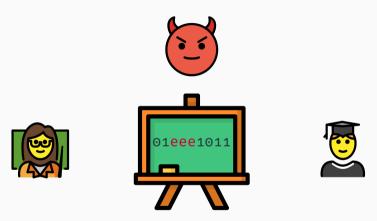


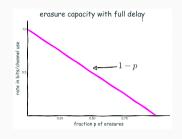








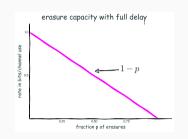


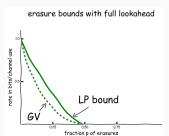


With the (Shannon-like) oblivious average-case model, the capacity is

$$C = 1 - p$$
.

There are many different ways to achieve this rate.





With the (Shannon-like) oblivious average-case model, the capacity is

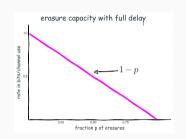
$$C = 1 - p$$
.

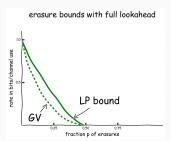
There are many different ways to achieve this rate.

With the (Hamming-like) omniscient worst-case model, the capacity upper bounded:

$$C < 1 - 2p$$
.

Lower bound: Gilbert-Varshamov (random) codes.





With the (Shannon-like) oblivious average-case model, the capacity is

$$C = 1 - p$$
.

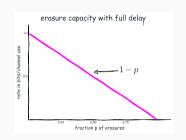
There are many different ways to achieve this rate.

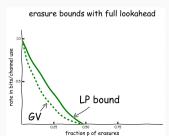
With the (Hamming-like) omniscient worst-case model, the capacity upper bounded:

$$C < 1 - 2p$$
.

Lower bound: Gilbert-Varshamov (random) codes.

That's a big gap...





With the (Shannon-like) oblivious average-case model, the capacity is

$$C = 1 - p$$
.

There are many different ways to achieve this rate.

With the (Hamming-like) omniscient worst-case model, the capacity upper bounded:

$$C < 1 - 2p$$
.

Lower bound: Gilbert-Varshamov (random) codes.

That's a big gap... where does it come from?

We want to explore this gap through modeling:

We want to explore this gap through modeling:

1. Use **arbitrarily varying channels (AVCs)** to develop a **unified framework** for both the Shannon and Hamming models.

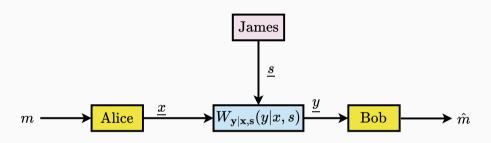
We want to explore this gap through modeling:

- 1. Use **arbitrarily varying channels (AVCs)** to develop a **unified framework** for both the Shannon and Hamming models.
- 2. Explore intermediate models to see what causes the gap.

We want to explore this gap through modeling:

- 1. Use **arbitrarily varying channels (AVCs)** to develop a **unified framework** for both the Shannon and Hamming models.
- 2. Explore intermediate models to see what causes the gap.
- Discover coding strategies to see what resources are needed to communicate reliably.

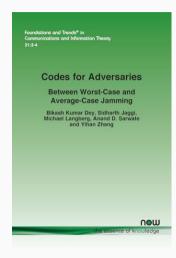
AVCs model channel "noise" as a state variable



In an **adversarial channel model**, **Alice** wants to communicate with **Bob** over a channel whose time-varying state is controlled by an adversarial **jammer** James.

- Alice and James may be constrained in how they communicate.
- ullet Capacity depends on **what James knows** about m and \underline{x} .

Shameless self-promotion



We have a monograph (December 2024!) on this topic (on which this talk is based).

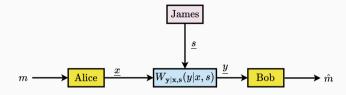
- Unified treatment of random noise (Shannon-theoretic) and worst-case noise (coding-theoretic).
- Intermediate models for jammers who can eavesdrop: online and myopic.
- Examples, open problems, and more!

What's coming up next

- 1. Arbitrarily varying channels (AVCs)
- 2. Some key ingredients
- 3. Causal adversarial models
- 4. Myopic adversarial models
- 5. Computationally efficient codes for causal adversaries
- 6. Looking forward

Arbitrarily varying channels (AVCs)

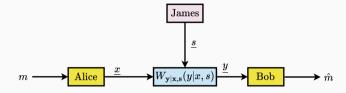
The basic channel model



Let \mathcal{X} , \mathcal{S} , and \mathcal{Y} be discrete alphabets. An AVC is a discrete channel $W_{\mathbf{y}|\mathbf{x},\mathbf{s}}(\mathbf{y}|\mathbf{x},\mathbf{s})$ such that

$$W_{\underline{\mathbf{y}}|\underline{\mathbf{x}},\underline{\mathbf{s}}}(\underline{\mathbf{y}}|\underline{\mathbf{x}},\underline{\mathbf{s}}) = \prod_{i=1}^{n} W_{\mathbf{y}|\mathbf{x},\mathbf{s}}(y_{i}|x_{i},s_{i})$$

The basic channel model

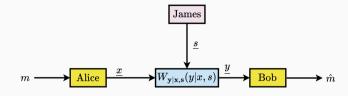


Let \mathcal{X} , \mathcal{S} , and \mathcal{Y} be discrete alphabets. An AVC is a discrete channel $W_{\mathbf{y}|\mathbf{x},\mathbf{s}}(\mathbf{y}|\mathbf{x},\mathbf{s})$ such that

$$W_{\underline{\mathbf{y}}|\underline{\mathbf{x}},\underline{\mathbf{s}}}(\underline{\mathbf{y}}|\underline{\mathbf{x}},\underline{\mathbf{s}}) = \prod_{i=1}^{n} W_{\mathbf{y}|\mathbf{x},\mathbf{s}}(y_{i}|x_{i},s_{i})$$

The **state** $\underline{s} \in \mathcal{S}^n$ is controlled by an adversarial **jammer** (James).

The basic channel model



Let \mathcal{X} , \mathcal{S} , and \mathcal{Y} be discrete alphabets. An AVC is a discrete channel $W_{\mathbf{y}|\mathbf{x},\mathbf{s}}(\mathbf{y}|\mathbf{x},\mathbf{s})$ such that

$$W_{\underline{\mathbf{y}}|\underline{\mathbf{x}},\underline{\mathbf{s}}}(\underline{\mathbf{y}}|\underline{\mathbf{x}},\underline{\mathbf{s}}) = \prod_{i=1}^{n} W_{\mathbf{y}|\mathbf{x},\mathbf{s}}(y_{i}|x_{i},s_{i})$$

The state $\underline{s} \in \mathcal{S}^n$ is controlled by an adversarial jammer (James). **Examples:** For binary channels \underline{s} could be the error erasure pattern.

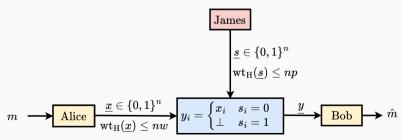
Input and cost constraints for AVCs

We impose that the types $T_{\underline{x}}$ and $T_{\underline{s}}$ of the codeword \underline{x} and the state \underline{s} lie be in convex subsets of the probability simplices $\Delta(\mathcal{X})$ and $\Delta(\mathcal{S})$:

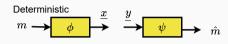
$$T_{\underline{\mathsf{X}}} \in \Gamma \subseteq \Delta(\mathcal{X})$$

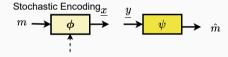
 $T_{\mathsf{S}} \in \Lambda \subseteq \Delta(\mathcal{S})$

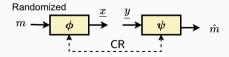
Example: For binary channels \underline{x} and \underline{s} have bounded Hamming weight.



Defining codes and input constraints







An (n, M, Γ) code is

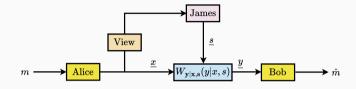
$$\begin{array}{ll} \phi \colon [\mathsf{M}] \to \mathcal{X}^n & \text{(encoder)} \\ \psi \colon \mathcal{Y}^n \to [\mathsf{M}] & \text{(decoder)} \end{array}$$

such that

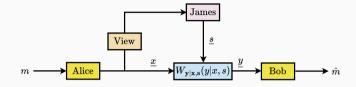
$$T_{\phi(m)} \in \Gamma$$

The rate is $R = \frac{1}{n} \log_2(M)$.

A **randomized code** lets Alice and Bob choose their code in secret. If Alice and Bob do not share common randomness, Alice can still use **stochastic encoding**.

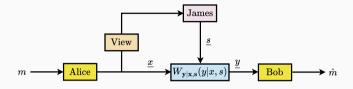


James wants to choose \underline{s} to maximize the probability of error for **Bob**. What James can do depends on what he knows:



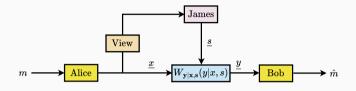
James wants to choose <u>s</u> to maximize the probability of error for **Bob**. What James can do depends on what he knows:

• The message: target small maximal (over messages) error.



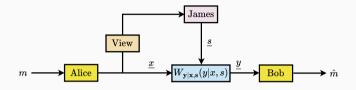
James wants to choose <u>s</u> to maximize the probability of error for **Bob**. What James can do depends on what he knows:

- The message: target small maximal (over messages) error.
- The codeword (fully or partially).



James wants to choose <u>s</u> to maximize the probability of error for **Bob**. What James can do depends on what he knows:

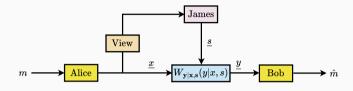
- The message: target small maximal (over messages) error.
- The codeword (fully or partially).
- The randomness used by Alice (and/or Bob).



James wants to choose <u>s</u> to maximize the probability of error for **Bob**. What James can do depends on what he knows:

- The message: target small maximal (over messages) error.
- The codeword (fully or partially).
- The randomness used by Alice (and/or Bob).

These constrain the set of **strategies** James can use.

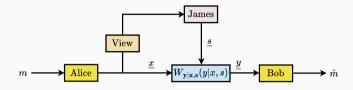


James wants to choose \underline{s} to maximize the probability of error for **Bob**. What James can do depends on what he knows:

- The message: target small maximal (over messages) error.
- The codeword (fully or partially).
- The randomness used by Alice (and/or Bob).

These constrain the set of **strategies** James can use.

• **Oblivious** (Shannon): the message only.



James wants to choose \underline{s} to maximize the probability of error for **Bob**. What James can do depends on what he knows:

- The message: target small maximal (over messages) error.
- The codeword (fully or partially).
- The randomness used by Alice (and/or Bob).

These constrain the set of **strategies** James can use.

- **Oblivious** (Shannon): the message only.
- Omniscient (Hamming): the message and the codeword.

Maximal error and capacity

Maximal and average error:

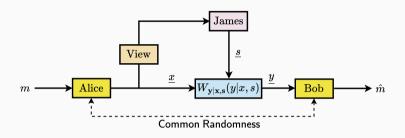
$$P_{ ext{err}}(m, \phi, \psi) = \max_{ ext{jamming strategies}} \sum_{ extbf{x} \in \mathcal{X}^n} \mathbb{P}\left(\psi(extbf{y})
eq m \mid extbf{x}
ight) \mathbb{P}_{\phi}\left(\phi(m) = extbf{x}
ight)$$

A rate R is achievable if for any $\epsilon > \mathbf{0}$ there exists an infinite sequence of rate R codes such that $P_{\mathrm{err}}(m,\phi,\psi) < \epsilon$ for all m.

The capacities $C_{\rm obl}$ and $C_{\rm omni}$ for oblivious and omniscient cases satisfy:

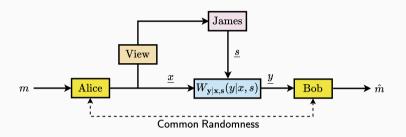
(Hamming)
$$C_{\mathrm{omni}} \leq C_{\mathrm{obl}}$$
 (Shannon)

Common randomness makes the problem easier



Blackwell et al. (1960) proposed the AVC model and studied **randomized codes**, where Alice and Bob share common randomness. James just minimizes the mutual information over equivalent DMCs:

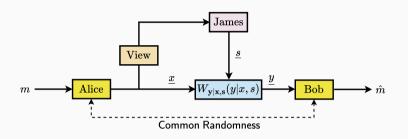
Common randomness makes the problem easier



Blackwell et al. (1960) proposed the AVC model and studied **randomized codes**, where Alice and Bob share common randomness. James just minimizes the mutual information over equivalent DMCs:

• **Oblivious:** find $\sum_s W_{\mathbf{y}|\mathbf{x},\mathbf{s}}(y|\mathbf{x},\mathbf{s})Q_{\mathbf{s}}(s)$ with lowest Shannon capacity.

Common randomness makes the problem easier



Blackwell et al. (1960) proposed the AVC model and studied **randomized codes**, where Alice and Bob share common randomness. James just minimizes the mutual information over equivalent DMCs:

- **Oblivious:** find $\sum_s W_{\mathbf{y}|\mathbf{x},\mathbf{s}}(y|\mathbf{x},\mathbf{s})Q_{\mathbf{s}}(s)$ with lowest Shannon capacity.
- Omniscient: find $\sum_s W_{\mathbf{y}|\mathbf{x},\mathbf{s}}(y|\mathbf{x},s)U_{\mathbf{s}|\mathbf{x}}(s|\mathbf{x})$ with lowest Shannon capacity.

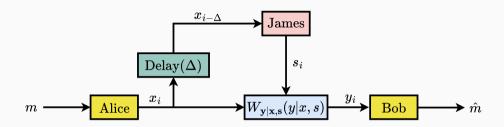
Deterministic codes and ECN Symmetrizability

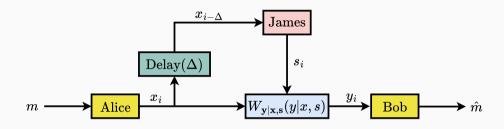


An AVC is **Ericson-Csiszár-Narayan (ECN) symmetrizable** if James can spoof Alice's codeword. That is, for all (y, x, x'), we have

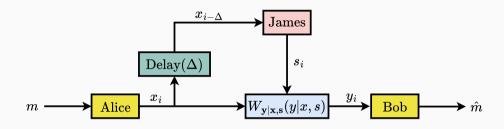
$$\sum_{s} U_{\mathbf{s}|\mathbf{x}'} W_{\mathbf{y}|\mathbf{x},\mathbf{s}} = \sum_{s} U_{\mathbf{s}|\mathbf{x}} W_{\mathbf{y}|\mathbf{x}',\mathbf{s}}.$$

Without common randomness, the capacity of a symmetrizable AVC $C_{\mathrm{obl}} = o$.

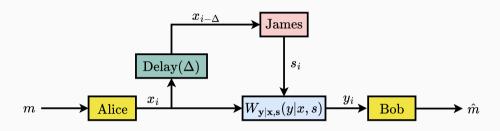




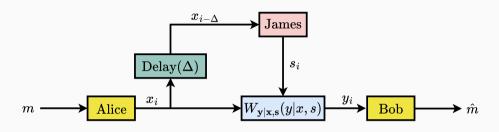
• $\Delta = n$ (oblivious): capacity = 1 - p ("Shannon")



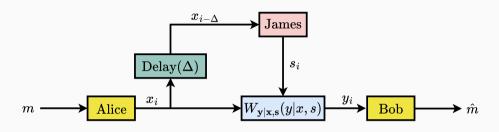
- $\Delta = n$ (oblivious): capacity = 1 p ("Shannon")
- $\Delta = 1$ ("one bit delay"): capacity = 1 p



- $\Delta = n$ (oblivious): capacity = 1 p ("Shannon")
- $\Delta = 1$ ("one bit delay"): capacity = 1 p
- $\Delta = 0$ ("causal"): capacity = 1 2p

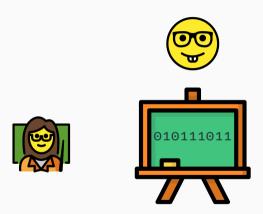


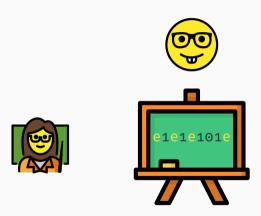
- $\Delta = n$ (oblivious): capacity = 1 p ("Shannon")
- $\Delta = 1$ ("one bit delay"): capacity = 1 p
- $\Delta = 0$ ("causal"): capacity = 1 2p
- $\Delta = -n$ (omniscient): capacity $\leq 1 2p$ ("Hamming")

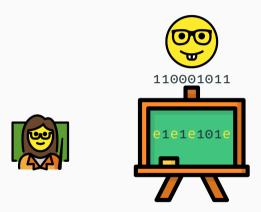


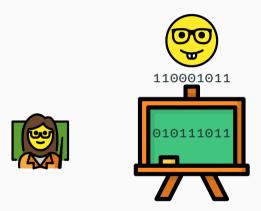
- $\Delta = n$ (oblivious): capacity = 1 p ("Shannon")
- $\Delta = 1$ ("one bit delay"): capacity = 1 p
- $\Delta = 0$ ("causal"): capacity = 1 2p
- $\Delta = -n$ (omniscient): capacity $\leq 1 2p$ ("Hamming")

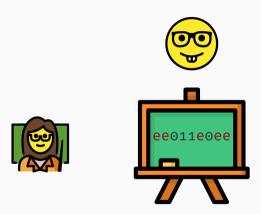
Knowing the current input gives James a lot of power!

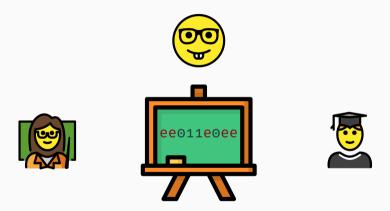




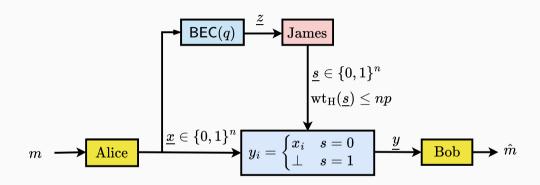




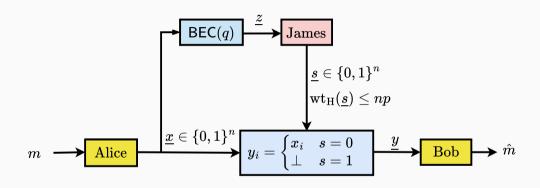




The impact of myopia in the erasure setting

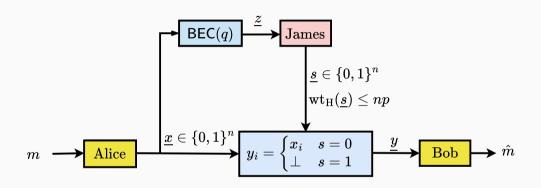


The impact of myopia in the erasure setting

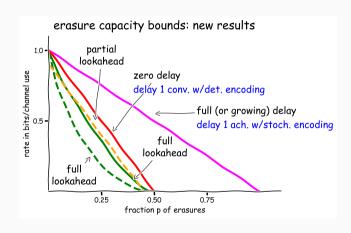


• Sufficiently myopic: (p < q): capacity = 1 - p

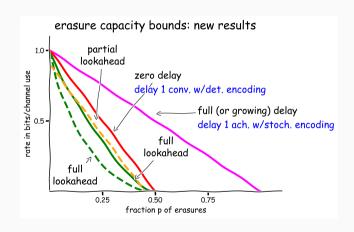
The impact of myopia in the erasure setting



- Sufficiently myopic: (p < q): capacity = 1 p
- Otherwise: (p > q): it's more complicated...

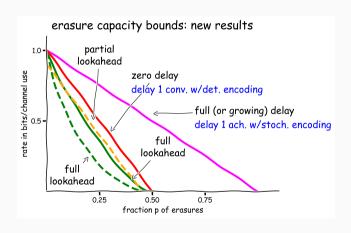


In **stochastic encoding**, Alice uses private randomness to create uncertainty for James



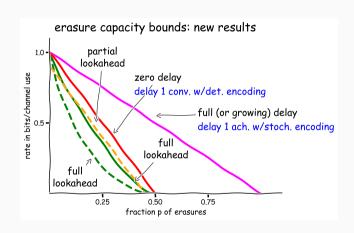
In **stochastic encoding**, Alice uses private randomness to create uncertainty for James

• Noise injection (c.f. secrecy).



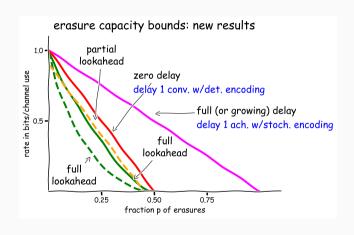
In **stochastic encoding**, Alice uses private randomness to create uncertainty for James

- Noise injection (c.f. secrecy).
- Low weight "fuzz" as a side channel.



In **stochastic encoding**, Alice uses private randomness to create uncertainty for James

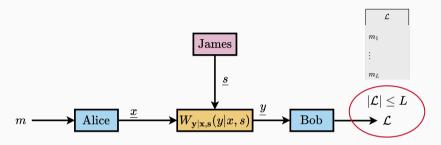
- Noise injection (c.f. secrecy).
- Low weight "fuzz" as a side channel.
- Select a codebook from a smaller "library".



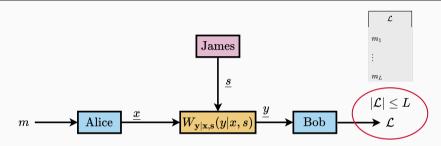
In **stochastic encoding**, Alice uses private randomness to create uncertainty for James

- Noise injection (c.f. secrecy).
- Low weight "fuzz" as a side channel.
- Select a codebook from a smaller "library".

It can be **necessary**: deterministic erasure codes cannot do better than 1-2p against a James who has a single bit of delay.

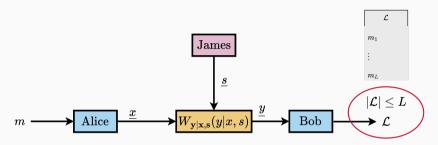


In **list decoding** we allow Bob to output a list \mathcal{L} .



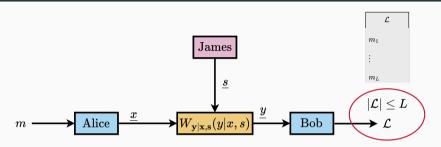
In **list decoding** we allow Bob to output a list \mathcal{L} .

ullet Decoding is successful if the transmitted $m\in\mathcal{L}$.



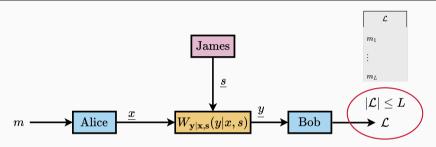
In **list decoding** we allow Bob to output a list \mathcal{L} .

- Decoding is successful if the transmitted $m \in \mathcal{L}$.
- Require the list size is no larger than than *L*.



In **list decoding** we allow Bob to output a list \mathcal{L} .

- Decoding is successful if the transmitted $m \in \mathcal{L}$.
- Require the list size is no larger than than *L*.
- Different L are useful in different cases: constant, $\operatorname{poly}(n)$, or $\operatorname{exp}(\epsilon n)$



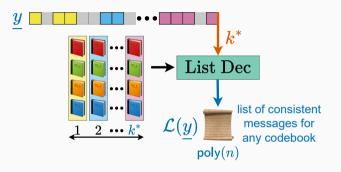
In **list decoding** we allow Bob to output a list \mathcal{L} .

- Decoding is successful if the transmitted $m \in \mathcal{L}$.
- Require the list size is no larger than than *L*.
- Different L are useful in different cases: constant, $\operatorname{poly}(n)$, or $\operatorname{exp}(\epsilon n)$

In some cases the list decoding capacity allows **strictly larger** rates:

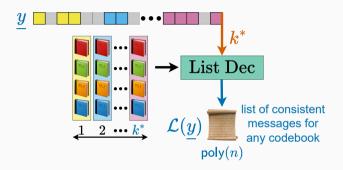
$$C_{\mathrm{list}}(L) > C_{\mathrm{obl}}.$$

List decoding appears in many ways



List decoding to a "small list" as a first stage often leads to optimal decoders:

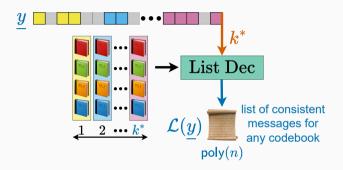
List decoding appears in many ways



List decoding to a "small list" as a first stage often leads to optimal decoders:

• With $O(\log n)$ bits of common randomness we get rates as good as infinite common randomness.

List decoding appears in many ways



List decoding to a "small list" as a first stage often leads to optimal decoders:

- With $O(\log n)$ bits of common randomness we get rates as good as infinite common randomness.
- James can list decode to jam more effectively.

A more technical ingredient which is particularly useful is the notion of **completely positive couplings**.

A more technical ingredient which is particularly useful is the notion of **completely positive couplings**.

• Start with a marginal distribution $P_{\mathbf{x}} \in \Delta(\mathcal{X})$.

A more technical ingredient which is particularly useful is the notion of **completely positive couplings**.

- Start with a marginal distribution $P_{\mathbf{x}} \in \Delta(\mathcal{X})$.
- A **self-coupling** is a joint distribution $P_{\mathbf{x},\mathbf{x}'}$ where each marginal is $P_{\mathbf{x}}$.

A more technical ingredient which is particularly useful is the notion of **completely positive couplings**.

- Start with a marginal distribution $P_{\mathbf{x}} \in \Delta(\mathcal{X})$.
- A **self-coupling** is a joint distribution $P_{\mathbf{x},\mathbf{x}'}$ where each marginal is $P_{\mathbf{x}}$.
- A self-coupling is completely positive if it is a mixture of independent self-couplings:

$$P_{\mathbf{x},\mathbf{x}'}(x,x') = \sum_{i=1}^{|\mathcal{U}|} P_{\mathbf{u}}(i) P_{\mathbf{x}_i}(x) P_{\mathbf{x}_i}(x').$$

Question: can we have a codebook where all codewords have pairwise types that are ρ -far from a CP self-coupling?

$$\|T_{\underline{\mathbf{x}},\underline{\mathbf{x}}'} - P_{\mathbf{x},\mathbf{x}'}^{(\mathsf{CP})}\|_{\infty} > \rho \qquad \forall \underline{\mathbf{x}},\underline{\mathbf{x}}', P_{\mathbf{x},\mathbf{x}'}^{(\mathsf{CP})}$$
(1)

Question: can we have a codebook where all codewords have pairwise types that are ρ -far from a CP self-coupling?

$$\|T_{\underline{\mathbf{x}},\underline{\mathbf{x}}'} - P_{\mathbf{x},\mathbf{x}'}^{(\mathsf{CP})}\|_{\infty} > \rho \qquad \forall \underline{\mathbf{x}},\underline{\mathbf{x}}', P_{\mathbf{x},\mathbf{x}'}^{(\mathsf{CP})}$$
(1)

• It turns out that any codes with this property cannot be too large (for large n)!

Question: can we have a codebook where all codewords have pairwise types that are ρ -far from a CP self-coupling?

$$\|T_{\underline{\mathbf{X}},\underline{\mathbf{X}}'} - P_{\mathbf{X},\mathbf{X}'}^{(\mathsf{CP})}\|_{\infty} > \rho \qquad \forall \underline{\mathbf{X}},\underline{\mathbf{X}}', P_{\mathbf{X},\mathbf{X}'}^{(\mathsf{CP})}$$
(1)

- It turns out that any codes with this property cannot be too large (for large n)!
- Compare this to the Plotkin bound: an upper bound on the size of binary codes with a given distance.

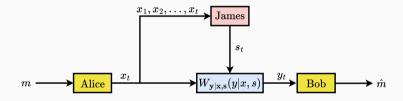
Question: can we have a codebook where all codewords have pairwise types that are ρ -far from a CP self-coupling?

$$\|T_{\underline{\mathbf{x}},\underline{\mathbf{x}}'} - P_{\mathbf{x},\mathbf{x}'}^{(\mathsf{CP})}\|_{\infty} > \rho \qquad \forall \underline{\mathbf{x}},\underline{\mathbf{x}}', P_{\mathbf{x},\mathbf{x}'}^{(\mathsf{CP})}$$
(1)

- It turns out that any codes with this property cannot be too large (for large *n*)!
- Compare this to the Plotkin bound: an upper bound on the size of binary codes with a given distance.
- If our rate is too high, then there will a constant fraction of codeword pairs whose type is close to CP.

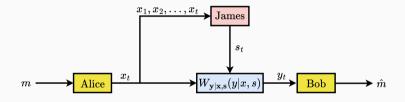
Causal adversarial models

Causal adversaries: James can see the current input



When can James "symmetrize" the channel and what does that mean? Think of James's constraint as a "power limitation":

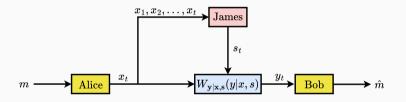
Causal adversaries: James can see the current input



When can James "symmetrize" the channel and what does that mean? Think of James's constraint as a "power limitation":

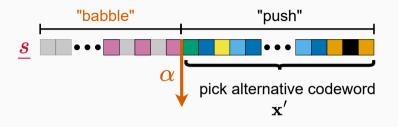
• Spend less power at the beginning to save it up and then push hard in the second half? Bob will get a better initial estimate.

Causal adversaries: James can see the current input

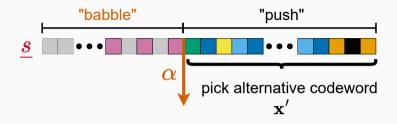


When can James "symmetrize" the channel and what does that mean? Think of James's constraint as a "power limitation":

- Spend less power at the beginning to save it up and then push hard in the second half? Bob will get a better initial estimate.
- Spend more power at the beginning in the hope of leading Bob astray? But then the suffix might resolve Bob's uncertainty.

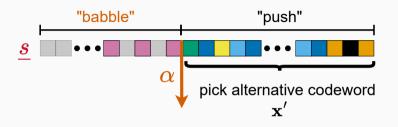


Alice and Bob pick a coding strategy and reveal it to James). James:



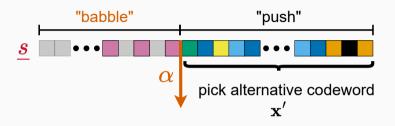
Alice and Bob pick a coding strategy and reveal it to James). James:

1. Splits time into \emph{K} blocks of length $\epsilon_{\emph{c}}\emph{n}$.



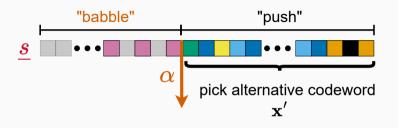
Alice and Bob pick a coding strategy and reveal it to James). James:

- 1. Splits time into K blocks of length $\epsilon_{c} n$.
- 2. "Distills" a large (constant fraction) subcode where $\underline{x} \approx$ the same type.
- 3. "Babbles" by using a random attack $V_{\mathbf{s}|\mathbf{x},\mathbf{u}=u}$ for $\mathbf{u} \leq \alpha \mathbf{K}$.



Alice and Bob pick a coding strategy and reveal it to James). James:

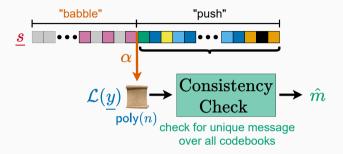
- 1. Splits time into K blocks of length $\epsilon_{c} n$.
- 2. "Distills" a large (constant fraction) subcode where $\underline{x} \approx$ the same type.
- 3. "Babbles" by using a random attack $V_{\mathbf{s}|\mathbf{x},\mathbf{u}=u}$ for $\mathbf{u} \leq \alpha \mathbf{K}$.
- 4. "Pushes" using codeword-dependent $V_{\mathbf{s}|\mathbf{x},\mathbf{x}'\mathbf{u}=u}$ for $u>\alpha K$.

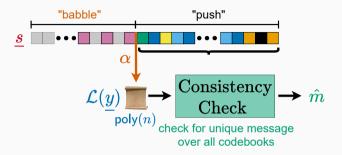


Alice and Bob pick a coding strategy and reveal it to James). James:

- 1. Splits time into K blocks of length $\epsilon_{\rm c} n$.
- 2. "Distills" a large (constant fraction) subcode where $\underline{x} \approx$ the same type.
- 3. "Babbles" by using a random attack $V_{\mathbf{s}|\mathbf{x},\mathbf{u}=u}$ for $\mathbf{u} \leq \alpha \mathbf{K}$.
- 4. "Pushes" using codeword-dependent $V_{\mathbf{s}|\mathbf{x},\mathbf{x}'\mathbf{u}=u}$ for $u>\alpha K$.

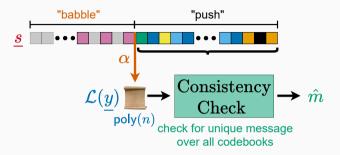
Use the generalized Plotkin bound (plus more) to show this will work.



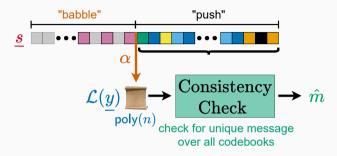


We can match the converse by using the same structure.

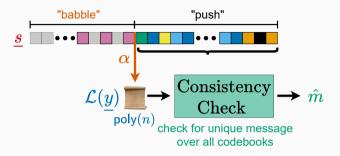
ullet Encode ${\it m}$ using independent randomness in each chunk.



- Encode **m** using independent randomness in each chunk.
- After each chunk, Bob tries to list decode by sequentially assuming James is using some random attacks $\{V_{\mathbf{s}|\mathbf{x},\mathbf{u}=u}\}$.



- Encode **m** using independent randomness in each chunk.
- After each chunk, Bob tries to list decode by sequentially assuming James is using some random attacks $\{V_{\mathbf{s}|\mathbf{x},\mathbf{u}=u}\}$.
- If there is a message \hat{m} and \underline{s} such that the assumed attack and observed \underline{y} he has seen so far are "feasible" then decode. Otherwise try another attack.



- Encode *m* using independent randomness in each chunk.
- After each chunk, Bob tries to list decode by sequentially assuming James is using some random attacks $\{V_{\mathbf{s}|\mathbf{x},\mathbf{u}=u}\}$.
- If there is a message \hat{m} and \underline{s} such that the assumed attack and observed \underline{y} he has seen so far are "feasible" then decode. Otherwise try another attack. Basically have to define what "feasible" means in this setting (quite involved).

$$\begin{split} C \coloneqq \limsup_{K \to \infty} \max_{\substack{P_{\mathbf{x} | \mathbf{u}} \in \Delta(\mathcal{X} | [1:K]) \\ \left[\mathrm{Unif}([K]) P_{\mathbf{x} | \mathbf{u}} \right]_{\mathbf{x}} \in \Lambda_{\mathbf{x}}}} \min \left\{ \min_{\substack{V_{\mathbf{s} | \mathbf{x}, \mathbf{u}} \in \mathcal{F}(P_{\mathbf{x} | \mathbf{u}})}} I(P_{\mathbf{x} | \mathbf{u}}, V_{\mathbf{s} | \mathbf{x}, \mathbf{u}}), \\ \min_{\substack{(\alpha, (V_{\mathbf{s} | \mathbf{x}, \mathbf{u}} \leq \alpha, V_{\mathbf{s} | \mathbf{x}, \mathbf{x}', \mathbf{u}} > \alpha)) \in \left\{0, \frac{1}{K}, \frac{2}{K}, \cdots, 1\right\} \times \mathcal{F}_{\alpha}(P_{\mathbf{x} | \mathbf{u}})}} I(P_{\mathbf{x} | \mathbf{u}} \in \alpha, V_{\mathbf{s} | \mathbf{x}, \mathbf{u}} \in \alpha}) \right\}. \\ \forall u \in [\alpha K + 1:K], V_{\mathbf{s} | \mathbf{x}, \mathbf{x}', \mathbf{u}} > \alpha = u} \in \mathcal{V} \end{split}$$

Pros and cons:

We end up with a multi-letter expression for the capacity.

$$\begin{split} C \coloneqq \limsup_{K \to \infty} & \max_{\substack{P_{\mathbf{x} | \mathbf{u}} \in \Delta(\mathcal{X}[[1:K]) \\ \left[\text{Unif}([K])P_{\mathbf{x} | \mathbf{u}} \right]_{\mathbf{x}} \in \Lambda_{\mathbf{x}}}} \min \left\{ \min_{\substack{V_{\mathbf{s} | \mathbf{x}, \mathbf{u}} \in \mathcal{F}(P_{\mathbf{x} | \mathbf{u}}) \\ \left[\text{Unif}([K])P_{\mathbf{x} | \mathbf{u}} \right]_{\mathbf{x}} \in \Lambda_{\mathbf{x}}}} \prod_{\substack{\mathbf{v} \in \Lambda_{\mathbf{x}} \\ (\alpha, (V_{\mathbf{s} | \mathbf{x}, \mathbf{u}} \leqslant \alpha, V_{\mathbf{s} | \mathbf{x}, \mathbf{x}', \mathbf{u}} > \alpha)) \in \left\{0, \frac{1}{K}, \frac{2}{K}, \cdots, 1\right\} \times \mathcal{F}_{\alpha}(P_{\mathbf{x} | \mathbf{u}})}} I(P_{\mathbf{x} | \mathbf{u}} \leqslant \alpha, V_{\mathbf{s} | \mathbf{x}, \mathbf{u}} \leqslant \alpha}) \right\}. \\ & \forall u \in [\alpha K + 1:K], V_{\mathbf{s} | \mathbf{x}, \mathbf{x}', \mathbf{u}} > \alpha = u} \in \mathcal{V} \end{split}$$

- We end up with a multi-letter expression for the capacity.
- Significantly generalizes prior arguments to general channels.

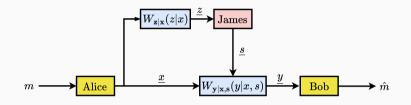
$$\begin{split} C \coloneqq \limsup_{K \to \infty} & \max_{\substack{P_{\mathbf{x} | \mathbf{u}} \in \Delta(\mathcal{X} | [1:K]) \\ \left[\mathrm{Unif}([K]) P_{\mathbf{x} | \mathbf{u}} \right]_{\mathbf{x}} \in \Lambda_{\mathbf{x}}}} \min \left\{ \min_{\substack{V_{\mathbf{s} | \mathbf{x}, \mathbf{u}} \in \mathcal{F}(P_{\mathbf{x} | \mathbf{u}})}} I(P_{\mathbf{x} | \mathbf{u}}, V_{\mathbf{s} | \mathbf{x}, \mathbf{u}}), \\ & \min_{\substack{(\alpha, (V_{\mathbf{s} | \mathbf{x}, \mathbf{u}} \leq \alpha, V_{\mathbf{s} | \mathbf{x}, \mathbf{x}', \mathbf{u}} > \alpha)) \in \left\{0, \frac{1}{K}, \frac{2}{K}, \cdots, 1\right\} \times \mathcal{F}_{\alpha}(P_{\mathbf{x} | \mathbf{u}})}} I(P_{\mathbf{x} | \mathbf{u}} \leq \alpha, V_{\mathbf{s} | \mathbf{x}, \mathbf{u}} \leq \alpha}) \right\}. \\ & \forall u \in [\alpha K + 1:K], V_{\mathbf{s} | \mathbf{x}, \mathbf{x}', \mathbf{u}} > \alpha = u} \in \mathcal{V} \end{split}$$

- We end up with a multi-letter expression for the capacity.
- Significantly generalizes prior arguments to general channels.
- ✔ Plotkin results may be useful elsewhere.

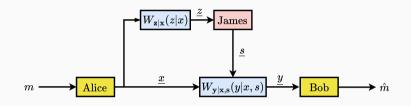
$$\begin{split} C \coloneqq \limsup_{K \to \infty} \max_{\substack{P_{\mathbf{x} | \mathbf{u}} \in \Delta(\mathcal{X} | [1:K]) \\ \left[\operatorname{Unif}([K]) P_{\mathbf{x} | \mathbf{u}} \right]_{\mathbf{x}} \in \Lambda_{\mathbf{x}}}} \min \left\{ \min_{\substack{V_{\mathbf{s} | \mathbf{x}, \mathbf{u}} \in \mathcal{F}(P_{\mathbf{x} | \mathbf{u}}) \\ \left[\operatorname{Unif}([K]) P_{\mathbf{x} | \mathbf{u}} \right]_{\mathbf{x}} \in \Lambda_{\mathbf{x}}}} I(P_{\mathbf{x} | \mathbf{u}}, V_{\mathbf{s} | \mathbf{x}, \mathbf{u}}), \\ \min_{\substack{(\alpha, (V_{\mathbf{s} | \mathbf{x}, \mathbf{u}} \leqslant \alpha, V_{\mathbf{s} | \mathbf{x}, \mathbf{x}', \mathbf{u}} > \alpha)) \in \left\{0, \frac{1}{K}, \frac{2}{K}, \cdots, 1\right\} \times \mathcal{F}_{\alpha}(P_{\mathbf{x} | \mathbf{u}})}} I(P_{\mathbf{x} | \mathbf{u}} \leqslant \alpha, V_{\mathbf{s} | \mathbf{x}, \mathbf{u}} \leqslant \alpha}) \right\}. \\ \forall u \in [\alpha K + 1:K], V_{\mathbf{s} | \mathbf{x}, \mathbf{x}', \mathbf{u}} > \alpha = u} \in \mathcal{V} \end{split}$$

- X We end up with a multi-letter expression for the capacity.
- Significantly generalizes prior arguments to general channels.
- ✔ Plotkin results may be useful elsewhere.
- X Relies on some additional assumptions.

Myopic adversarial models

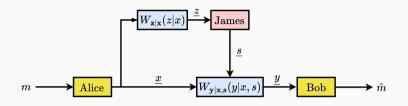


In a myopic AVC, James gets to see the entire codeword corrupted by a DMC $W_{\mathbf{z}|\mathbf{x}}$.



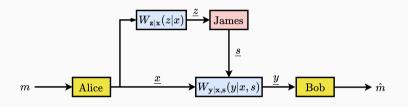
In a myopic AVC, James gets to see the entire codeword corrupted by a DMC $W_{\mathbf{z}|\mathbf{x}}$.

• Jamming strategies are maps $[M] \times \mathcal{Z}^n \to \mathcal{S}^n$.



In a myopic AVC, James gets to see the entire codeword corrupted by a DMC $W_{\mathbf{z}|\mathbf{x}}$.

- Jamming strategies are maps $[M] \times \mathbb{Z}^n \to \mathcal{S}^n$.
- For randomized codes we can again look for the worst DMC $\sum_s W_{\mathbf{y}|\mathbf{x},\mathbf{s}}(y|x,s)W_{\mathbf{z}|\mathbf{x}}V_{\mathbf{s}|\mathbf{z}}(s|z)$.



In a myopic AVC, James gets to see the entire codeword corrupted by a DMC $W_{\mathbf{z}|\mathbf{x}}$.

- Jamming strategies are maps $[M] \times \mathbb{Z}^n \to \mathbb{S}^n$.
- For randomized codes we can again look for the worst DMC $\sum_s W_{\mathbf{y}|\mathbf{x},\mathbf{s}}(y|x,s)W_{\mathbf{z}|\mathbf{x}}V_{\mathbf{s}|\mathbf{z}}(s|z)$.
- $\bullet\,$ By changing $W_{\mathbf{z}|\mathbf{x}}$ we can get the oblivious and omniscient settings.

A myopic AVC is said to be symmetrizable under input distribution $P_{\mathbf{x}} \in \Gamma$ if there exists a channel $U_{\mathbf{x}',\mathbf{s}|\mathbf{z}}$ such that for all x,x',y,

A myopic AVC is said to be symmetrizable under input distribution $P_{\mathbf{x}} \in \Gamma$ if there exists a channel $U_{\mathbf{x}',\mathbf{s}|\mathbf{z}}$ such that for all x,x',y,

$$\sum_{z,s} P_{\mathbf{x}}(x) W_{\mathbf{z}|\mathbf{x}}(z|x) U_{\mathbf{x}',\mathbf{s}|\mathbf{z}}(x',s|z) W_{\mathbf{y}|\mathbf{x},\mathbf{s}}(y|x,s)$$

$$= \sum_{z',s'} P_{\mathbf{x}}(x') W_{\mathbf{z}|\mathbf{x}}(z'|x') U_{\mathbf{x}',\mathbf{s}|\mathbf{z}}(x,s'|z') W_{\mathbf{y}|\mathbf{x},\mathbf{s}}(y|x',s'),$$

A myopic AVC is said to be symmetrizable under input distribution $P_{\mathbf{x}} \in \Gamma$ if there exists a channel $U_{\mathbf{x}',\mathbf{s}|\mathbf{z}}$ such that for all x,x',y,

$$\sum_{z,s} P_{\mathbf{x}}(x) W_{\mathbf{z}|\mathbf{x}}(z|x) U_{\mathbf{x}',\mathbf{s}|\mathbf{z}}(x',s|z) W_{\mathbf{y}|\mathbf{x},\mathbf{s}}(y|x,s)$$

$$= \sum_{z',s'} P_{\mathbf{x}}(x') W_{\mathbf{z}|\mathbf{x}}(z'|x') U_{\mathbf{x}',\mathbf{s}|\mathbf{z}}(x,s'|z') W_{\mathbf{y}|\mathbf{x},\mathbf{s}}(y|x',s'),$$

and the resulting state distribution given by

$$P_{\mathbf{s}}(\mathbf{s}) = \sum_{\mathbf{x}, \mathbf{z}, \mathbf{x}'} P_{\mathbf{x}}(\mathbf{x}) W_{\mathbf{z}|\mathbf{x}}(\mathbf{z}|\mathbf{x}) U_{\mathbf{x}', \mathbf{s}|\mathbf{z}}(\mathbf{x}', \mathbf{s}|\mathbf{z})$$

belongs to Λ .

A myopic AVC is said to be symmetrizable under input distribution $P_{\mathbf{x}} \in \Gamma$ if there exists a channel $U_{\mathbf{x}',\mathbf{s}|\mathbf{z}}$ such that for all x,x',y,

$$\sum_{z,s} P_{\mathbf{x}}(x) W_{\mathbf{z}|\mathbf{x}}(z|x) U_{\mathbf{x}',\mathbf{s}|\mathbf{z}}(x',s|z) W_{\mathbf{y}|\mathbf{x},\mathbf{s}}(y|x,s)$$

$$= \sum_{z',s'} P_{\mathbf{x}}(x') W_{\mathbf{z}|\mathbf{x}}(z'|x') U_{\mathbf{x}',\mathbf{s}|\mathbf{z}}(x,s'|z') W_{\mathbf{y}|\mathbf{x},\mathbf{s}}(y|x',s'),$$

and the resulting state distribution given by

$$P_{\mathbf{s}}(s) = \sum_{\mathbf{x}, \mathbf{z}, \mathbf{x}'} P_{\mathbf{x}}(\mathbf{x}) W_{\mathbf{z}|\mathbf{x}}(\mathbf{z}|\mathbf{x}) U_{\mathbf{x}', \mathbf{s}|\mathbf{z}}(\mathbf{x}', \mathbf{s}|\mathbf{z})$$

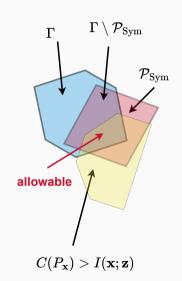
belongs to Λ . Let

$$\mathcal{P}_{Sym} = \{ P_{\mathbf{x}} \in \Gamma : P_{\mathbf{x}} \text{ is symmetrizable} \}.$$

Sufficient myopia and achievability

James can create an "effective DMC"

$$\mathcal{W} = \sum_{s} W_{\mathbf{y}|\mathbf{x},\mathbf{s}}(\mathbf{y}|\mathbf{x},s)W_{\mathbf{z}|\mathbf{x}}V_{\mathbf{s}|\mathbf{z}}(\mathbf{s}|\mathbf{z}).$$



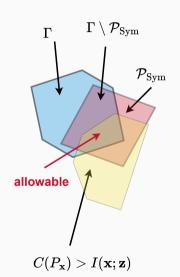
Sufficient myopia and achievability

James can create an "effective DMC"

$$W = \sum_{s} W_{\mathbf{y}|\mathbf{x},\mathbf{s}}(y|\mathbf{x},s)W_{\mathbf{z}|\mathbf{x}}V_{\mathbf{s}|\mathbf{z}}(s|\mathbf{z}).$$

Alice/Bob cannot use any $P_{\mathbf{x}} \in \mathcal{P}_{Sym}$. For $P_{\mathbf{x}} \in \Gamma \setminus \mathcal{P}_{Sym}$ they could target:

$$C(P_{\mathbf{x}}) = \min_{\mathcal{W}} I(\mathbf{x}; \mathbf{y}).$$



Sufficient myopia and achievability

James can create an "effective DMC"

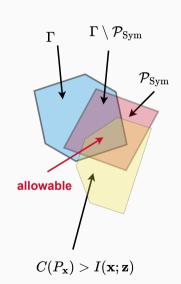
$$\mathcal{W} = \sum_{s} W_{\mathbf{y}|\mathbf{x},\mathbf{s}}(y|x,s)W_{\mathbf{z}|\mathbf{x}}V_{\mathbf{s}|\mathbf{z}}(s|z).$$

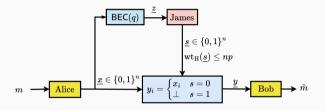
Alice/Bob cannot use any $P_{\mathbf{x}} \in \mathcal{P}_{Sym}$. For $P_{\mathbf{x}} \in \Gamma \setminus \mathcal{P}_{Sym}$ they could target:

$$C(P_{\mathbf{x}}) = \min_{\mathcal{W}} I(\mathbf{x}; \mathbf{y}).$$

If $I(\mathbf{z}; \mathbf{x}) < C(P_{\mathbf{x}})$ we say James is **sufficiently myopic**. In that case we can achieve any rate

$$R < \max_{P_{\boldsymbol{x}} \in \Gamma \setminus \mathcal{P}_{\text{Sym}}} C(P_{\boldsymbol{x}}).$$

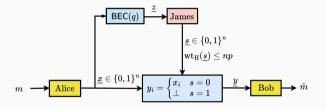




In the erasure setting the eavesdropping channel is a BEC(q) and James can erase at most pn bits. If p < q, James is **sufficiently myopic**.

If
$$p < q$$
,

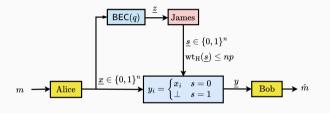
$$C_{\rm obl} = 1 - p$$
.



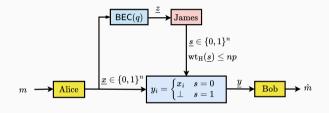
In the erasure setting the eavesdropping channel is a BEC(q) and James can erase at most pn bits. If p < q, James is **sufficiently myopic**.

$$C_{\rm obl} = 1 - p$$
.

If p > q we have two cases:



In the erasure setting the eavesdropping channel is a BEC(q) and James can erase at most pn bits. If p < q, James is **sufficiently myopic**.



In the erasure setting the eavesdropping channel is a BEC(q) and James can erase at most pn bits. If p < q, James is **sufficiently myopic**.

If p < q,

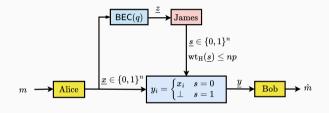
$$C_{\rm obl} = 1 - p$$
.

If p > q we have two cases:

1. If
$$q > 2p - 1$$
,

$$C \in \left(0, (1-q)\bar{\alpha}\left(\frac{p-q}{1-q}\right)\right],$$

where $\bar{\alpha}$ is the LP bound for normalized distance.



In the erasure setting the eavesdropping channel is a BEC(q) and James can erase at most pn bits. If p < q, James is **sufficiently myopic**.

If p < q,

$$C_{\rm obl} = 1 - p$$
.

If p > q we have two cases:

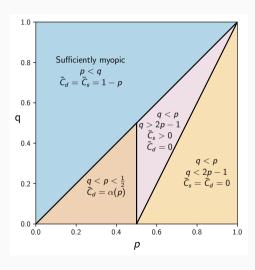
1. If
$$q > 2p - 1$$
,

$$C \in \left(0, (1-q)\bar{\alpha}\left(\frac{p-q}{1-q}\right)\right],$$

where $\bar{\alpha}$ is the LP bound for normalized distance.

2. If
$$q < 2p - 1$$
,

$$C = 0$$
.



Computationally efficient codes for causal adversaries

Can we design **efficient codes for causal and myopic models?**

Can we design efficient codes for causal and myopic models?

- random codes are inefficient to decode but linear codes are too easy jam!
 - → use a library of linear codebooks.

Can we design efficient codes for causal and myopic models?

- random codes are inefficient to decode but linear codes are too easy jam!
 - → use a library of linear codebooks.
- common randomness is unrealistic.
 - \longrightarrow use **limited encoder randomization** to **confuse the adversary**.

Can we design efficient codes for causal and myopic models?

- random codes are inefficient to decode but linear codes are too easy jam!
 - → use a library of linear codebooks.
- common randomness is unrealistic.
 - \longrightarrow use limited encoder randomization to confuse the adversary.
- minimum distance coding is not efficient in general.
 - \longrightarrow use **list decoding** to permit **efficient decoding**.

To get polynomial complexity, use

• a small amount of randomization to select from a

To get polynomial complexity, use

- a small amount of randomization to select from a
- library of random linear codes and

To get polynomial complexity, use

- a small amount of randomization to select from a
- library of random linear codes and
- uses **list decoding** to reduce the search space

To get polynomial complexity, use

- a small amount of randomization to select from a
- library of random linear codes and
- uses **list decoding** to reduce the search space

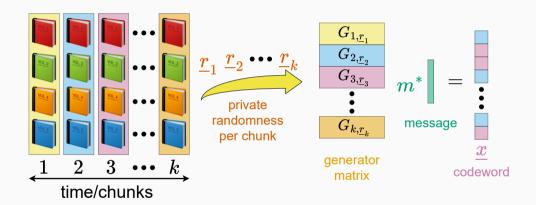
There are different types of complexity we would like to control:

- **Design**: how many bits do we need to generate the code?
- Storage: how many bits do we need to store the code?
- **Encoding**: how many operations are needed to encode a message?
- Decoding: how many operations are needed to decode the message?

Main results

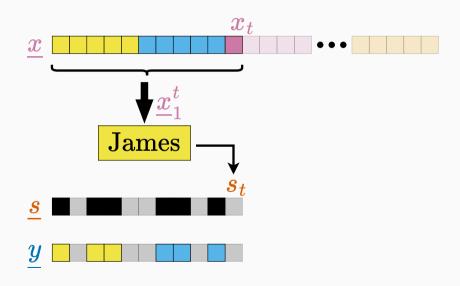
Model rate	Randomness	Enc/Storage	Decoding	${f P}_{ m error}$
Муоріс <i>p</i> < <i>q</i>	$\lambda_{\sf SM}\log(n)$	$O(n^{2+\lambda_{SM}})$	$O(n^{3+\lambda_{SM}})$	$O(n^{-\lambda_{SM}})$
$1 - p - \epsilon$				
Myopic $oldsymbol{q} < oldsymbol{p}$	$O(n \log \log n)$	$O(n^2 \log \log n)$	$O(n^3 \log \log n)$	$O(n^{-4/5})$
small rate	0(1110g10g11)		0(11 10g 10g 11)	
Causal	$O\left(\frac{\gamma \log n}{\epsilon}\right)$	$O(n^3 \log \log n)$	$O(n^{32/\epsilon})$	$O(n^{-(\gamma-1)})$
1 $-$ 2p $-\epsilon$	ϵ			

Encode splits block into a constant $k = \lceil \frac{n}{\epsilon} \rceil$ chunks

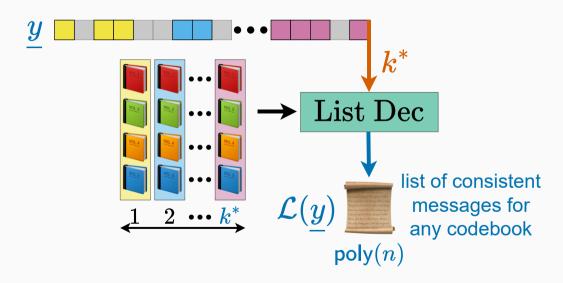


Generate a library of linear codebooks independently for each chunk.

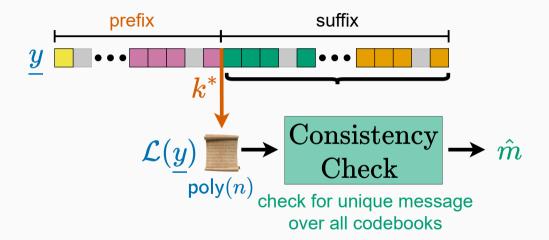
James can erase with causal information only



Bob decodes to a polynomial list



Bob uses suffix to disambiguate the list

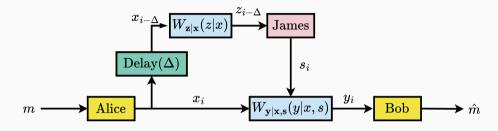


Why does this work?

- 1. Bob can track James's erasure budget.
- 2. List decoding creates a smaller set of messages to check for consistency.
- 3. James has a choice to **make the list larger** (erase more earlier, less later) or **conserve his budget** (erase less earlier, more later).
- 4. Poor James, he can't win.

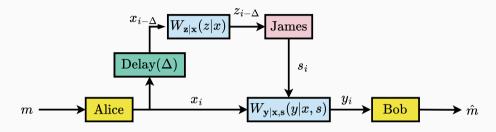
Looking forward

Other intermediate models



There are lots of other intermediate models one could look at:

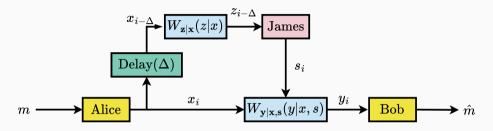
Other intermediate models



There are lots of other intermediate models one could look at:

• Causal and myopic together!

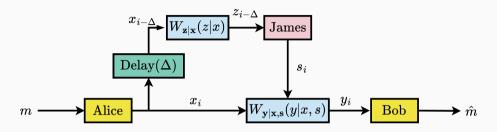
Other intermediate models



There are lots of other **intermediate models** one could look at:

- Causal and myopic together!
- Constraints that apply locally (sliding windows)

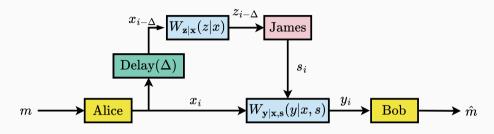
Other intermediate models



There are lots of other **intermediate models** one could look at:

- Causal and myopic together!
- Constraints that apply locally (sliding windows)
- Allow James to pick a fraction of locations to observe before acting.

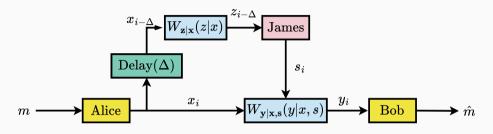
Other intermediate models



There are lots of other **intermediate models** one could look at:

- Causal and myopic together!
- Constraints that apply locally (sliding windows)
- Allow James to pick a fraction of locations to observe before acting.
- Etc. etc.

Other intermediate models



There are lots of other **intermediate models** one could look at:

- Causal and myopic together!
- Constraints that apply locally (sliding windows)
- Allow James to pick a fraction of locations to observe before acting.
- Etc. etc.

Each model will reveal something about what the **worst-case channel** looks like.

Understanding AVCs has lots of connections (perhaps less well described here) to many interesting areas:

zero-error capacity

- zero-error capacity
- high dimensional geometry

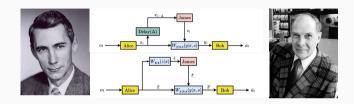
- zero-error capacity
- high dimensional geometry
- completely positive tensors and mixture models

- zero-error capacity
- high dimensional geometry
- completely positive tensors and mixture models
- adversarial machine learning

- zero-error capacity
- high dimensional geometry
- completely positive tensors and mixture models
- adversarial machine learning
- extremal graph theory

- zero-error capacity
- high dimensional geometry
- completely positive tensors and mixture models
- adversarial machine learning
- extremal graph theory
- other fun combinatorial problems

A final recap and takeaways



AVCs can capture models between average and worst-case channels.

- Causal: capacity depends on what James knows about the current input.
- Myopic: capacity depends on whether James can (partially) "decode."

Some insights:

- Stochastic encoding and list decoding can help!
- Adversarial attacks are more powerful at the end of decoding.

Thank you!